蛇根木萝卡辛糖苷酶三维结构表征及底物特异性机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛇根木(Rauvolfia serpentina Benth. ex Kurz)为夹竹桃科萝芙木属药用植物,富含生物碱类化合物,其主要活性成分为阿吗灵、阿吗碱和利血平等。其有退热、抗癫、消炎及治虫蛇咬伤等功效,现用于治疗高血压及心律失常。对其次生代谢产物生物合成途径关键酶的研究是进一步开发利用该药用植物、调控生物代谢方向、体外生物-化学合成活性化合物的基础。
     本论文对蛇根木生物碱阿吗灵生物合成支链途径中催化萝卡辛水解形成萝芙木乐宁的萝卡辛糖苷酶(Raucaffricine Glucosidase, RG, EC3.2.1.125)进行了一系列的研究,主要涉及RG的异源表达、纯化、酶学表征、结晶、三维结构表征、催化机制及底物特异性机制和RG抑制剂的研究。同时,本论文对室温(RT)与冷冻条件下收集到的X-射线衍射数据进行了比较。
     以pQE-2质粒为表达载体,在大肠杆菌M15中异源高效表达N端带有(His)6标签的RG并利用Ni-NTA亲和层析进行纯化。酶动力学考察表明RG对底物萝卡辛的Km值为0.78mM,对底物异胡豆苷的Km值为1.7mM。为进一步探明RG三维结构,活性中心及各配体的结合情况,本论文通过悬滴蒸发结晶法获得RG及无活性突变体RG-E186Q的晶体,并通过底物浸泡的方式制备其与配体复合物。本文共处理得到8套RG的结构模型:其中RG, RG-glycerol, RG-glucose, RG-inhibitor结构由冷冻条件下收集的衍射数据处理得到;RG-E186Q, RG-E186Q-dihydroraucaffricine, RG-E186Q-secologanin, RG-E186Q-glucose结构由室温条件下收集的衍射数据处理得到。
     RG及其无活性突变体的整体三维结构呈典型的(β/α)8桶状结构,与同处于阿吗灵生物合成途径上游的异胡豆苷糖苷酶(SG)一致。通过结果比较,揭示两种酶底物特异性差异的机制:RG的活性空腔入口较宽,SG的天然底物异胡豆苷也可以进入到RG的活性中心;而SG狭长的活性空腔入口阻碍萝卡辛进入SG的活性中心。RG-Trp392与SG-Trp388影响了两酶活性空腔入口的形状,从而控制酶的底物接受能力。RG-Ser390直接影响着RG-Trp392侧链构象,间接调控底物接受能力。定点突变及活性数据进一步证实了结构分析的结果,深化对糖苷酶的底物特异性及催化机制的认识。
     随后,本文考察了4种deoxypyranosylamine类抑制剂对RG的抑制情况,4种抑制剂的抑制效果差异较大,抑制剂常数Ki跨度从0.06到620μM。其中RG与抑制剂N-(cyclohexylmethyl)-β-D-gluco-1,5-deoxypyranosylamine复合物的三维结构已成功解析。三维结构显示,该抑制剂专一地结合于RG的活性位点,占据RG的底物结合部位,为竞争性抑制机制提供了结构依据。通过比较各抑制剂的抑制活性数据,并结合抑制剂复合物的结构信息,揭示抑制剂的糖苷模拟以及非糖苷模拟部分对抑制效果均有显著影响。
     最后,本文通过比较冷冻与室温条件下收集的X-衍射数据及其处理后得到的结构质量,发现两者的结构基本吻合,而且由室温下收集数据处理得到的结构模型重复性更佳。室温与冷冻条件下,Glu476侧链的构象指向不一致,表明温度变化会导致部分氨基酸构象的变化。总体而言,目前室温条件下,仅仅利用一颗晶体便能快速收集到高质量的可用于三维结构解析的X-射线衍射数据,为室温衍射数据收集的广泛使用打下了坚实的基础。
Rauvolfia serpentina Benth. ex Kurz (Apocynaceae) has been used as a medicinal plant in India for thousands of years, mainly for curing fever, insanity, inflammation, and snake bites, and, nowadays hypertension, and arrhythmia. Its major active alkaloid constituents are ajmaline, ajmalicine, and reserpine. The research on enzymes involved in the biosynthesis of active compounds in plants allows better understanding and utilization of Rauvolfia, steering the metabolic flux in the direction of a desired product by pathway blocking and gene manipulation strategies, and using some of the crucial enzymes in vitro for the chemoenzymatic synthesis of complex alkaloid skeletons.
