多菌灵降解菌的分离、鉴定及其降解特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从长期受多菌灵污染的土壤和处理多菌灵废水的污泥中分离到3株高效多菌灵降解菌株,分别命名为djl-6、djl-6-2和CBDM-12。根据它们的培养特征、生理生化特征以及16s rDNA序列的同源性分析等,鉴定为红球菌属。
     研究表明,这3株多菌灵降解菌都是革兰氏阳性菌,有球杆状变化,都能在添加多菌灵的无机盐平板上产生清晰可见的透明圈;其中djl-6在LB上培养时,菌落呈橙色;djl-6-2和CBDM-12菌落呈乳黄色;3株菌的最适生长温度为30℃、pH值为7.0;都能耐受一定浓度的NaCl和抗生素;对葡萄糖和果糖等单糖的利用要好于麦芽糖和淀粉等多糖,对蛋白胨、牛肉膏和酵母等有机氮源的利用明显的优于以硫酸铵等无机氮源。
     降解菌株均能以多菌灵为唯一碳、唯一氮和唯一碳氮源进行生长。3株菌以多菌灵为唯一氮源时的生长和降解速度均好于以多菌灵为唯一碳和唯一碳氮源时的生长和降解速度。它们均能在2~3天时间内几乎完全降解100mg.L~(-1)的多菌灵,降解效果明显优于国内外已经报道的多菌灵降解菌株;降解菌株在中性稍微偏碱的环境中更有利于其对多菌灵的降解,它们降解多菌灵的最适温度都为30℃,其中菌株djl-6和djl-6-2降解多菌灵有比较宽的温度耐受范围;它们降解多菌灵的最适的Na~+浓度范围为20~30g.L~(-1),通气量对3株菌降解多菌灵的影响不大;添加酵母粉和葡萄糖对多菌灵的降解有一定的促进作用,添加土壤浸液对多菌灵的降解没有影响;Cu~(2+)对3株菌降解多菌灵有一定的抑制作用,其他的金属离子对多菌灵的降解没有太大影响;3株菌都能有效的降解苯菌灵和苯酚,对速灭威和甲霜灵也有一定的降解效果;所有这些特性表明3株菌可作为多菌灵污染生物修复的理想材料。
     系统发育分析和生理生化特征比较分析结果表明,djl-6和Rhodococcus baikonurensis、Rhodococcus erythropolsis亲缘关系较近,和Rhodococcus globerulus较远;多相分类结果表明,djl-6细胞中主要的脂肪酸组成为:C_(14∶0) 8.12%、C_(15∶0 1SO 2OH) 8.49%、C_(16∶0) 25.97%、C_(18∶0) 7.01%、C_(18∶1 w9c) 7.32%、C_(18∶0 TBSA 10Mc) 19.81%、C_(19∶0) 4.31%、C_(20∶0) 3.36%;氨基酸为:meso-DAP、Ala、Glu、Gly和Asp;糖为半乳糖,阿拉伯糖和葡萄糖;醌为MK-8(H2);G+C mol%为59.1;djl-6和R.baikonurensis DSM44587、R.erythropolis DSM43066,R.globerulus DSM43954的DNA-DNA杂交同源性分别为23.8518%、31.8361%和-17.7155%(为0%)。所有这些特性表明djl-6是红球菌属中的一个新种,初步命名为庆笙红球菌Rhodococcus qingshengensis sp.nov.。
     多菌灵降解酶是一种胞内非诱导组成型的酶。在提取该酶时,可把djl-6在LB培养基中培养到72~84h为宜,然后可采用添加溶菌酶、超声波破碎或French压榨等方法来提取。采用添加溶菌酶方法提取的降解酶酶活较高,而采用超声波和French压榨破碎虽然提取的酶量较大,所得总蛋白浓度也较高,但是酶活损失较大;多菌灵降解酶的最佳反应体系为在PH 7.0的缓冲系统中,控制温度为30℃,在5mL反应体系中添加30μL的粗酶液,反应时间控制在1小时之内,通常为30分钟;多菌灵降解酶在pH 7.0~8.0,温度4~45℃的范围内较稳定;金属离子Zn~(2+)和K~+对酶活有抑制作用。添加Tween 20对酶活测定没有影响,而添加Triton X-100和SDS,当浓度超过100mg.L~(-1)时就能对降解酶的活性产生一定地抑制作用;粗酶液的硫酸铵分级沉淀效果表明,当在上清液中添加硫酸铵浓度达到50%后,上清液中的酶活骤然降低。沉淀蛋白在硫酸铵的添加浓度达到40%以后,酶活就骤然上升,在50%以后达到最大。所以在用硫酸铵沉淀粗酶时可选择50%的硫酸铵沉淀浓度对降解酶进行粗分;同时降解酶能够在添加多菌灵的非变性胶上产生清楚可见的透明带。与此透明带对应的条带酯酶染色表明,该酶同时也是一种酯酶。把分离胶中的透明带切胶回收,可回收到一条分子量大小在97.4~66.2Kda之间的目的蛋白。
     对多菌灵代谢过程进行跟踪研究,发现在djl-6接种24小时后有三种中间代谢物存在,分别是2-氨基苯并咪唑(m/z=134.3)、苯并咪唑(m/z=119.3)和一种分子离子峰为104.8和118.5的未知物质。而经过2~3天的培养后,HPLC分析表明100mg.L~(-1)的多菌灵几乎被完全降解。推测多菌灵可能首先被转化为2-氨基苯并咪唑,然后再进一步被转化,最后被完全降解。本研究也是首次发现2-氨基苯并咪唑和苯并咪唑在纯菌多菌灵代谢物中同时存在。
     djl-6在红壤、潮土和高沙土中的降解实验表明,其在土壤中降解多菌灵需要一定的水分含量,稍高的水分含量有利于其对多菌灵的降解,但完全淹水的条件又会影响到其降解功能的发挥;与最适生长特点相符,在土壤中djl-6适宜的降解pH和温度分别为7.0和30℃;三种土壤中多菌灵的降解主要是由降解菌完成的,且接种量越大降解效果越好;添加葡萄糖对djl-6降解土壤中多菌灵有一定地促进作用。
     投加多菌灵和djl-6对红壤、潮土和高沙土三种土壤酶活性的影响表明,对过氧化氢酶活性的影响都是加降解菌的酶活要高于未加菌的酶活。未加菌处理初期都表现出抑制现象,而后又缓慢得到恢复;对土壤脱氢酶活性的影响,高沙土和红壤、潮土的实验结果相反,在加菌处理和未加菌处理中脱氢酶活性一开始就表现出抑制现象。其后虽然中间得到了一定的恢复,但仍然低于起始时没有经过任何处理的脱氢酶活性;三种土壤的实验结果都表明,加菌处理和未加菌处理对蔗糖酶和脲酶活性的影响在初期时都表现出抑制作用,其后逐渐恢复。接种降解菌的土壤脲酶活性要高于未接菌土壤的脲酶活性。
Three efficient carbendazim-degrading bacteria djl-6, djl-6-2 and CBDM-12 were isolated by continuous enrichment, screened from long carbendazim-treated soils and the sludge of the wastewater of carbendazim treatment They were all identified as Rhodococcus sp. according to their morphological observation, physiological biochemical test, comparison sequences of 16S rDNA and phylogenetic analysis.
