量子密码通信用长波长InN单光子源探测系统的设计初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
密码学主要是研究通信安全保密的学科。量子密码学是密码学与量子力学结合的产物,利用量子不可克隆定理和海森堡测不准原理等量子特性,量子密码通信理论上已经证明是绝对安全。量子密码通信在密钥分发上的实验已经得到巨大进展,预计很快能投入应用,在军事、电子银行保密等方面将有广泛的应用前景。
     在光量子信息处理过程中,单光子源和探测器是很重要的一个方面。由于具有独特的本征特性,InN材料已经成为最近两年国际上最热门的研究单光子源的材料之一。本文介绍了InN材料的基本性质。探讨了材料的生长技术和应用方向。采用低温氮化铟(InN)缓冲层,利用射频等离子体辅助分子束外延(RF-MBE)方法在蓝宝石衬底上获得了晶体质量较好的单晶InN外延膜。并且设计了以1 310nm激光波长作为光源的单光子探测装置系统。
Cryptography is the subject study of the secure communication. Quantum cryptography (QC) is the combination of classical cryptography and quantum mechanics. The characteristics of quantum mechanics, such as no-cloning theorem and Heisenberg's uncertainty principle, provide the perfect secrecy for quantum cryptographic communication. Being the first application of quantum physics, quantum key distribution has been developed very fast experimentally in recent years. It would impact thoroughly the existing secure communication, especially in military affairs, e-banking and so on.
     Important elements used in optical quantum information processing are single-photon detectors and sources. Due to the great application potential and the secrets of the characters having been revealed, the InN material is one of the most attractive materials by way of single-photon sources in recent two years. In this paper, the basic properties of InN were introduced. The growth techniques and applications of InN material were discussed. Finally, some questions and the prospect of the InN material in the future were given. InN films with low-temperature InN buffer layer are successfully grown on sapphire substrates by radio-frequency plasma-excited molecular beam epitaxy. A single-photon detection system with laser of the 1 310nm wavelength as light source is designed.
引文
1 BourennaneM,Eibl M,Kurtsiefer C,et al.Experimenta detection of multipartite entanglement using witness operators[J].Phys Rev Lett,2004,92(8):087902
    2 苏晓琴,郭光灿.运城学院学报.2004,22(5):1-4
    3 Cochrane P T,Ralph T C,Dolinska A,Optimal cloning for finite distributions of coherent states[J].PhysRev A,2004,69(4):042313-042319
    4 Kimura T,Nambu Y,Hatanaka T,et al.Single-photon interference over 150-km transmisison using silica-based integrated-optic interferometers for quantum cryptography[J].Phys Rev Lett,2005:0403104
    5 Kurtsiefer C,Zarda P,Halder M,et al.A step toward global key distribution [J].Nature,2002,419(6906):450-450
    6 Bennett C H,Brassard G,Crepeau C,et al.Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosenchannels[J].Phys.Rev.Lett,1993,70(13):1895-1899
    7 李承祖,黄明球,陈平形等.量子通信和量子计算[M].长沙:国防科技大学出版社,2000:118
    8 Pan J W,Gasparoni S,Aspelmeyer M,et al.Experimental realization of freely propagating teleported qubits[J].Nature,2003:721-725
    9 Riedmatten H,Marcikic I,Tittel W,et al.Longdistance quantum teleportation in a quantum relay configuration[J].Phys.Rev.Lett,2004,92(4):047904
    10 A.Yoshikawa,Growth and Properties of InN QDs and InN/InGaN SQW/MQWs Indium Nitride Workshop Ⅱ,Hawaii,USA,2005:9-13
    11 Nielson M A,Chuang I L.Quantum Computation and Quantum Infomation Cambridge University Press,2000
    12 Bouwmeester D,Ekert A,Zeilinger A.The Physics of Quanturn Information Springer-Verlag Berlin Heidelberg,2000
    13 Gisin N,Ribordy G,Tittel W et al.Rev.Mod Phys,2002,74:145
    14 Shot P W.Proc 35th Annu Symp on the Foundations of ComputerScience IEEE ComputerSociety Press,Los Alamitos California,1994,34:124-134
    15 Vemam Q d Am.Inst Electr Eng Quantum correlation among photons from a single quantum dot at room temperature,1926,45:109
    16 BennettC H,Brassard Q.Int Conf on Computerg Systems and Signal Processing Bangalore,India(IEEE New York,1984).2001:175-179
    17 Lo H.-K,Chau H F.Electrically Driven Single-photon source Science,1999,28:2050
    18 Shor P W,Preskill.Exction-photon strong-coupling regime for a single quantum dot embedded in a microcavity [J].Phys. Rev Lett, 2000, 85:441
    
    19 Bennett C H. Growth of single quantum dots on preprocessed structures: single photon emitter on a tip Phys Rep Lett, 1992,68:3121
    
    20 BruB D. Control of polarized single quantum dot emission in high-quality-factor microcavity pillars Phys Rep Lett, 1998, 81:3081
    