     This thesis focuses on the detailed investigation of the Rauvolfia enzyme, raucaffricine glucosidase (RG, EC3.2.1.125), hydrolyzing the glucoalkaloid, raucafrricine, to its aglycone, vomilenine-a central intermediate of the ajmaline biosynthetic pathway. It describes the gene expression, as well as characterization, crystallization, structure elucidation, catalytic and substrate specificity mechanisms of RG. Moreover, it investigates the inhibition of RG activity by deoxypyranosylamine type inhibitor and its mechanism. X-ray diffraction data, collected at room temperature (RT,295K) and in typical cryo-conditions were compared in parallel.
     RG was functionally expressed in E. coli with an N-terminal (His)6tag and was purified to homogeneity via affinity chromatography. Kinetic studies of RG revealed that its Km values towards raucaffricine and strictosidine were0.78and1.7mM, respectively. In order to clarify the3-D structure, the active center, and the ligand binding mode of RG, crystallization of RG and its inactive mutant RG-E186Q was performed by hanging drop vapor diffusion method. The enzyme-ligand complexes were obtained by soaking method. In total,8datasets were collected and solved to resolutions better than2.6A:RG, RG-glycerol, RG-glucose, RG-inhibitor structures were processed with the data collected in cryo-conditions; RG-E186Q, RG-E186Q-dihydroraucaffricine, RG-E186Q-secologanin, RG-E186Q-glucose structures were processed with data collected at RT.
     The overall structures of RG and its inactive mutant possess the expected (β/α)8barrel fold characteristic of glycoside hydrolase family1(GH1), as seen earlier for the closely related strictosidine glucosidase (SG). Structural comparison between RG and SG revealed that it is the "wider gate" of RG that allows strictosidine to enter its catalytic site, whereas the "slot-like" entrance of SG prohibits the access of raucaffricine. The residues Trp392in RG and Trp388in SG control the gate shape and, ultimately, the acceptance of substrates. Moreover RG-Ser390proved to direct the conformation of the crucial Trp392.3-D structures, supported by the site-directed mutations and kinetic data of RG and SG, provided a structural and catalytic explanation for the substrate specificity of RG and deeper insights into the chemistry of O-glucosidase.
     Inhibition constants of four deoxypyranosylamine inhibitors against RG were determined:the Ki values ranged from0.06to620μM. Structural complex of RG with N-(cyclohexylmethyl)-γ-D-gluco-1,5-deoxypyranosylamine is now available. This inhibitor anchors exclusively in the active site of RG by competition with its natural substrate, providing structural evidence for a competitive inhibition mechanism. The combined kinetic and structural information revealed the importance of both, the glycone mimic and the aglycone mimic parts of the inhibitor for inhibition efficacy.
     The structural comparison of data collected at RT and cryo conditions suggested that the quality of obtained structure is similar, and measurements under RT conditions provide excellent measurement reproducibility. However, minor modifications were observed in side chain conformation of Glu476, probably due to changes in temperature. These results demonstrate that X-ray measurements under more "natural" conditions yield high quality datasets with single crystals, and provide unprecedented speed (2min), potentially paving the way for the renaissance of RT data collection.
引文
Adrian, M., Dubochet, J., Lepault, J., McDowall, A.W. Cryo-electron microscopy of viruses. Nature.1984,308,32-36.
    Ajikumar, P.K., Xiao, W.H., Tyo, K.E.J., Wang, Y., Simeon, F., Leonard, E., Mucha, O., Phon, T.H., Pfeifer, B., Stephanopoulos, G. Isoprenoid Pathway Optimization for Taxol Precursor Overproduction in Escherichia coli. Science.2010,330,70-74.
    Alves, R.M., Feliciano, P.R., Sampaio S.V., Nonato, M.C. A rational protocol for the successful crystallization of L-amino-acid oxidase from Bothrops atrox. Acta Crystallogr. F.2011,67,475-478.
    Aoyagi, T., Yamamoto, T., Kojiri, K., Morishima, H., Nagai, M., Hamada, M., Takeuchi, T., Umezawa, H.J. J. Mannostatins A and B:new inhibitor of a-D-mannosidase, produced by Streptoverticillium verticillus var. quintum ME3-AG3:taxonomy, production, isolation, physico-chemical properties and biological activities. Antibiot. 1989,42,883-889.