     The isolates were all gram-positive, had spherical and bacilliform growth cycle, could produce obvious clearing zones around the colonies on the minimum medium amended with carbendazim as sole carbon sources. And among them, djl-6 could form orange colony on LB agar medium after 2~3 days of incubation, whereas djl-6-2 and CBDM-12 could form creamcolored colony. The optimum temperature and pH value for their growth were all 30℃and 7.0 respectively. Still they could all sustain on high salt concentration, and some antibiotics such as ceftazidime. They could grow well when using glucose or fructose as sole carbon sources, and peptone, beef cream or yeast extract as sole nitrogen sources.
     Studies indicate that the isolates could use carbendazim as the sole carbon, sole nitrogen and sole carbon and nitrogen sources, they grew and degraded better when carbendazim was used as sole nitrogen source than as sole carbon and sole carbon and nitrogen sources. Carbendazim, 100mg.L~(-1), could almost be degraded completely within 2~3 days incubation of the isolates, exceeded the biodegradability of carbendazim-degrading strains reported so far. A little alkaline condition benefit the biodegradation of carbendazim. The optimum temperature for their biodegradability was all 30℃, and the isolates djl-6 and djl-6-2 could still sustain a broad range of temperature. The feasible salt concentration for the carbendazim degradation was 20~30mg.L~(-1), the influence of aeration on the biodegradability of the isolates was trivial. Adding yeast extract and glucose could accelerate the biodegradation of carbendazim, while the soil extract could not accelerate just because of the poor nutriment in the soils. The ion except Cu~(2+) had no definite inhibition on the degradation of carbendazim by the isolates. What's more, the isolates still can degrade benomyl and phenol efficiently, and degrade MTMC and metalaxyl in some degree. In conclusion, all the characteristics shown above that the three isolates were the optical candidates for bioremediation of carbendazim-contaminated conditions.
     Phylogenetic analysis and comparison of physiological biochemical test shown that, djl-6 was analogous to Rhodococcus baikonurensis, Rhodococcus erythropolsis, but far from Rhodococcus globerulus and other species of Rhodococcus. Polyphasic taxonomy shown that the main fatty acid composition of djl-6 were C_(14:0)8.12%, C_(15:0)ISO 2OH 8.49%, C_(16:0) 25.97%, C_(18:0) 7.01%, C_(18:1) w9c 7.32%, C_(18:0) TBSA 10Me 19.81%, C_(19:0) 4.31% and C_(20:0)3.36%; the main amino acid in djl-6 were meso-DAP, Ala, Glu, Gly and Asp; the main sugar in djl-6 were galactose, glucose and arabinose; the main menaquinone was MK-8(H2); the G+C mol% was 59.1%; the hybridization value of djl-6 with R. baikonurensis DSM44587, R. erythropolis DSM43066, R. globerulus DSM43954 were 23.8518%, 31.8361% and -17.7155% (approximate to 0%) respectively. Drawn from the above characteristics, the djl-6 represented a novel Rhodococcus species, for which the name Rhodococcus qingshengensis sp. nov. was proposed.
     Studies also found that the carbendazim-degrading enzyme was a constitutive and not inductive enzyme. To extract the enzyme, culture djl-6 in LB liquid medium for 72~84 hours, then break it up with lysozyme, ultrasonic and French pressure cell press. The enzyme activity could save a lot with adding lysozyme method, lose a lot with ultrasonic and French pressure cell press, but could get more crude enzyme with the latter two methods. The best reaction system as following: incubation 30μL crude enzyme in pH7.0 PBS for 30~60min at 30℃. The enzyme was jarless among pH 7.0~8.0, and temperature 4~45℃, the ion Zn~(2+) and K~+ could inhibit the enzyme activity, adding Tween 20 would not inhibit the enzyme activity, but Triton X-100 and SDS would inhibit enzyme activity when the adding concentration exceed 100mg.L~(-1). When the concentration of ammonium sulfate precipitation attained to 50%, the enzyme activity in the liquid phase lost a lot, while the enzyme activity of sediment would flare up when the concentration of ammonium sulfate precipitation attained to 40%. Studies still found that the carbendazim-degrading enzyme was an ester enzyme according to the analysis of enzyme activity. An object protein with a molecular weight between 97.4~66.2 KDa was harvested through recycling the Clear strap in PAGE amended with carbendazim.
     After 24 hours incubation of djl-6 in the medium amended with carbendazim as sole carbon source, high pressure liquid chromatography-mass spectrometry (HPLC-MS) analysis showed the presence of 2-aminobenzimidazole (rn/z=134.3), benzimidazole (m/z=119.3), and an unknown metabolite with molecular ions (M~+) of m/z 104.8 and 118.5 Through the analysis of HPLC, 100mg.L~(-1) of carbendazim could almost, be degraded completely after two to three days incubation of djl-6. The biodegradation in the isolate djl-6 seems to be initiated with the cleavage of the methyl carbemate side chain, resulting in the formation of 2-aminobenzimidazole and 2-aminobenzimidazole is further converted to benzimidazole and so on in succession. This is the first report of the intermediates 2-aminobenzimidazole and benzimidazole were found together in the culture filtrate of pure bacterium.
     Bioremediation of djl-6 in red soil, fluvo-aquic soil and high-sandy soil showed that the degradation of carbendazim in the soils need a definite soil humidity, a little high humidity benefited the biodegradation of carbendazim, but the biodegradation could be inhibited when flooding the soils completely. Matched to the growth characters, the optimum pH and temperature for biodegradation of djl-6 in the soils were pH 7.0 and 30℃respectively. Studies also found that the biodegradation of carbendazim mainly was completed by the isolate djl-6 through the analysis of incubation amount of djl-6 and sterilizing the soils or not, a little of incubation benefit the biodegradation of carbendazim. The addition of glucose accelerated biodegradation of carbendazim in the soils.
     Effects of adding carbendazim and carbendazim-degrading strain djl-6 on the peroxidase, dehydrogenase, saccharase and urease activity in red soils, fluvo-aquic soil and high-sandy soil indicated that the activity of peroxidase of adding strain djl-6 and carbendazim exceed that of adding carbendazim only, and the activity of peroxidase would be inhibited at the beginning when adding carbendazim only, but would be resumed when the microbes adapt to the condition of adding carbendazim. Because of the different composition of microbes in high-sandy soil, the results of dehydrogenase activity change in high-sandy soil were different from that of red soils and fluvo-aquic soil, the activity of dehydrogenase was inhibited at the beginning with or without incubation of djl-6, and could not resume to the beginning level without adding djl-6 and carbendazim with the time go on. The influence of adding djl-6 and carbendazim on the saccharase and urease activity in red soils, fluvo-aquic soil and high-sandy all showed that the activity could be inhibited at the beginning, but would be resumed with time go on, Still the activity of urease of incubation of djl-6 exceeded that of without incubation of djl-6.
