舰载飞机着舰拦阻钩碰撞及拦阻动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为航母上舰载飞机着舰的主要设备,拦阻装置用于吸收并耗散掉飞机航向动能,强制飞机在较短距离内停机,保障人机安全。飞机着舰拦阻时,为使拦阻钩能够成功钩住拦阻索,必须控制拦阻钩与道面的碰撞反弹,拦阻装置有能力对不同质量和不同拦阻速度的飞机进行拦阻。本文针对上述问题进行分析,分别研究了拦阻钩碰撞、舰载型拦阻装置及飞机拦阻动力学问题,并以此为基础设计了钩纵向阻尼器及拦阻机阻尼油孔参数,主要工作内容如下:
     分析了飞机着舰时拦阻钩接触道面反弹的成因,引入刚体碰撞理论,建立了飞机对称平面内拦阻钩初次碰撞道面反弹模型,研究了模型中各参数对拦阻钩碰撞反弹性能的影响。结果表明:拦阻钩反弹角速度与甲板角的余弦成反比,甲板凸起物将加大拦阻钩反弹角速度,道面的摩擦对拦阻钩的反弹影响较小。
     在考虑舰载机降落平台纵、横摇的基础上,建立了飞机拦阻钩六自由度碰撞反弹模型。求解并分析了无缓冲阻尼下钩碰撞后的位移,提供了一种钩纵向阻尼器的设计方法。结果表明:因航母横摇,拦阻钩碰撞反弹后出现了左右的反转角速度及碰撞冲量,拦阻钩反弹后在自身重力作用下不能使拦阻索顺利上钩。通过选择合适的钩纵向阻尼器参数,可有效地控制碰撞后钩的反弹高度及长度,从而为索顺利上钩提供了必要条件。
     以舰载型拦阻装置为例,分析了拦阻机能量吸收器的组成及其各部件的功能,探讨了飞机拦阻装置的设计方法。在考虑推力的基础上,建立了基于能量法的对中拦阻模型,给出了指标下的飞机拦阻力。在忽略拦阻索的柔性基础上,建立了飞机拦阻装置的动力学模型,并给出了飞机拦阻力关于定长冲跑阀阻尼油孔面积的方程。
     分析了拦阻钩上索时索被冲击后的弯折现象和弯折波的传播性能。求解分析了钩在索应变动载下的运动,证明了必须具有防止钩上转冲击机身的措施。依据舰载型拦阻机的动力学模型,飞机在定长冲跑条件下拦阻时,设计了拦阻机阻尼油孔面积随主液压缸行程变化的曲线,得到了不同质量飞机的拦阻动力学性能,飞机拦阻力满足美军标要求。
     建立了某型飞机的全机模型并对其进行了落震仿真分析。在定长冲跑条件下,对不同拦阻速度、不同发动机推力及不同着舰俯仰角下的飞机拦阻进行了仿真分析,得到了飞机的拦阻性能和飞机起落架在拦阻中所受载荷。通过对比不同工况下的仿真结果,分析并总结了不同的拦阻条件对飞机性能及起落架载荷的影响。
As the main equipment for carrier-based aircraft landing, the function of arresting devices is absorbing and dissipating longitudinal kinetic energy of aircraft. Aircraft is forced to stop in a short distance by arresting devices. It is used to provide safety for pilot and aircraft. In order to engage the cable successfully by arresting hook, the bounce of arresting hook after impacting with runway must be controlled during arrestment. Arresting devices should have capacity of arresting the aircraft with different mass and velocity. Those problems are analyzed, the dynamic problems of arresting hook impacting, arresting devices and aircraft arresting are studied, the parameters of hook longitudinal damper and arresting devices oil orifice are designed. The main contents in this thesis are shown as follows:
     The collision dynamics explanations of the arresting hook bounce when the aircraft landing are studied. Using the impacting theory of rigid body, the models of the hook bounce after initial touchdown in symmetrical plane of aircraft are built. The dynamics performances of hook bounce affected by model parameters are studied. The results show that the bounce angle velocity of arresting hook is inverse proportion with deck angle of cosine,the bounce angle velocity of arresting hook is increased by deck barrier,the effect of runway friction can be neglected in hook bounce problem.