    21 Bechmann-Pasquinucci H, Gisin N. Unusual properties of the fundamental band gap of InN Phys Rev A, 1999, 59:4238
    
    22 Ekert A. Optical bandgap energy of wurtzite InN Phys Rep Lett, 1991, 67:661
    
    23 Inoue K, Waks E, Yamamoto Y. Indium nitride quantum dots grown by metalorganic vapor phase epitaxy Phys Rep Lett, 2002, 89:037902
    
    24 Bennett C H et al. High performance single photon sources from photolithographically defined pillar microcavities [J] Cryptology, 1992, 5:3
    
    25 Muller A, Brguet A step towards global key distribution [J]. Cisin N Europhys Lett,1993, 23:383
    
    26 Jennewe in T, Simon C Weihs G et al. Triggered single photons from a quantum dot Phys Rep Lett, 2000, 84:4729
    
    27 Muller A, ZbindenH, Cisin N. Strong coupling in a single quantum dot-semiconductor microcavity system Nature, 1995,378:449
    
    28 MullerA, ZbindenH, Cisin N. Deterministic coupling of single quantum dots to single nanocavity modes Europhys Lett, 1996, 33:335
    
    29 Townsend P A semiconductor source of triggered entangled photon pairs [J]. Nature, 1997, 385:47
    
    30 Aspelmeyer M et al Deterministic coupling of single quantum dots to single nanocavity modes Science, 2003,301:621
    
    31 Rarity JO et al Raman scattering in large single indium nitride dots: Correlation between morphology and strain [J]. Mod Opt, 2001, 48:887
    
    32 Hughes R et al. A step towards global key distribution New Phys, 2002, 4:43
    
    33 Kurtsiefer C et al. Indistinguishable photons from a single-photon device Nature, 2002, 419:450
    
    34 G. K. Brennen, Daegene Song, Carl [J]. Williams, A Practical Quantum Mechanism for the Public Goods Game, 2003,1:1-3
    
    35 Andrew Steane, Quantum computing: Logic gatewaym, Nature, 2003, 422:387~388
    
    36 Dorit Aharonov, A Simple Proof that Toffoli and Hadamard are Quantum Universal. Phys. Rev. Lett, 2003, 38:1-4
    
    37 N. Cerf, M. Bourennane, A. Karlsson and N. Gisin. Quantum Mechanics Helps in searching for a Needle in a Haystack Phys. Rev. Lett. 2002, 45:1—4
    
    38 W. Wootters and V. H. Zurek, Nature 1982, 29:802. The first no-cloning argument was expressed earlier by G. Ghirardi in a Referee Report for Foundations of Physics, 1981
    
    39 H. E. Brandt, J. M. Meyers, And S. J. Lomonaco. Aspects of entangled translucent eavesdropping in quantum cryptography. Phys. Rev. A, 1997,56(6) :4456~4465
    
    40 A. K. Ekert, Bruno Huttner, G. M. Palma, and Asher Peres. Eavesdropping on quantum-cryptographical systems. Phys Rev A, 1994,50(2) :1047~1056
    
    41 Michel Boyer, Gilles Brassard, J. Graaf, et al. Security of quantum key distribution against all collective attacks, 1998, 77:21-22
    
    42 Mayers Dominic. Unconditionally Secure Quantum Bit Commitment is Impossible. Phys Rev Lett, 1997, 78:3414~3417
    
    43 J. L. Samuel. A quick glance at quantum cryptography. Cryptologia, 1999, 32(1) :1~41
    
    44 C. H. Bennett. Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett, 1992, 68:3121
    
    45 K. Tamaki, M. Koashi, and N. Imoto. Security of the Bennett 1992 quantum-key distribution protocol against individual attack over a realistic channel. Phys. Rev. A, 2003, 67:032310
    
    46 Busch, Paul, P. J. Lahti, and P. Mittelstaedt, "The Quantum Theory of Measurement, "Springer-Verlag, New York, 1991
    
    47 Peres Asher. "Quantum Theory: Concepts and Methods, " Kluwer Academic Publishers. Boston, 1993
    
    48 A. K. Ekert, B. Huttner, G. M. Palma, and Asher Peres. Eavesdropping on quantum-cryptographical systems. Phys Rev A, 1994, 50(2) :1047~1056
    
    49 Dagmar Bruss. Optimal eavesdropping in quantum cryptography with six states. Phys Rev Lett ,1998,81:3018-3021
    
    50 A. K. Ekert. "Quantum cryptography based on Bell's theorem" . Physical Review Letters, vol. 67, 1991, 67(6) :661~663
    
    51 A. K. Ekert, J. G. Rarity, Tapster, P. R. and Palma, G. M. "Practical quantum cryptography based on two-photon interferometry" . Physical Review Letters, 1992, 69(9) :1293~1295
    
    52 S. M. Barnett, S. J. Phoenix. "Information-theoretic limits to quantum cryptography". Physical Review A, 1993, 48(1) :5~8
    
    53 S. M. Barnett, and S. J. Phoenix. "Bell's inequality and rejected-data protocols for quantum cryptography" . Journal of Modern Optics, 1993, 40(8) :1443~1448
    