引文
[1] Aamil M, Zaidi A, Khan M S. Fungicidal impact on hickpea-Mesorhizobium symbiosis[J]. J Environ Sci Health B, 2004; 39(5-6): 779-90
    [2] Adenuga A O, Johnson J H, Cannon J Net al., Bioremediation of PAH-contaminated soil via in-vessel composting[J]. Water Sci. Technol., 1992, 26(1): 9-11
    [3] Anchana P, Hiroyasu N, Eiko S, et al. Degradation ofearbendazim and 2, 4-Dichlorophenoxyacetic acid by immobilized consortium on loofa sponge[J]. Journal of Bioscience and Bioengineering, 2004, 98(1): 28-33
    [4] Anchana P, Hiroyasu N, Mariko I, et al. Ability of a microbial consortium to remove pesticide, carbendazim and 2, 4 - dichlorophenoxyacetic acid [J]. World Journal of Microbiology & Biotechnology, 2004, 20: 517-522
    [5] Anderson T A, Guthrie E A and Walton B T, Bioremediation in the rhizosphere[J]. Environ. Sci. Technol., 1993, 27(13): 2630-2636
    [6] Autry A R and Ellis G M. Bioremediation: An effective remedial alternative for petroleum hydrocarbon-contaminated soil[J]. Environ. Prog., 1992, 1(4): 318-323
    [7] Carroquino M J, Cersbery R M, Dawsey W J, et al. Toxicity reduction associsted with bioremediation of gasoline contamiated groundwaters[J]. Bull. Environ. Contam. Toxicol., 1992, 49(2): 224-231
    [8] Cohen S Z, Eiden C and Lorber M N. Monitoring ground water for pesticides in the U. S. A. [J]. Sehriftenr Ver Wasser Boden Lufthyg, 1987, 68: 265-295
    [9] Davis L C, Eriekson L., Lee E, et al., Modeling the effects of plants on the bioremediation of contaminated soil and groundwater[J]. Environ. Prog., 1993, 12(1): 67-75
    [10] Forster B, Van G C A, Koolhaas J E, et al. Ring-testing and field-validation of a terrestrial model ecosystem (TME)--an instrument for testing potentially harmful substances: effects of carbendazim on organic matter breakdown and soil fauna feeding activity[J]. Ecotoxicology. 2004, 13(1-2): 129-141
    [11] Fredrickson J K, Bolton H, Brockmon F J. In situ and on-site bioremediation[J]. Environ. Sci. Technol., 1993, 23(9): 1711-1716
    [12] Frodrickson J K, et al. In-situ and on-site bioreelamation[J]. Environ. Sci. & Technol. , 1993 , 27 (9):1711~1716
    [13] Fuchs A and Vries F W D. Bacterial breakdown of benomyl I. Pure cultures[J].Antonie van Leeuwenhoek, 1978,44:283-292
    [14] Funk S B and Roberts D J. Initial-phase optimization for bioremediation of munition compound contaminated soil[J]. Appl. Environ. Microbiol., 1993,59(7):2171-2177
    [15] Hess A, Zarda B, Hahn D, et al. In situ analysis of denitrifying toluene-and m-xylene-degrading bacteria in a diesel fuel-contaminated laboratory aquifer column [J]. Appl. Environ. Microbiol.,1997 63:2136-2141
    [16] Holtman M A and Kobayashi D Y. Identification of Rhodococcus erythropolis isolates capable of degrading the fungicide carbendazim[J].Applied Microbiology and Biotechnology,1997,47,578-582
    [17] Irving R L, Earkeu T P, Kehrberger G J, et al. Bioremediation of soils contaminated with Bis-(2-ethylhexyl) phthalate (BEHP) in a soil slurry-sequencing batch reactor[J]. Environ. Prog., 1993, 12(1):39-44
    [18] Kadalmani B, Girija R, Faridha A,et al.,Male reproductive toxic effects of carbendazim: hitherto unreported targets in testis[J]. Indian J Exp Biol., 2002 40(1):40-45
    [19] Katiyar S K, Gordon V R, McLaughlin G L and Edlind T D. Antiprotozoal activities of benzimidazoles and correlations with beta-tubulin sequence[J]. Antimicrobiai Agents and Chemotherapy, 1994,38(9):2086-2090
    [20] Lu S Y, Liao J W, Kuo M L,et al., Endocrine-disrupting activity in carbendazim-induced reproductive and developmental toxicity in rats[J].J Toxicol Environ Health, 2004,67(19): 1501-15
    [21] Madsen E L, Determining in situ biodegradation: Facts and challenges [J].Environ. Sci. Technol, 1991, 25:1662-1673
    [22] Macdonald J.A., Rittmann B.E. Performance standards for in situ bioremediation [J]. Environ. Sci. Technol, 1993, 27(10):1974-1979
    [23] Marks R E, Field S D, Wojtanowiez A K, et al. Biological treatment of petrochemical wastes for removal of hazardous polynuclear aromatic hydrocarbon constitunents[J].Water Science and Technollogy, 1991, 25(3):200-213
    [24] Mantovani A, Maranghi F, Ricciardi C, et al., Developmental toxicity of carbendazim: Camparison of no-observed-adverse-effect level and benchmark dose approach[J]. Food and Chemical Toxicology, 1998, 36:37-45
    [25] Mazellier E F, Leroy E, Laat J D, et al., Degradation of carbendazim by UV/H_2O_2 investigated by kinetic modeling[J]. Environ Chem Lett, 2003,1:68-72
    [26] Middaugh D P, Lantz S E, Heard C S, et al. Field-scale testing of a two-stage bioreactor for removal of creosote and pentachlorophenol fron groundwater: chamical and biological assessment[J]. Arch. Environ. Contain. Toricol.,1994,26(3):320-328
    [27] Middeldorp P J M, Briglia M and Salkinoja M S S. Biodegradation of pentachlorophenol in natural polluted soil by inoculated Rhodococcus chlorophenol. Microb. Ecol[J]. 1990, 20:123-139
    [28] Miethling R and Karlson U. Accelerated mineralization of pentachlorophenol in soil upon inoculation with Mycobacterium chlorophenolicun PCP-1 and Sphingomonas chlorophenolica RA2[J].Appl. Environ. Microbiol.,1996, 36:254-258