    Asano, N., Nash, R. J., Molyneux, R. J., Fleet, G.W.J. Sugar-mimic glycosidase inhibitors:natural occurrence, biological activity and prospects for therapeutic application. Tetrahedron-Asymmetr.2000,11,1-36.
    Asano, N. Glycosidase inhibitors:update and perspectives on practical use. Glycobiology.2003,13,93R-104R.
    Ashihara, H., Monteiro, A.M., Gillies, F.M., Crozier, A. Biosynthesis of caffeine in leaves of coffee. Plant Physiol.1996,111,747-753.
    Barleben, L., Ma, X., Koepke, J., Peng, G., Michel, H., Stockigt, J. Expression, purification, crystallization and preliminary X-ray analysis of strictosidine glucosidase, an enzyme initiating bioynthetic pathways to a unique diversity of indole alkaloid skeletons. Biochim. Biophys. Acta.2005,1747,89-92.
    Barleben, L., Panjikar, S., Ruppert, M., Koepke, J., Stockigt, J. Molecular architecture of strictosidine glucosidase:the gateway to the biosynthesis of the monoterpenoid indole alkaloid family. Plant Cell.2007,19,2886-2897.
    Benkovic, S.J., Hammes-Schiffer, S. A Perspective on Enzyme Catalysis. Science.2003, 301,1196-1202.
    Bernhardt, P., McCoy, E., O'Connor, S.E. Rapid identification of enzyme variants for reengineered alkaloid biosynthesis in Perwinkle. Chem. Biol.2007,14,888-897.
    Blake, C., Phillips, D.C. Radiation In Proceedings of the Symposium on the Biological Effects of Ionising at the Molecular Level (Vienna:International Atomic Energy Agency),1962, pp.183-191.
    Blaser, A., Reymond, J.-L. Stereoselective Inhibition of α-L-Fucosidases by N-Benzyl Aminocyclopentitols. Org. Lett.2000,2,1733-1736.
    Boss, O., Leroy, E., Blaser, A., Reymond, J.-L. Synthesis and Evaluation of Aminocyclopentitol Inhibitors of α-Glucosidases. Org. Lett.2000,2,151-154.
    Broennimann, C., Eikenberry, E.F., Henrich, B., Horisberger, R., Huelsen, G., Pohl E., Schmitt, B., Schulze-Briese, C., Suzuki, M., Tomizaki, T., Toyokawa, H., Wagner, A. The PILATUS 1M detector. J. Synchrotron Radiat.2006,13,120-130.
    Butters, T. D., Dwek, R. A., Platt, F. M. Iminosugar inhibitors for treating the lysosomal glycosphingolipidoses. Glycobiology.2005,15,43R-52R.
    Cao, F., Xu, Q., Wang, C., Xia, G., Duan, X., Zhu, Z. The species and distribution of the Genus Rauvolfia. Journal of Central South University of Forestry & Technology. 2007,27,154-158.
    Chayen, N.C. Comparative studies of protein crystallization by vapour-diffusion and microbatch techniques. Acta Crystallogr. D.1998,54,8-15.
    Croteau, R., Ketchum, R.E.B., Long, R.M., Kaspera, R., Wildung, M.R. Taxol biosynthesis and molecular genetics. Phytochemistry Rev.2006,5,75-97.
    Czjzek, M., Cicek, M., Zamboni, V., Bevan, D.R., Esen, A. The mechanism of substrate (aglycone) specificity in P-glucosidases is revealed by crystal structures of mutant maize p-glucosidase-DIMBOA,-DIMBOAGlc, and -dhurrin complexes. Proc. Natl. Acad. Sci. USA.2000,97,13555-13560.
    Davies, G., Henrissat, B. Structures and mechanisms of glycosyl hydrolases. Structure. 1995,3,853-859.
    De Luca, V. and St. Pierre, B. The cell and developmental biology of alkaloid biosynthesis. Trends Plant Sci.2000,5,168-173.
    Derewenda, Z.S. It's all in the crystals... Acta Crystallogr. D.2011,67,243-248.