     Considering the pitch and roll movement of carrier aircraft landing platform, the six degrees impacting model of the aircraft arresting hook is established. The bounce performance of arresting hook affected by pitch and roll of carrier is analyzed. The displacement of arresting hook without longitudinal damper after impacting is solved and analyzed. A method of longitudinal damper design is provided. The results show that the angle velocity and impulse of collision of hook in horizontal plane is nonzero; the hook can’t engage the cable after impacting with deck by gravitation, the bounce height and length of arresting hook can be controlled by choosing appropriate damper parameters, which is necessary to engage the cable.
     Taking carrier-based arresting device as example, the components of arresting device and the function of those components are studied; the method of arresting device design is also discussed. The symmetrical arresting model based on energy method considering aircraft thrust is built, the arresting force is deduced according to aircraft arresting rules. The dynamic model of arresting devices is established without considering cable flexibility; the equation of arresting force is expressed as the area of constant runout control valve.
     The kink wave caused by arresting hook and its propagation performance are analyzed. The movements of arresting hook by cable stress are calculated and analyzed; it is also proved that arresting hook must be prevented to impact fuselage by some facilities. Based on dynamic model of arresting devices, the curves of arresting force about constant runout control valve area are designed under constant runout condition. The arresting dynamic performance of aircraft with different mass is obtained. The arresting forces obtained by this method are satisfied with the requirements of American military standard.
     The aircraft models are built, the whole aircraft drop are also stimulated. Under constant runout condition, the arrestments of aircraft with different velocity, different thrust and different pitch angle are stimulated,the results of landing gear loads and the arresting performance of aircraft are obtained,. Comparing with the arresting results,the dynamic performance of aircraft and landing affected by arresting conditions are analyzed.
引文
[1]杨一栋.舰载机进场着舰规范评估[M].国防工业出版社, 2006.
    [2] Thomlinson J. A Study of the Aircraft Arresring-Hook Bounce Problem, 2980[R]. The Principal Director of Scientific Research (Air), Ministry of Supply, 1954.
    [3] Cook R. Soft-Ground Arresting System for Commercial Aircraft, ADA263461[R]. FAA Technical Center Atlantic City International Airport,N.J. 08405, 1993.
    [4]飞机设计手册总编委会.飞机设计手册:起飞着陆系统设计[M].北京:航空工业出版社, 2002.
    [5] GJB3061-97.飞机拦阻装置通用规范[S].国防科学技术工业委员会, 1998.
    [6] Agrawal S K, White J C. Soft Ground Arresting System for Airports, ADA277645[R]. FAA Technical Center Atlantic City International Airport,N.J. 08405, 1993.
    [7]胡萍.纽约各机场将安装泡沫软垫飞机拦阻系统[J].机场工程, 1996(3): 64-66.
    [8] Horne W B, Leland T J W. Influence of Tire Tread Pattern and Runway Surface Condition on Braking Friction and Rolling Resistance of a Modern Aircraft Tire, 19620005764[R]. Langley Research Center, Sep 1 1962.
    [9] Tuccillo S, Brownie R B, Hironaka M C. Expedient Structural Sandwich Soil Surfacing of Fiberglass Reinforced Polyester and Polyurethane Foam, ADA038417[R]. Civil Engineering Lab (Navy) Port Hueneme Calif, 1977.
    [10]卢成文.舰载飞机发展回顾[J].现代舰船, 1999(6): 29-35.
    [11] Vignevic N, Riviere W. CTOL/VSTOL comparison - A view from the deck, American Institute of Aeronautics and Astronautics, Aircraft Systems Meeting, Anaheim, Calif ; United States; 4-6 Aug. 1980.
    [12] Jordan J O. Marine TacAir and the STOVL Penalty: Myth or Menace?, ADA401159[R]. Marine Corps Command and Staff Coll Quantico VA, 2001.
    [13] Rudowsky T, Cook S, Hynes M, et al. Review 0f The Carrier Approach Criteria for Carrier-basedd Aircraft–Phase I;Final Report, NAWCADPAX/TR-2002/71[R]. Naval Air Warfare Center Aircraft Division Patuxent River, Maryland, 2002.
    [14]张鑫.舰载机拦阻着舰动力学分析及仿真[D].西安:西北工业大学, 2007.
    [15]张明廉,徐军.舰载飞机自动着舰系统的研究[J].北京航空航天大学学报, 1994, 20(4): 386-391.