    [28] Nakai M, Hess R A, Moore B J, et al. Acute and long-term effects of a single dose of the fungicide carbendazim (methyl 2-benzimidazole carbamate) on the male reproductive system in the rat[J]. J An drol,1992,13:507-518
    [29] Nakai M, Toshimori K, Yoshinaga K,et al., Carbendazim-induced abnormal development of the acrosome during early phases of spermiogenesis in the rat testis[J]. Cell Tissue Res, 1998,294(1):145-52
    [30] Pritchard P H and Costa C F. EPA's Alaska oil spill bioremediation project [J]. Environ. Sci. Technoh 1991, 25(3):372-379
    [31] Pritchard P H, Mueller J G, Rogers J C, et al. Oil spill bioremediation: experiences, lessons and results from the Exxon Valdex oil spill in Alaska[J]. Biodegradation, 1992,3(2-3):315-335
    [32] Rombke J, Van G C A, Jones S E, Koolhaas J E, et al., Ring-testing and field-validation of a terrestrial model ecosystem (TME)—an instrument for testing potentially harmful substances: effects of carbendazim on earthworms[J]. Ecotoxicology, 2004, 13(1-2):105-108
    [33] SarrifA M, Arce G T, Krahn D F, et al. Evaluation of carbendazim for gene mutations in the Salmonella/Ames plate-incorporation assay: the role of aminophenazine impurities[J]. Mutat Res, 1994,321:43-56
    [34] Shao ZQ, Seffens W, Mulbry W, et al. Cloing and expression of the s-triazine hydrolase gene(trzA) from Rhodococcus corallinus and development of Rhodococcus recombinant strains capable of dealkylating and dechlorinating the herbicide atrazine [J]. Journal of Bacteriology, 1995,177 (20),5748-5755
    [35] Siciliano, Steven D, Germida, James J. Enhanced hytoremediation of chlorobenzoates in rhizosphere soil. Soil Biology & Biochemistry, 1999,31 (2):299-305
    [36] Songur S H, Kockaya E A, Selmanoglu G, Barlas N. Dose-dependent effects of carbendazim on rat thymus[J]. Cell Biochem Funct, 2004,6
    [37] Sousa J P, Rodrtgues J M, Loureiro S,et al. Ring-testing and field-validation of a terrestrial model ecosystem (TME)—an instrument for testing potentially harmful substances: effects of carbendazim on soil microbial parameters[J]. Ecotoxicology, 2004 13(1-2): 43-60
    [38] Struthers J K, Jayachandram K. and Moorman T B. Biodcgradation of atrazine by Agrobacterium radiobactcr J14a and use of this strain in bioremcdiation of contaminated soil[J]. Appl. Environ. Microbiol., 1998, 64(9): 3368-3375
    [39] Zhang G. S, Jia X M, Cheng T F, et al. Isolation and characterization of a new carbendazim-degrading Ralstonia sp. Strain[J]. World Journal of Microbiology & Biotcchnology, 2005, 21, 265-269
    [40] 陈文新.土壤和环境微生物学.北京:北京农业大学出版社,1990.234-248
    [41] 高蓉,赵人铮,杨俊.高效液相色谱法测定多菌灵在油菜籽中的残留量[J].南京医科大学学报,2004,24(4):425-426
    [42] 桂文君,黄雅丽,吴慧明.多菌灵在柑橘及土壤中的HPLC残留分析方法[J].现代农药,2004,3(3):26-27
    [43] 何光好.我国农药污染的现状与对策[J].现代农业科技,2005,12(3):57
    [44] 何丽莲,李元.农田土壤农药污染的综合治理[J].云南农业大学学报,2003,18(4):430-434
    [45] 李静等.污染地下水的生物修复技术[J].农业环境保护,1997,16(6):283-285
    [46] 李顺鹏,蒋建东.农药污染土壤的微生物修复研究进展[J].土壤,2004,36(6):577-583
    [47] 林力,杨惠芳.生物整治技术进展[J].环境科学,1997,18(3):67-71
    [48] 刘乾开,朱国念.新编农药使用手册(第二版)上海:上海科学技术出版社,1999:309
    [49] 刘娅囡,朗畅,吴水平等.室内空气颗粒物中HCHs和DDTs的含量[J].环境化学,2004,23(5):562-567
    [50] 王伟东,崔宗均,牛俊玲.农药的微生物降解研究进展[J].环境污染与防治,2004,网络版(3)
    [51] 吴水平,曹军,李本纲等.城区大气颗粒物中有机氯农药的含量与分布[J].环境科学研究,2003,16(4):36-39
    [52] 肖军,赵景波.农药污染对生态环境的影响及防治对策[J].安徽农业科学,2005,33(12):2376-2377
    [53] 袁旭音,王禹,陈骏等.太湖沉积物中有机氯农药的残留特征及风险评估[J].环境化学,2003,24(1):121-125
    [54] 张大弟,张晓红.农药污染与防治[M].北京:化学工业出版社,2001
    [55] 张桂山,贾小明,马晓航等.一株多菌灵降解细菌的分离、鉴定及系统发育分析[J].微生物学报,2004,44(4)
    [56] 张甲耀.生物修复技术研究进展.应用与环境生物学报[J].1996,2(2):193-199
    [57] 张建新:杜双奎:杨小姣.陕西省主要蔬菜产区多菌灵农药残留分析与评价[J].安全与环境学报,2005,5(6):78-80
    [58] 赵玉环,王玉文,白鸽.石家庄市大气降水中六六六残留量及其时空变化规律[J].环境科学,1985,6(5).33-36
    [59] 郑金来,李君文,晁福寰.常见农药降解微生物研究进展及展望[J].环境科学研究,2001,14(2):62-64
    [1] Allen C C R, Boyd D R, Larkin MJ, et al. Metabolism of naphthalene, 1-naphthol, indene, and indole by Rhodococcus sp strain N CIMB 12038[J]. Appl. Environ. Microbiol., 1997, 63: 151-155
    [2] Bell K S, Philp J C, Aw D W J, et al. the genus Rhodococcus[J]. Journal of Applied Microbiology, 1998, 85: 195-210
    [3] Brenner D J , Fanning G R, Rake A V, et ai. Batch produre for themal elution of DNA from hydroxyapatite [J]. Anal. Biochem., 1969, 38: 447-459
    [4] Briglia M, Eggen R I L, van Elsas D, et al. Phylogenetic evidence for transfer of pentachlorophenol-mineralizing Rhodococcus chlorophenolicus PCP-IT to the genus Mycobacterium[J]. Int. J. Syst. Bacteriol., 1994, 44: 494-498
    [5] Briglia M, Rainey F A, Stackebrandt E, et al. Rhodococeus percolatus sp. nov., a bacterium degrading 2, 4, 6- trichlorophenol[J] Int J Syst Bacteriol, 1996, 46: 23-30
    [6] Buchanan R E and Gibbons N E. Bergey's Manual of Determinative Bacteriology (Eight edition), the Williams and Wilkins Company, Baltimore, 1984
    [7] Collins M D , Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implieation[J]. Microbiology, 1981, 45:316-354
    [8] Colwell. Polyphasic taxonomy of the genus Vibrio: numerical taxonomy of Vibrio cholerae, Vibrio parahaemolyticus, and related Vibrio species[J]. Journal of Bacteriology, 1970, 104:410-433