    Desgagne-Penixl, I., Khan, M.F. Schriemer, D.C., Cram, D., Nowak, J., Facchini, P.J. Integration of deep transcriptome and proteome analyses reveals the components of alkaloid metabolism in opium poppy cell cultures. BMC Plant Biol.2010,10, 252-268
    Dopitova, R., Mazura, P., Janda, L., Chaloupkova, R., Jerabek, P., Damborsky, J., Filipi, T., Kiran, N. S., Brzobohaty, B. Functional analysis of the aglycone -binding site of the maize β-glucosidase Zm-p60.1, FEBS J.2008,275,6123-6135.
    Du, J., Shao, Z., Zhao, H. Engineering microbial factories for synthesis of value-added products. J. Ind. Microbiol Biot.2011,38,873-890.
    Dwyer, M.A., Looger, L.L., Hellinga, H.W. Computational Design of a Biologically Active Enzyme. Science.2004,304,1967-1971.
    Emsley, P., Cowtan, K. Coot:model-building tools for molecular graphics. Acta Crystallogr. D.2004,60,2126-2132.
    El-Sayed, M., Verpoorte, R. Catharanthus terpenoid indole alkaloids:biosynthesis and regulation. Phytochem. Rev.2007,6,277-305.
    Escamilla-Trevino, L.L., Chen, W., Card, M.L., Shih, M.C., Cheng, C.L., Poulton, J.E., Arabidopsis thaliana beta-glucosidases BGLU45 and BGLU46 hydrolyse monolignol glucosides. Phytochemistry.2006,67,1651-1660.
    Facchini, P.J. Alkaloid biosynthesis in plants:biochemistry, cell biology, molecular regulation, and metabolic engineering applications. Annu. Rev. Plant Physiol. Plant Mol. Biol.2001,52,29-66.
    Fahn, W., Laupermair, E., Deus-Neumann, B., Stockigt, J. Later enzymes of vindoline biosynthesis. Plant Cell Rep.1985,4,337-340.
    Fia, G., Giovani, G., Rosi, I. Study of beta-glucosidase production by winerelated yeasts during alcoholic fermentation. A new rapid fluorimetric method to determine enzymatic activity. J. Appl. Microbiol.2005,99,509-517.
    Fraser, J.S., Clarkson, M.W., Degnan, S.C., Erion, R., Kern, D., Alber, T. Hidden alternative structures of proline isomerase essential for catalysis. Nature.2009,462, 669-672.
    Fry, E.E., Grimes, J., Stuart, D.I. Virus crystallography. Mol. Biotechnol.1999,12, 13-23.
    Garcia-Viloca, M., Gao, J., Karplus, M., Truhlar, D. G. How Enzymes Work:Analysis by Modern Rate Theory and Computer Simulations. Science.2004,303,186-195.
    Garman, E.F., Weik, M. Macromolecular crystallography radiation damage research: what's new? J. Synchrotron Radiat.2011,18,313-317.
    Gerasimenko, I., Sheludko, Y., Ma, X., Stockigt, J. Heterologous expression of a Rauvolfia cDNA encoding strictosidine glucosidase, a biosynthetic key to over 2000 monoterpenoid indole alkaloids. Eur. J. Biochem.2002,269,2204-2213.
    Gloster, T.M., Roberts, S., Ducros, V.M., Perugino, G., Rossi, M., Hoos, R., Moracci, M., Vasella, A., Davies, G.J. Structural Studies of the a-Glycosidase from Sulfolobus solfataricus in Complex with Covalently and Noncovalently Bound Inhibitors. Biochemistry.2004,43,6101-6109.
    Greul, J., Kleban, M., Schneider, B., Picasso, S., Jager, V. Amino(hydroxymethyl)cyclopentanetriols, an Emerging Class of Potent Glycosidase Inhibitors-Part Ⅱ:Synthesis, Evaluation, and Optimization of β-D-Galactopyranoside Analogues. ChemBioChem.2001,2,368-370.
    Halle, B. Biomolecular cryocrystallography:Structural changes during flash-cooling. Proc. Natl. Acad. Sci. USA.2004,101,4793-4798.
    Hawkins, K.M., Smolke, C.D. Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae. Nature Chem. Biol.2008,4,564-573.
    Hedderich, T., Marcia, M., Koepke, J., Michel, H. PICKScreens, A New Database for the Comparison of Crystallization Screens for Biological Macromolecules. Crystal Growth & Des.2011,11,488-491.