    [16] Systems E A. Air Traffic Control Training Series, AT-G-02[R]. Department of the Air Force, Air Force Flight Standards Agency, 2004.
    [17]彭友梅.舰载飞机发动机的技术特点[J].燃气涡轮试验与研究, 2005, 18(2): 56-57.
    [18]高泽迥.飞机拦阻钩振动运动学和拦索动力学研究[J].航空学报, 1990, 11(12): B543-B548.
    [19] Jones L W. Development of curves for estimating aircraft arresting hook loads, AD-A119551[R]. Air force flight test center, Edwards air force base, California, 1982.
    [20] Corporation E A S. Safety Bulletin, asdasd[R]. Engineered Arresting Systems Corporation, 2004.
    [21] Acharya B N, Gupta G P, Prakash S, et al. UV-resistant, water repellent and rodent repellent nylon tapes for aircraft arrester system[J]. Pigment & Resin Technology, 2005, 34(5): 270-274.
    [22] Rusk D T, Pierce J, Hoppe W, et al. Analysis and Testing of Fleet Corroded F/A-18C/D Arrestment Shanks, ADA489911[R]. Naval Air Warfare Center Aircraft Division, Patuxent River, Maryland, 2008.
    [23] Military Standard: Catapulting and Arresting Gear Forcing Functions for Aircraft Structural Design[S]. Department of the Navy A S C, 1981.
    [24] Gibson P T, Cress H A. Analytical Study of Aircraft Arresting Gear Cable Design, AD617788[R]. Battelle Memorrial Institute, Columbus Laboratories, 505 King Avenue, Columbus, Ohio, 1965.
    [25] Billec W B. Dymamic performace of a mark 7 mod 1 arresting system using 24-inch and 28-inch PD fairlead sheaves, W-900172[R]. U.S.Naval air test facility, U.S.Naval air station Lakehurst, New Jersey, 1966.
    [26] Billec W. The effect of deck span upon arresting-gear performance, AD-813761[R]. U.S.Naval air test facility, U.S.Naval air station Lakehurst, New Jersey, 1967.
    [27] Gibson P T, Alexander G H, Cress H A. Validation of Design Theory for Aircraft Arresting-Gear Cable, AD665328[R]. Battelle Memorrial Institute, Columbus Laboratories, 505 King Avenue, Columbus, Ohio, 1968.
    [28] Dodson M, Clark G C, Gibson P T, et al. Investigation of the influence of hook abrasion and wire materlals on the useful service life of deck pendants, AD-884423-L[R]. Battelle Memorial Institute,Columbus Laboratories Long Beach Ocean-Engineering,Facility 965 Harbor Scenc way, Long Beach, California, 1970.
    [29] Leask G M. Development of A Mathematical Performance Prediction Model for Rotary-Hydraulic-Type Arresting Gear, AD-893157[R]. Navy air test facility, Naval air station Lakeeurst, New Jersey, 1972.
    [30] Division V C S. Appendix F: Determination of Characteristic Loading Behavior of MK7-1 and MK-2 Arresting Gears by Analysis of Airplane Test Data, ADA111183[R]. Vought CorporationSystems Division, 1982.
    [31] Bean D L, Husbands T B. Evaluation of Barrier Cable Impact Pad Materials, ADA204356[R]. Army Engineer Waterways Experiment Station Vicksburg MS Structures Lab, 1988.
    [32] Brodersen R, Sauer G. A self-compensating aircraft recovery system, AIAA90-3273[R]. AIAA, AHS, and ASEE, Aircraft Design, Systems and Operations Conference, Dayton, OH, 1990.
    [33]陈瑜洲,穆宇新.国产飞机拦阻装置概况[J].航空工艺技术, 1991(1): 41-42.
    [34]李守佳,于静成.国产LZ—Ⅲ型飞机拦阻设备[J].国际航空, 1993(12): 60-61.
    [35]廖汝耕.飞机的守护神—拦阻网[J].知识就是力量, 1996(3): 18.
    [36] Mason A J. An Experimental Investigation of Damaged Arresting Gear Tapes for the Langley Aircraft Landing Dynamics Facility, NASA TM-1999-209839[R]. Langley Research Center, 1999.