    [9] Costas M. Classification, idntification, and typing of bacteria by the analysis of their onedimensional polyacrylamide gel electrophoretic protein patterns[J]. Ave.lectrophor, 1992,5:351-408
    [10] De Ley J. Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid[J]. J.Bacteriol,1970,101:737-754
    [11] De Ley J, Cattoir H, Reynaerts A. The quantitative meaturement of DNA hybridization from renaturation retes[J]. Eur. J.Biochem,1970,12:133-142
    [12] Denhardt D T. A membrane-filter technique for the detection of eomplemantary DNA.Bioehem [J]. Res. Comm., 1966,23:641-646
    [13] Euzeby J P. List of Prokaryotic names with Standing in Nomenclature-Genus Rhodococcus, on line at: http://www.bacterio.cict.fr/index.html, 2006
    [14] Finnerty W R. The biology and genetics of the genus Rhodococcus[J]. Ann. Rev. Microbioi, 1992,46: 193-218
    [15] Forsman P, Tilsala-Timisjarvi A, Alatossava T. Identification of staphylococcal and streptococcal causes of bovine mastitis using 16S-23S rRNA spacer regions [J]. Microbiology, 1997, 143: 3491-3500
    [16] Goodfellow M. Suprageneric classification of actinomycetes.In: Williams ST, Sharpe ME & Holt JG (Eds) Bergey's Manual of Systematic Bacteriology, Vol 4 Williams and Wilkins, Baltimore, 1989: 2333-2339
    [17] Haggblom M, Nohynek L J, Palleroni N J, et al. Transfer of polychlorophenol-degrading Rhodococcus chlorophenolicus (Apajalahti et al. 1986) to the genus Mycobacterium as Mycobacterium chlorophenolicum comb. nov.[J]. Int. J. Syst. Bacteriol., 1994, 44:485-493
    [18] Ludwig W, Kirchhof G, Klugbauer N, et al. Complete 23S ribosomal RNA sequences of Gram-positive bacteria with a low DNA G+C content [J]. Syst. Appl. Microbiol.,1992,15:487-501
    [19] Kozooehi A. Taxonomic study of Genus streptomycetes by Analysis of Ribosomal Protein ATL30[J ]. Int J System Bacteriol, 1995,45:507-514.
    [20] Michael J L, Rene D M, Leonid A K, et al. Applied aspects of Rhodococcus genetics[J]. Antonie van Leeuwenhoek, 1998,74:133-153
    [21] Minnikin, et al. Mycolic acids in the classification of nocardia form bacteria [A]. In: Nocardia and Streptomyces Gustar Fischer Verlag Stuttgart. New York, 1978, 63, 85-90
    [22] Minniking D E, Collins M D, Goodfellow M. Fatty acid and polar lipid composition in the classification of cedlulomonas, Oerkovia and related taxa [J]. J. Appl. Bacteriol, 1979, 47: 87-95
    [23] Paradia, Toyer E C, Hodge C N, et al. Fatty Acid and profiles of Sterptomycetes scabies strains Isolated in Eastern Canada [J]. Int J System Bacteriol, 1994, 44: 561-564
    [24] Rainey F A, Klatte S, Kroppenstedt R M, et al. Dietzia, a new genus including Dietzia maris comb. nov., formerly Rhodococcus maris[J]. Int J Syst Bacteriol, 1995, 45: 32-36
    [25] Schlesner H, Lawson P A, Collins M D, et al. Filobacillus rnilensis gen. nov., a new halophilic spore-forming bacteria with Orn-D-Glu-type peptidoglycan[J]. Interntional Journal of Systematic and Evolutionary Microbiology, 2001, 51: 425-431
    [26] Shao Z Q, Seffens W, Mulbry W, et al. Cloing and expression of the s-triazine hydrolase gene (trzA) from Rhodococcus corallinus and development of Rhodococcus recombinant strains capable of dealkylating and dechlorinating the herbicide atrazine[J]. Journal of Bacteriology, 1995, 177 (20): 5748-5755
    [27] Stoecker M A, Herwig R P, and Staley J T. Rhodocoecus zopfii sp. nov., a toxicant-degrading bacterium[J]. lnt J Syst Bacteriol, 1994, 44: 106-110
    [28] Tindall B J and Euzeby J P. A taxonomic note on the authorship and date of valid publication of Rhodococcus sputi[J]. Int J Syst Evol Microbiol, 2001, 51: 255-256
    [29] Warhurst A M & Fewson C A Biotransformations catalyzed by the genus Rhodococcus[J]. Crit. Rev. Biotechnol, 1994, 14: 29-73
    [30] Xu Jing-Liang, Gu Xiang-Yang, Shen Biao et al. Isolation and Characterization of a Carbendazim-Degrading Rhodococcus sp. djl-6[J]. Current Microbiology, 2006, 53(1): 72-76
    [31] Yoon J H, Lee J S, Shin Y K, et al. Reclassifieation of Noeardioides simplex ATCC 13260, ATCC 19565, and ATCC 19566 as Rhodococcus erythropolis[J]. Int J Syst Bacteriol, 1997, 47: 904-907
    [32] Yoon J H, Kang S S, Cho Y G, et al. Rhodocoeeus pyridinivorans sp. nov., a pyridine-degrading bacterium[J]. Int J Syst Evol Microbiol, 2000, 50: 2173-2180
    [33] 何琳燕.硅酸盐细菌的分离、鉴定及基因标记的研究,南京农业大学博士学位论文,2003
    [34] 华苟根,郭坚华.红球菌属的分类及应用研究进展[J].微生物学通报,2003,30(4):107-111
    [35] 驹行和男编(方爽译).微生物化学分类的实验方法.贵州:贵州人民出版社,1989
    [36] 刘志恒主编.现代微生物学.北京:科学出版社,2002
    [37] 刘志恒,姜成林主编.放线菌现代生物学与生物技术[M].北京:科学出版社,2004,1-84
    [38] 屈良鹄.微生物系统发育的分子遗传学研究概述.微生物遗传学综述文集.盛祖嘉、陈永青主编.上海:复旦大学出版社,1993
    [39] 冉翠香.细菌化学分类的化学物质[J].吕梁高等专科学校学报,2000,16(2):63-64
    [40] 任欣正 主编.植物病原细菌的分类和鉴定[M].北京:农业出版社,1994,1210~2111
    [41] 陶庆春,安鹏,陈小丹.细菌自动鉴定及药敏系统的研究进展[J].临床检验及实验室设备,2005, 7(2): http://www.labsky.com/data/06/01/communion/0117153655209.html
    [42] 杨苏声主编.细菌分类学.北京:中国农业大学出版社,1997
    [43] 张建丽,刘志恒.诺卡氏菌型放线菌的分类[J].微生物学报,2001,41(4):513-517
    [1] Cacciatore D A, Mcneil MA. Principles of soil bioremediation [J]. Biocycle, 1995, 36 (10): 61-64.