    54 C. H. Bennett, G. Brassard, and N. D. Mermin. Quantum cryptography without Bell's theorem. Physical Review Letters, 1992, 68(5) :557~559
    
    55 K. Inoue, E. Waks, and Y. Yamamoto. Differential Phase Shift Quantum Key Distribution. Phys Rev Lett, 2002, 89:037902
    
    56 M. Koashi and J. Preskill. Secure Quantum Key Distribution with an Uncharacterized Source. Phys Rev Lett, 2003, 90:057902
    
    57 S. Castelletto, I. P. Degiovanni, and M. L. Rastello. Modified Wigner inequality for secure quantum-key distribution. Phys Rev A, 2003, 67:044303
    
    58 P. W. Shor and J. Preskill. Simple Proof of Security of the BB84 Quantum Key Distribution Protocol. Phys Rev Lett, 2000,85:441~444
    59 A.Einstein,B.Podolsky,N.Rosen.Can quantum,mechanical description of physical reality be considered complete? Phys Rev,1935,47:777:D.Bohm."uantum Theory".Prentice-Hall,Englewood Clis,NJ,1951
    60 Michler P,Kiraz A,Becher C,et al.A quantum dot single-photon turnstile device[J].Science,2000,89:2190-2282
    61 Vuckovic J,Yamamoto Y,et al.Photonic crystal microcavities for cavity QED with a single quantum dot[J].Appl.Phys.Lett,2003,34(5):2282-2374
    62 Tankechi S,Kim J,Yamamoto Y,et al.Beamlike twin-photon generation by use of type Ⅱ parametric downconversion[J].Opt.Lett.2001,71(8):726-843
    63 Li X,Chen J,Voss P,et al.ALL-fober photon-pair source for quantum communications:improved generation of correlated photons[J].Optics Express,2004,67(9):3712-3737
    64 李效白.氮化物基固态器件的研究进展[J].半导体技术,2001,26(5):20-25
    65 梁春广,张翼.GaN第三代半导体的曙光[J].半导体学报,1999,20(2):89-99
    66 袁明文.氮化物在光电子和微电子器件中的应用[J].半导体技术,2001,26(6):16-19
    67 IGASHIWAKI M,MATSUI T.High quality InN film growth on a low temperature growm GaN intermediate layer by plasma assisted molecular beam epitaxy[J].Appl Phys,2002,41:1540-1542
    68 WALUKIEWICZ W.Full solar spectrum photovoltage materials identitide[J].Materals Sciences Division,Berkeley,2003
    69 OLEARY S K,FONTZ B E,SHUR M S,et al.Electron transport in wurtzice InN[J].Appl Phys,1998,83:826-829
    70 BOCKOWSKI M.High pressure direct synthesis of Ⅲ-Ⅴ nitrides[J].Physica B,1999,265:1-5
    71 徐剑,张荣,王一平等.GaN从蓝宝石衬底上激光剥离技术研究[J].固体电子学研究与进展.2002,22(4):391-394
    72 KUMAGAI Y,TAKEMOTO K,KOUKITU A,et al.Thermodynamics on halide vapor phase epitaxy of InN using InCl[J].Crystal Growth,2001,222:118-124
    73 R.G.W.Brown,R.Jones,et al.Characterization of Silicon Avalanche Photodiodes for Photon Correlation Measurements.2:Active Quenching,1987,26(12):23-83
    74 陈成杰,徐正卜.光电倍增管[M].北京:原子能出版社,1987
    75 王秀山,宋登元.光传感器的研究进展及应用[J].传感器世界.1997,8(2):12-16
    76 梁创,廖静等.硅雪崩光电二极管单光子探测器[J].光子学报.2000.29(12):1142
    77 ZBINDEN H,GAUTIER J D,GISIN N,et al.Interferometry with Faraday mirrors for quantum cryptography [J].Electron.Lett,1998,33(7):586-588
    78 JOHN G R,THOMAS E W,KEVIN D R,et al.Single-photon counting for the 1300-1600 nm range by use of Peltier-cooledand passively quenched InGaAs avalanche photodiodes[J].Appl.Opt,2000,39(36):6746-6753
    79 IVAN P.Peltier-cooled and actively Quenched operation of InGaAs/InP avalanche photodiodes as photon counters at a 1. 55um wavelength [J]. Appl. Opt, 2001,40(33) :6012~6018
    
    80 TOMITA A, NAKAMURA K. Balanced, gated-mode photon detector for quantum-bit discrimination at 1550 nm [J]. Optics Letters, 2002, 27(20): 1827-1829
    
    81 BROWN R G W, RIDLEY K D, RARITY J G. Characterization of silicon avalanche photodiodes for photon correlation measurements. 1: Passive quenching [J]. Applied Optics, 1986, 25(22) :4122—4126
    
    82 KARLSSON A, BOURENNANE M, RIBORDY G, et al. A single photon counter for long-haul telecom [J]. IEEE Circuits Devices Mag, 1999,15(6) :35~40

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700