    [37] Force D O T A. Guide To Mobile Aircraft Arresting System Installation - Air Force Handbook 10-222, Volume 8, ADA423975[R]. Secretary of the Air Force Washington DC, 2000.
    [38] H B. Mobile Arrestings System now Being Deployed[J]. Aerospace Engineering, 1986(6): 22-26.
    [39]张贝蓓.无人机回收方式综述[J].飞机工程, 2001(4): 30-35.
    [40]曹淑华.飞机拦阻器的液压系统设计及仿真研究[D].沈阳:东北大学, 2002.
    [41]吴娟,王纪森,袁朝辉.液压程控机构在新型飞机拦阻系统中的应用[J].液压与气动, 2002(11): 45-46.
    [42]吴娟,袁朝辉,何长安.某型飞机拦阻系统控制原理及方法分析[J].空军工程大学学报(自然科学版), 2002, 3(4): 1-3.
    [43]吴娟,何长安.某型飞机拦阻系统纠偏仿真分析[J].系统仿真学报, 2002, 14(12): 1614-1616.
    [44]宋锦春,张志伟,曹淑华,等.飞机拦阻器的液压系统与性能仿真[J].东北大学学报(自然科学版), 2002, 23(10): 992-995.
    [45]曹淑华,宋锦春,张志伟,等.飞机拦阻系统拦阻性能仿真研究[J].航空计算技术, 2002, 32(3): 31-37.
    [46]姜汝海,蔡良才.飞机着陆撞网问题研究[J].机场工程, 2002(2): 23-26.
    [47]吴娟.飞机拦阻系统分析与控制研究[D].西安:西北工业大学, 2003.
    [48]吴娟,何长安.新型飞机拦阻系统特性分析[J].航空学报, 2003, 24(5): 417-421.
    [49]李悦,周儒荣,周同礼.涡轮阻尼器的试验研究[J].吉林大学学报(工学版), 2003, 33(1): 64-68.
    [50]李大业.飞机拦阻器电液比例控制系统研究[D].沈阳:东北大学, 2004.
    [51]李悦,周同礼,董立敏.某型无人机拦阻网回收系统设计[J].南昌航空工业学院学报(自然科学版), 2004, 18(1): 82-85.
    [52]吴娟,袁朝辉,何长安.飞机拦阻系统非线性控制仿真分析[J].系统仿真学报, 2004, 16(2): 329-332.
    [53]赵福新,宋锦春,张志伟.飞机拦阻系统PID控制及Matlab实现[J].航空计算技术, 2004, 34(2): 95-97.
    [54]宋锦春,王艳,张志伟,等.飞机拦阻系统电液比例控制研究[J].航空学报, 2005, 26(4): 520-523.
    [55]杜天荣.飞机拦阻系统控制仿真分析[D].沈阳:东北大学, 2006.
    [56]钟子晶,王德功,常硕.飞机拦阻网微机自动立网系统的设计[J].计算机测量与控制, 2006, 14(4): 545-547.
    [57]刘宏伟,赵国志,夏松林,等.飞机网式拦阻系统动力学分析[J].力学与实践, 2007, 29(2): 21-23.
    [58]张鑫,李玉龙,刘元镛,等.飞机对中和偏心拦阻钩索动力学分析[J].机械强度, 2008, 30(4): 549-554.
    [59] Deloach R, Marlowe J M. Uncertainty Analysis for the Evaluation of a Passive Runway Arresting System, AIAA 2009-1156[R]. 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum
    [60] David F N, Scott A S. The Effect of Combat on Aircrew Subjective Readiness and LSO Grades during Operation Desert Shield/Storm, ADA254841[R]. Naval Aerospace Medical Research Lab Pensacola FL, 1992.
    [61] Clarke G E, Merson K L. Recent progress in aircraft sink rate measurement, A79-47884 (AH)[R]. American Institute of Aeronautics and Astronautics, Aircraft Systems and Technology Meeting, New York, N.Y; United States, 1979.
    [62]励缨,温玮,金长江.舰载飞机逃逸复飞动力学特性研究[J].飞行力学, 1994, 12(2): 1-9.
    [63] Yackle A R. STOVL aircraft for shipboard operation, A93-13379[R]. AIAA aircraft Design Systems Meeting, Hlinton Head, SC, 1992.