    [2] Caplan j A. The worldwide bioremediation industry: prospects for profits[J] .Trends Biotechnol, 1993, (11): 320 -323.
    [3] Carlisle S M and Trevors J T. Effect of the herbicide glyphosate on nitrification, denitrification, and acetylene reduction in soil[J]. Water, Air, Soil Pollut., 1986, 29: 189-203.
    [4] Gianfreda L, Sarmino F, Violante A. Pesticide effects on the activity of free, immobilized and soil invertase [J]. Soil Biology and Biochemistry, 1995, 27(9): 1201-1208.
    [5] Gonzalez L J., Martinez T M V and Salmeron V. Effect of the acaricides bromopropylate on agricultural soil microflora[J]. Soil. Biol. Biochem, 1992, 24(8): 815-817.
    [6] Jenkinson D S, Ladd J N. Microbial biomass in soil, measurement and turnover in Paul, Soil Biochemistry, Paul V E A and, Ladd J N (eds), Marcel Dekkai, New York, 1981, 5: 415-471
    [7] Martinez T M V, Salmeron V and Gonzalez L J. Effect of an organoPhosphorus insecticide, profenofos, on agricultural soil microflora[J]. Chemosphere, 1992, 24(1): 71-80
    [8] Moorman T B. A review of pesticide effects on microorganisms and microbial processes related to soil fertility[J]. J. prod. Agric., 1989, 2(1): 14-23
    [9] Perucci P, Casucci C, Dumontet S. An improved method to evaluate the o-diphenol oxidase activity of soil [J]. Soil Biology and Biochemistry, 2000, 32(13): 1927-1933.
    [10] Said E L, Fantroussi L V, et al. Effect of phenylurea herbicides on soil microbial communities estimated by analysis of 16S rRNA gene fingerprints and community-level physiological profiles[J]. Appl. Environ. Microbial., 1999, 65(3): 982-988
    [11] Tu C M. Effect of four organophosphorus insecticides on microbial activities in soil[J]. Applied Microbiology, 1970, 19(3): 479-484.
    [12] Wardle D A and Parkinson D. Effects of three herbicides on soil microbial mass and activity[J]. Plant Soil, 1990, 122: 21-28
    [13] 陈祖义,米春云.农药杀虫单对土壤微生物功能的影响-对土壤呼吸的影响[J].环境科学,1987,8(1):36-39
    [14] 程云,周启星.土壤脲酶和脱氢酶对活性X23B红污染暴露的耐受性及机理研究[J].环境科学,2003,24(2):23-29
    [15] 蔡道基,江希流,蔡玉琪.化学农药对生态环境安全评价研究[J].农村生态环境,1986,2:9-13
    [16] 杜伟文,欧阳中万.土壤酶研究进展[J].湖南林业科技,2005,32(5):76-82
    [17] 龚平,孙铁珩,李培军.农药对土壤微生物的生态效应[J].应用生态学报(增刊),1996,127-132
    [18] 郭明,尹亚梅,何良荣,等.农用化学物质对土壤脲酶活性的影响[J].农业环境保护,2000,19(2):68-71
    [19] 郭明,陈红军,王春蕾.四种农药对土壤脱氢酶活性的影响[J].环境化学,2000,19(6):523-527
    [20] 何振立.土壤微生物量及其在养分循环和环境质量评价中的意义[J].土壤,1997,16(12):35-38
    [21] 黄智,李时银,刘新会,等.苯噻草胺对土壤中过氧化氢酶活性及呼吸作用的影响[J].环境化学,2002,21(5):481-484
    [22] 李时银,黄智,倪利晓,等.毒死蜱及代谢产物对土壤过氧化氢酶活性的影响[J].农业 环境保护,2002,21(6):553-555
    [23] 李时银,张晓昆,冯建,等.氰戊菊酯及代谢物对土壤过氧化氢酶活性的影响[J].中国环境科学,2002,22(2):154-157
    [24] 鲁赫鸣,闫颖,王文思.农药对土壤过氧化氢酶活性的影响[J].东北师大学报(自然科学版),2004,36(4):93-97
    [25] 秦华,林先贵,陈瑞蕊.等.DEHP对土壤脱氢酶活性及微生物功能多样性的影响[J].土壤学报,2005,42(5):829-834
    [26] 王静,乔雄梧,朱九生,等.四种农药对土壤微生物的影响Ⅰ:土壤呼吸的变化[J].应用与环境生物学报,1999,(suppl):155-157
    [27] 徐瑞富,蒋学杰,张玉泉.多菌灵对土壤微生物呼吸作用的影响[J].河南农业科学,2005,8:66-68
    [28] 闫颖,袁星,樊宏娜.五种农药对土壤转化酶活性的影响[J].中国环境科学,2004,24(5):588-591
    [29] 杨玲,孔星云,郭明.化学农药对土壤脲酶的影响[J].塔里木农垦大学学报,2001,13(3):3-16
    [30] 杨万勤,王开运.森林土壤酶研究进展[J].林业科学,2004,40(2):152—159.
    [31] 尹睿,张华勇,黄锦法,等.保护地菜田与稻麦轮作田土壤微生物学特征的比较[J].植物营养与肥料学报,2004,10(1):57-621
    [32] 郑巍,刘惠君,刘维屏.吡虫啉及代谢产物对土壤过氧化氢酶活性的影响[J].中国环境科学,2000,20(6):524-527.
    [33] 周新文,陈鹤鑫,陆贻通.化学农药对土壤微生物的影响[J].上海环境科学,1997,16(12):35-38
    [34] 周礼恺.土壤酶学[M].北京:科学出版社,1987.118-159.
    [35] 褚海燕,朱建国,谢祖彬,等.镧对红壤转化酶过氧化氢酶和脱氢酶活性的影响[J].中国环境科学,2001,21(1):77-80
    [36] 朱南文,胡茂林,高廷耀.甲胺磷对土壤微生物活性的影响[J].1999,18(1):4-7
    [1] Bell K S, Philp D W J A and Christofi. The genus Rhodococcus [J]. Journof Applied Microbiology, 1998, 85-195-210
    [2] Buchanan R E, Gibbons N E. Bergey's Manual of Determinative Bacteriology. 9~(th) edition[M]. USA: The Williams & Wilkins Company, 1994
    [3] Fuchs A, Vries F W de. Bacterial breakdown of benomyl. I. Pure cultures. [J]. Antonie van Leeuwenhoek, 1978, 44: 283-292
    [4]. Helweg A. Microbial breakdown of the fungicide benomyl [J]. Soil Biol. Biochem., 1972, 4: 377-378
    [5] Holtman M A, Kobayashi DY. Identification of Rhodococcus erythropolis isolates capable of degrading the fungicide carbendazim [J]. Appl. Microbiol. Biotechnol., 1997, 47: 578-582
    [6] Mazellier P, Leroy E, Laat JT, Legube B. Degradation of carbendazim by UV/H_2O_2 investigated by kinetic modeling[J]. Environ Chem Lett, 2003, 1: 68-72
    [7] World Health Organization (1993) Environment health criteria149: Carbendazim. Available at: http://www.inchem.org/documcnts/ehc/ehc/ehc149.htm. Accessed:October 11, 2005
    [8] Xu Jing-Liang, Gu Xiang-Yang, Shen Biao et al. Isolation and Characterization of a Carbendazim-Degrading Rhodococcus sp. djl-6[J].Current Microbiology,2006,53(1):72-76
    [9] Zhang G S, Jia X M, Cheng T F, et al. Isolation and characterization of a new carbendazim-degrading Ralstonia sp. stain [J]. World Journal of Microbiology and Bioteehnology, 2005, 21:265-269
    [10] 东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001
    [11] 刘乾开,朱国念.新编农药使用手册(第二版)上海:上海科学技术出版社,1999:309
    [12] 萨姆布鲁克J,弗里奇E F,曼尼阿蒂斯T.分子克隆实验指南[M].北京:科学出版社,2002
    [13] 许敬亮,王志春,王垫,李顺鹏.多菌灵降解菌株djl-6-2的分离、鉴定及降解特性[J].中国环境科学,2006,26(3):307—310
    [1] Fuchs A, Vries F W de. Bacterial breakdown of benomyl. I. Pure cultures. [J]. Antonie van Leeuwenhoek, 1978, 44:283-292
    [2] Helweg A. Microbial breakdown of the fungicide benomyl [J]. Soil Biol. Biochem., 1972, 4:377-378
    [3] Holtman M A, Kobayashi DY. Identification ofRhodococcus erythropolis isolates capable of degrading the fungicide carbendazim [J]. Appl. Microbioi. Biotechnol., 1997, 47:578-582
    [4] Nakai M, Toshimori K, Yoshinaga K,et al., Carbendazim-induced abnormal development of the acrosome during early phases of spermiogcnesis in the rat testis[J]. Cell Tissue Res, 1998,294(1): 145-52
    [5] Songur S H, Kockaya E A, Selman0glu G, Barlas N. Dose-dependent effects of carbendazim on rat thymus[J]. Cell Biochem Funct, 2004,6
    [6] Xu Jing-Liang, Gu Xiang-Yang, Shen Biao et al. Isolation and Characterization of a Carbendazim-Degrading Rhodococcus sp. djl-6[J].Current Microbiology,2006,53(1):72-76
    [7] Zhang G S, Jia X M, Cheng T F,et al. Isolation and characterization of a new carbendazim-degrading Ralstonia sp. strain [J]. World Journal of Microbiology and Biotechnology, 2005, 21:265-269
    [8] 高蓉,赵人铮,杨俊.高效液相色谱法测定多菌灵在油菜籽中的残留量[J].南京医科大学学报,2004,24(4):425-426
    [9] 桂文君,黄雅丽,吴慧明.多菌灵在柑橘及土壤中的HPLC残留分析方法[J].现代农药,2004,3(3):26-27
    [10] 许敬亮,王志春,王堃,李顺鹏.多菌灵降解菌株djl-6-2的分离、鉴定及降解特性[J].中国环境科学,2006,26(3):307-310
    [1] Bell K S, Philp J C, Aw D W J, et al. the genus Rhodococcus[J]. Journal of Applied Microbiology, 1998,85:195-210
    [2] Collins M D, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication[J]. Microbiology, 1981, 45:316-354
    [3] Euzeby J P. List of Prokaryotic names with Standing in Nomenclature-Genus Rhodococcus, on line at: http://www.bacterio.cict.fr/index.html, Viewing at Sop., 2006
    [4] Gram Positive Aerobic Bacteria Database for Rhodococcus, http://www.biolog.corn/pdf/Database Listing ver 6.01.pdf, viewing data, July 17,2006
    [5] Li Y, Yoshiaki K, Nagatoshi F, et al. Rothia aeria sp. nov., Rhodoeoccus baikonurensis sp. nov. and Arthrobaeter russicus sp nov., isolated from air in the Russian space laboratory Mir[J]. International Journal of Systematic and Evolutionary Microbiology,2004, 54:827-835
    [6] Mirnnikin, et al. Mycolic acids in the classification of nocardia form bacteria [A]. In: Nocardia and Streptomyces Gustar Fischer Verlag Stuttgart. New York, 1978, 63, 85-90
    [7] Shao Z Q, Seffens W, Mulbry W, et al. Cloing and expression of the s-triazine hydrolase gene (trzA) from Rhodococcus corallinus and development of Rhodococcus recombinant strains capable of dealkylating and dechlorinating the herbicide atrazine[J]. Journal of Bacteriology,1995,177 (20):5748-5755
    [8] Xu Jing-Liang, Gu Xiang-Yang, Shen Biao et al. Isolation and Characterization of a Carbendazim-Degrading Rhodococcus sp.djl-6[J]. Current Microbiology,2006,53(1):72-76
    [9] Yoon Jung-Hoon, Cho Young-Gyun, Kang Seok-Sung et al. Rhdococcus koreensis sp.nov., a 2,4-dinitrophenol-degrading bacterium [J]. International Journal of Systematic and Evolutionary Microbiology,2000,50:1193-1201
    [10] Zhang Yu-Qin, Li Wen-Jun, Kroppenstedt Reiner M, et al. Rhodococcus yunnanensis sp.nov., a mesophilic actinobaeterium isolated from forest soil [J]. International Journal of Systematic and Evolutionary Microbiology,2005,55:1133-1137
    [11] 东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001
    [12] 高梦春,杨敏,邵兵,等.固相萃取LC-MS定性分析微生物呼吸醌方法的建立[J].环境化学,2004,23(50:578-583
    [13] 华苟根,郭坚华.红球菌属的分类及应用研究进展[J].微生物学通报,2003,30(4):107-111
    [14] 李运,盛慧,赵荣华.Biolog微生物鉴定系统在菌种鉴定中的应用[J].酿酒科技,2005,7:84-85
    [15] 刘志恒,姜成林.放线菌现代生物学与生物技术[M].北京:科学出版社,2004
    [1] Fuchs A, Vries F W de. Bacterial breakdown of benomyl. I. Pure cultures [J]. Antonie van Leeuwenhoek,1978, 44:283-292
    [2] Harold. C. Neu., Leon. A. Heppel. The release of enzymes from Escherichia coli by osmoic shock and during the formation of spheroplasts [J]. J. Biol. Chem., 1965, 240(9):3685-3692.