    [64] Ryberg E S. The Influence of Ship Configuration on the Design of the Joint Strike Fighter, ADA399988[R]. Joint Strike Fighter Program Office Arlington, VA, 2002.
    [65]王钱生.舰载机总体设计主要关键技术概述[J].飞机设计, 2005(2): 6-10.
    [66] Taylor R T. An Experimental Investigation to Determine the Effect of Speed-Brake Position on the Longitudinal Stability and Trim of a Swept-Wing Fighter Airplane, 19980235623[R]. Langley Research Center, 1959.
    [67] Townend L H. Statics and aerodynamics of lifting decelerators (Statics and aerodynamics of lifting decelerators /parawings and sailwings/ at supersonic and hypersonic speeds), A71-10927(AH)[R]. AIAA JOURNAL. Vol. 8, pp. 1928-1935, 1968.
    [68] Anderson S B, Cooper G E, Jr Faye A E. Flight Measurements of the Effect of a Controllable Thrust Reverser on the Flight Characteristics of a Single-Engine Jet Airplane, 19980228232[R]. Ames Research Center, May 1959.
    [69] Small D B. Full Scale Tests of Nose Tow Catapulting, A64-327[R]. 1st AIAA Annual Meeting, Washingtong, D.C, 1964.
    [70] Ransone R K. STOL definition and field length criteria, 1970-1240[R]. American Inst of Aeronautics and Astronautics, Annual Meeting and Technical Display, 7th, Houston, TEX, 1970.
    [71] Hsin C. Arrested landing studies for STOL aircraft, A73-17627 (AH)[R]. American Institute of Aeronautics and Astronautics, Annual Meeting and Technical Display, 9th, Washington, D.C, 1973.
    [72] De Book K. A new aircraft/ship mating system, A74-21292 (AH)[R]. American Institute of Aeronautics and Astronautics and Society of Naval Architects and Marine Enginers, Advanced Marine Vehicles Conference, San Diego, Calif; United States, 1974.
    [73] Sherman W L. Generalization and refinement of an automatic landing system capable of curved trajectories, 19770005089[R]. Langley Research Center, Nov 1, 1976.
    [74] Fisher B D, Sleeper R K, Stubbs S M. Summary of NASA landing-gear research, 19780018105[R]. Langley Research Center, Mar 1, 1978.
    [75] Riddle D W, Stevens V C. Performance studies on the application of four-engine and two-engine USB propulsive lift to the E-2C aircraft ^1986, AIAA86-2674[R]. AIAA, AHS, and ASEE, Aircraft Systems, Design and Technology Meeting, Dayton, OH, Oct. 20-22, 13 p, 1986.
    [76]金长江,洪冠新.舰载机弹射起飞及拦阻着舰动力学问题[J].航空学报, 1990, 11(12): B535-B542.
    [77]胡孟权,林国华.舰载飞机着舰拦阻动力学分析[J].空军工程大学学报(自然科学版), 2000, 1(5): 8-11.
    [78]魏晓辉.飞机起落架着陆动力学分析及减震技术研究[D].南京:南京航空航天大学, 2005.
    [79]张健.舰载机设计中需考虑的若干问题[J].飞机工程, 2005(2): 9-12.
    [80]张澍森.飞机拦阻过程的非线性最优控制[D].南京:南京航空航天大学, 2008.
    [81]吴娟,符芳涌,肖勇.重型飞机拦阻系统的仿真分析[J].系统仿真学报, 2009, 21(20): 6643-6646.
    [82]罗青,冯蕴雯,冯元生.基于弯折波的舰载机拦阻着舰动力学分析及仿真研究[J].机械强度, 2009, 31(4): 543-547.
    [83]徐胜,徐元铭,王永庆.舰载机着舰拦阻建模仿真研究[J].飞机设计, 2009, 29(5): 5-12.
    [84]王萌辉,赵波.舰载飞机起降动力学研究[J].飞机设计, 1997(1): 21-33.
    [85]王萌辉,赵波.舰载飞机起降动力学研究(续)[J].飞机设计, 1997(2): 9-15.
    [86]王钱生,邵永起.飞机使用下沉速度的研究[J].飞机设计, 1998(2).
    [87]王钱生.关于舰载机着舰下沉速度的初步研究[J].飞机设计, 2007, 27(3): 1-6.
    [88]柳刚.飞机着陆拦阻装置的设计方法研究[D].南京:南京航空航天大学, 2006.
    [89]孙安媛,黄沛天.也谈完全非弹性碰撞和恢复系数[J].大学物理, 2001, 20(3): 9-14.
    [90]汪克义,吴朝晖,张先燚,等.反弹球动力学行为的计算机模拟[J].安徽师大学报(自然科学版), 1997, 20(3): 229-233.
    [91]杜尚之.球的弹跳运动[J].丽水师范专科学校学报, 2001, 23(2): 21-22.
    [92]哈尔滨工业大学理论力学教研室.理论力学.II[M].北京:高等教育出版社, 2002.
    [93]罗明聪.柔性梁与刚性地面碰撞动力学研究及仿真[D].南京:南京理工大学, 2006.
    [94]王有朝.对舰艇纵横摇坐标变换的讨论[J].现代雷达, 2001, 23(4): 27-30.
    [95]张志远,罗国富.舰船姿态坐标变换及稳定补偿分析[J].舰船科学技术, 2009, 31(4): 34-40.
    [96]姚文莉,陈滨,刘才山.有摩擦的平面斜碰撞刚体的恢复系数[J].工程力学增刊, 2003: 376-380.
    [97]姚文莉,陈滨,刘才山,等.含摩擦的多刚体系统碰撞问题的滑动状态步进法[J].应用数学和力学, 2007, 28(12): 1448-1454.
    [98]姚文莉,陈滨,刘才山.含摩擦的空间多刚体系统的冲击问题[J].动力学与控制学报, 2004, 2(2): 7-10.
    [99]郭吉丰,升谷保博,宫崎文夫.具有摩擦的刚体碰撞[J].应用力学学报, 2004, 21(2): 77-82.
    [100]姚文莉,陈滨.考虑摩擦的平面多刚体系统的冲击问题[J].北京大学学报(自然科学版), 2004, 40(5).
    [101]姚文莉,王育平,边力,等.多刚体系统接触碰撞动力学研究进展[J].力学与实践, 2007, 29(6): 9-12.
    [102] Germeraad D P. Aircraft carrier - Surface effect ship, A82-31981 (AH)[R]. American Institute of Aeronautics and Astronautics, International Very Large Vehicles Conference, 2nd, Washington, DC; United States, 1982.
    [103]曹炎娜,李屹东,董庚寿,等.舰载飞机着舰最佳甲板风初步分析[J].飞行力学, 1995, 13(2): 18-24.
    [104]翟祖清,付志方.舰船运动及变形对飞机着舰冲击载荷的影响[J].上海交通大学学报, 1997, 31(9): 6-9.
    [105]姚熊亮,翟祖清,陈起富.爆炸载荷下航母飞行甲板的弹塑性动力响应[J].哈尔滨工程大学学报, 1996, 17(3): 21-30.
    [106]孙国政.综合导航系统误差对舰载三坐标相控阵雷达精度的影响分析[J].现代雷达, 2006,28(2): 15-17.
    [107]韩冬,王浩文,高正.舰船纵横摇运动对旋翼瞬态气弹响应影响分析[J].直升机技术, 2007(3): 34-38.
    [108]贾忠胡,高永.规则海浪情况下的直升机着舰速度研究[J].飞行力学, 2001, 19(3): 63-64.
    [109]张云波.多体动力学接触与碰撞建模研究[D].武汉:华中科技大学, 2007.
    [110]张劲夫,秦卫阳.高等动力学[M].北京:科学出版社, 2004.
    [111]洪嘉振.计算多体系统动力学[M].上海:高等教育出版社, 1999.
    [112] Trobaugh L A, Obrimski F J. Consistent takeoff and landing criteria for Naval aircraft of various basing concepts, A80-43290 (AH)[R]. American Institute of Aeronautics and Astronautics, Aircraft Systems Meeting, Anaheim, Calif; United States, 1980.
    [113] Tanner J A, Stubbs S M. Behavior of aircraft antiskid breaking systems on dry and wet runway surfaces A slip-ratio-controlled system with ground speed reference from unbraked nose wheel, 19770026206[R]., Langley Research Center, Oct 1 1977.
    [114]牟让科,胡蒙权.飞机非对称着陆和滑跑载荷分析[J].机械科学与技术, 2000, 19(增刊): 72-74.