    [3] Helweg A. Microbial breakdown of the fungicide benomyl [J]. Soil Biol. Biochem., 1972, 4:377-378
    [4] Holtman M A, Kobayashi DY. Identification of Rhodococcus erythropolis isolates capable of degrading the fungicide.carbendazim [J]. Appl. Microbiol. Biotechnol., 1997, 47:578-582
    [5] Mazellier P, Leroy E, Laat J D, et al. Degradation of carbendazim by UV/H_2O_2 investigated by kinetic modeling[J]. Environ Chem Lett, 2003, 1:68-72
    [6] Pattanasupong, A., H. Nagase, E. Sugimoto,, Y. Hori, K. Hirata, K. Tani, M. Nasu, and K. Miyamoto, 2004. Degradation of carbendazim and 2,4-dichlorphenoxyacetic acid by immobilized consortium on loofa sponge[J]. Journl of Bioscienee and Bioengineering 98(1),28-33
    [7]. World Health Organization (1993) Environment health criteria 149: Carbendazim. Available at: http://www.inchem.org/documents/ehc/ehc/ehc149.htm. Accessed: October 11, 2005
    [8] Xu Jing-Liang, Gu Xiang-Yang, Shen Biao et al. Isolation and Characterization of a Carbendazim-Degrading Rhodococcus sp. djl-6[J].Current Microbiology,2006,53(1):72-76
    [9] Zhang Gui-Shan, Jia Xiao-Ming, Cheng Tian-Fan, et al. Isolation and characterization of a new carbendazim-degrading Ralstonia sp. strain [J]. World Journal of Microbiology and Biotechnology, 2005, 21:265-269
    [10].戴树桂,庄源益,陈勇生等.两种假单胞菌中二氯酚降解酶活性及其定域研究[J].环境科学学报,1996,16(2):173-178.
    [11] 李桂凤,郝征红,董淑敏等.花生中多菌灵残留量的高效液相色谱分析方法的研究[J].分析测试学报,1998,17(5):69-70
    [12] 汪家政,范明.蛋白质技术手册[M].北京:科学出版社,2000,42-47
    [13] 张建新:杜双奎:杨小姣.陕西省主要蔬菜产区多菌灵农药残留分析与评价[J].安全与环境学报,2005,5(6):78-80
    [1] Fuchs A, Vales F W de. Bacterial breakdown of bcnomyl. I. Pure cultures. [J]. Antonie van Leeuwenhoek,1978, 44: 283-292
    [2] Fumio M and Murti C R K. Biodegradation of Pesticides[M]. New York and London, Plenum Press, 1982
    [3] Helwcg A. Microbial breakdown of the fungicide benomyl [J]. Soil Biol. Biochem., 1972, 4: 377-378
    [4] Holtman M A, Kobayashi DY. Identification ofRhodococcus erythropolis isolates capable of degrading the fungicide carbcndazim [J]. Appl. Microbiol. Biotechnol., 1997, 47: 578-582
    [5] Xu Jing-Liang, Gu Xiang-Yang, Shcn Biao et al. Isolation and Characterization of a Carbcndazim-Dcgrading Rhodococcus sp. djl-6[J].Current Microbiology, 2006, 53(1): 72-76
    [6] Zhang G S, Jia X M, Cheng T F, et. al. Isolation and characterization of a new carbendazim-degrading Ralstonia sp. strain [J]. World Journal of Microbiology and Biotechnology, 2005, 21: 265-269
    [1] Data from MAFF Pesticide Usage Surveys in Great Britain, 1997-2001, https://secure.virtuality.net/panukcom/subs.htm
    [2] Gianfreda L, Sannino F, Violante A. Pesticide effects on the activity of free, immobilized and soil invertase [J]. Soil Biology and Biochemistry, 1995, 27(9): 1201-1208
    [3] Macdonald J. A., Rittmarm B. E. Performance standards for in situ bioremediation [J]. Environ. Sei. Tcchnol, 1993, 27(10): 1974-1979
    [4] Mazellier E F, Leroy E, Laat J D, et al., Degradation of carbendazim by UV/H_2O_2 investigated by kinetic modeling[J]. Environ Chem Lett, 2003, 1: 68-72
    [5] Pattanasupong A, Nagase H, Sugimoto E, et al. Degradation of carbendazim and 2, 4-dichlorphenoxyacetic acid by immobilized consortium on loofa sponge[J]. J Biosci Bioeng, 2004, 98: 28-33
    [6] Perucci P, Casucei C, Dumontet S. An improved method to evaluate the o-diphenol oxidase activity of soil [J]. Soil Biology and Biochemistry, 2000, 32(13): 1927-1933.
    [7] Sarrif AM, Aree GT, Krahn GF, et al. Evaluation of carbendazim for gene mutations in the salmonella/Ames plate-incorporation assay: The role of aminophenazine impurities[J]. Mutat Res, 1994, 321: 43-56
    [8] World Health Organization (1993) Environment health criteria149: Carbendazim. Available at: http://www.inchem.org/documents/ehc/ehc/ehc149.htm. Accessed: October 11, 2005
    [9] Zhang G. S, Jia X M, Cheng T F, et al. Isolation and characterization of a new carbendazim-degrading Ralstonia sp. Strain[J]. World Journal of Microbiology & Bioteehnology, 2005, 21, 265-269
    [10] 高蓉,赵人铮,杨俊.高效液相色谱法测定多菌灵在油菜籽中的残留量[J].南京医科大学学报,2004,24(4):425-426
    [11] 关松荫,张德生,张志明.土壤酶及其研究法[M],北京,农业出版社.1986,第1版.274-338
    [12] 桂文君,黄稚丽,吴慧明.多菌灵在柑橘及土壤中的HPLC残留分析方法[J].现代农 药,2004,3(3):26-27
    [13] 花日茂,吴正三,岳永德.土壤中多菌灵残留量的高效液相色谱测定[J].安徽农学院学报,1990,17(3):216-217
    [14] 黄智,李时银,刘新会,等.苯噻草胺对土壤中过氧化氢酶活性及呼吸作用的影响[J].环境化学,2002,21(5):481~484.
    [15] 李时银,黄智,倪利晚,等.毒死蜱及代谢产物对土壤过氧化氢酶活性的影响[J].农业环境保护,2002,21(6):553-555
    [16] 李时银,张晓昆,冯建,等.氰戊菊酯及代谢物对土壤过氧化氢酶活性的影响[J].中国环境科学,2002,22(2):154~157.
    [17] 刘乾开,朱国念.新编农药使用手册(第二版)上海:上海科学技术出版社,1999:309
    [18] 尹睿,张华勇,黄锦法,等.保护地菜田与稻麦轮作田土壤微生物学特征的比较[J].植物营养与肥料学报,2004,10(1):57-621
    [19] 郑巍,刘惠君,刘维屏.吡虫啉及代谢产物对土壤过氧化氢酶活性的影响[J].中国环境科学,2000,20(6):524~527
    [20] 周礼恺,土壤酶学[M].科学出版社.1987,第1版.228—241

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700