    [115]王钱生.飞机起飞中轮胎峰值负荷研究[J].飞机设计, 2001(1).
    [116] Pritchard J I. An Overview of Landing Gear Dynamics, 19990047095[R]. Langley Research Center, May 1999.
    [117] Montgomery R, Granda J. Automated modeling and simulation using the bond graph method for the aerospace industry[R]. 2003 AIAA Modeling and Simulation Technologies Conference and Exhibit, Austin, TX, 2003.
    [118] Cole J D, Dougherty C B, Huth J H. Constant-Strain Waves in Strings[J]. Trans.ASME, 1953, 75: 519-522.
    [119] Ringleb F O. Motion and Stress of an Elastic Cable Due to Impact[J]. Journal of Applied Mechanics, 1957, 24: 417-425.
    [120]马恩.液压与传动[M].北京:电子工业出版社, 2007.
    [121]吴娟,袁朝辉.某型飞机拦阻系统建模分析及仿真实现[J].空军工程大学学报(自然科学版), 2001, 2(6): 11-14.
    [122] Nowinski J L. Transverse Perpendicular Impact on a Cable of a Highly Elastic Material[J]. AIAA JOURNAL, 1967, 5(2): 332-333.
    [123] Dai Z, Liu J, Zeng X, et al. Periodic kink-wave and kinky periodic-wave solutions for the Jimbo–Miwa equation[J]. Physics Letters A, 2008, 372(2008): 5984-5986.
    [124] Rohani B. Theoretical Studies of Stress Wave Propagation in Laterally Confined Soils,19990713145[R]. US Army Corps of Engineers Waterways Experiment Station, 1999.
    [125]吴福光,蔡承武,徐兆.振动理论[M].上海:高等教育出版社, 1987.
    [126]杨桂通,张善元.弹性动力学[M].北京:中国铁道出版社, 1988.
    [127]马宏伟,吴斌.弹性动力学及其数值方法[M].北京:中国建材工业出版社, 2000.
    [128]金栋平,文浩,胡海岩.绳索系统的建模、动力学和控制[J].力学进展, 2004, 34(3): 304-313.
    [129]金栋平,胡海岩.横向流体激励下绳索的动力学分析[J].振动工程学报, 2000, 13(3): 340-344.
    [130]金栋平,胡海岩.行进绳索在横向流体激励下的运动[J].力学学报, 2001, 33(4): 525-530.
    [131]朱宝兵.拉索振动主动控制理论与试验研究[D].上海:同济大学, 2006.
    [132]张伟.轴向运动弦线横向振动的控制[D].上海:上海大学, 2006.
    [133]任淑琰.斜拉桥拉索参数振动研究[D].上海:同济大学, 2007.
    [134]王波.大跨斜拉桥拉索局部振动特性及其影响研究[D].武汉:华中科技大学, 2008.
    [135]唐乾刚,王振国.飞艇-绳索-子弹系留动力学研究[J].国防科技大学学报, 2008, 30(4): 28-32.
    [136] Starossek U. Cable Dynamics-A Review[J]. Structral Engineering International, 1994(3): 171-176.
    [137] Facilities A F I A. Planning Guide for Installation of Ultra-High-Molecular-Weight (UHMW) Polyethylene Panels under Aircraft Arresting System Cables (CONUS Installations), ADA301053[R]. Air Force Civil Enegineering Support Agency Tyndall AFB FL, 1995.
    [138]麻士东.飞机起落架缓冲系统动力学仿真研究[D].南京:南京航空航天大学, 2004.
    [139]马晓利,郭军,牟让科.基于MSC Adams/Aircraft的飞机起落架着陆动态性能分析[J].计算机辅助工程, 2006, 15(增刊): 33-35.
    [140]齐丕骞,牟让科.飞机起落架缓冲性能分析、试验、设计一体化技术[J].航空学报, 1998, 19(3): 332-334.
    [141]牟让科,罗俊杰.飞机结构弹性对起落架缓冲性能的影响[J].航空学报, 1995, 16(2): 205-208.
    [142]杨新,王小虎,申功璋,等.飞机六自由度模型及仿真研究[J].系统仿真学报, 2000, 12(3): 210-213.
    [143]王钱生.航母适配性的基本设计要求[J].飞机设计, 2006(2): 32-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700