    Henrich, B., Bergamaschi, A., Broennimann, C., Dinapoli, R., Eikenberry, E.F., Johnson, I., Kobas, M., Kraft, P., Mozzanica, A., Schmitt, B. PILATUS:A single photon counting pixel detector for X-ray applications. Nucl. Instrum. Meth. A.2009,607, 247-249.
    Hill, A. D., Reilly P. J. Computational analysis glycoside hydrolase family 1 specificities, Biopolymers.2008,89,1021-1031.
    Huang, F.C., Kutchan, T.M. Distribution of morphinan and benzo[c]phenantridine alkaloid gene transcript accumulation in Papaver somniferum. Phytochemistry.2000, 53,555-564.
    Huang, Z.J., Zeng, Y., Lan, P., Sun, P.H., Chen, W.M. Advances in structural modifications and biological activities of Berberine:an active compound in traditional chinese medicine. Mini-Rev. Med. Chem.2011,11,1122-1129.
    霍秀敏,刘国和.对抗高血压药——降压灵的评价.天津药学.2002,14,64-65.
    Jennewein, S., Croteau, R. Taxol:biosynthesis, molecular genetics and biotechnological applications. Appl. Microbiol. Biot.2001,57,13-19.
    Kaspera, R., Croteau, R. Cytochrome P450 oxygenases of taxol biosynthesis. Phytochemistry Rev.2006,5,433-444.
    Kabsch, W. Automatic processing of rotation differaction data from crystals of initially unknow symmetry and cell constrants. J. Applied Crystallogr.1993,26,795-800.
    Kakkar, T., Boxenbaum, H., Mayersohn, M. Estimation of Ki in a Competitive Enzyme-Inhibition Model:Comparisons Among Three Methods of Data Analysis. Drug Metab. Dipos.1999,27,756-762.
    Kalinin, Y., Kmetko, J., Bartnik, A., Stewart, A., Gillilan, R., Lobkovsky, E., Thorne, R. A new sample mounting technique for room-temperature macromolecular crystallography. J. Appl. Crystallogr.2005,38,333-339.
    Kawasaki, K., Kondo, H., Suzuki, M., Ohgiya, S., Tsuda, S. Alternate conformations observed in catalytic serine of Bacillus subtilis lipase determined at 1.30 A resolution. Acta Crystallogr. D.2002,58,1168-1174.
    Ketudat Cairns, J.R., Esen, A. β-Glucosidases. Cell. Mol. Life Sci.2010,67,3389-3405.
    Kiefersauer, R., Than, M.E., Dobbek, H., Gremer, L., Melero, M., Strobl, S., Dias, J.M., Soulimane, T., Huber, R. A novel free-mounting system for protein crystals: transformation and improvement of diffraction power by accurately controlled humidity changes. J. Appl Crystallogr.2000,33,1223-1230.
    Kleban, M., Kautz, U., Greul, J., Kugler, R., Dong, H.-Q., Jager, V. Vitamin B12 Catalysis of Zinc-Mediated 6-Deoxy-6-iodopyranoside Fragmentation:A Mild and Convenient Preparation of w-Unsaturated Hexose Derivatives (5-Hexenoses). Synthesis.2000,7,1027-1033.
    Kleban, M., Hilgers, P., Greul, J., Kugler, R., Li, J., Picasso, S., Vogel, P., Jager, V. Amino(hydroxymethyl)cyclopentanetriols, an Emerging Class of Potent Glycosidase Inhibitors-Part I:Synthesis and Evaluation of 3-D-Pyranoside Analogues in the manno, gluco, galacto, and GlcNAc Series. ChemBioChem.2001,2,365-368.
    Kunkel, T.A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc. Natl. Acad. Sci. USA.1985,82,488-492.
    Kutchan, T.M. In The Alkloids, Vol.50, Cordell, G.A., Ed., Academic Press:New York, 1998, pp 257-316.
    Ladner, J.E., Reddy, P., Davis, A., Tordova, M., Howard, A.J., Gilliland, G.L. The 1.30 angstrom resolution structure of the Bacillus subtilis chorismate mutase catalytic homotrimer. Acta Crystallogr. D.2000,56,673-683.
    Laflamme, P., St-Pierre, B., De Luca, V. Molecular and biochemical analysis of a Madagaskar periwinkle root-specific minovincinine-19-hydroxy-o-acetyltransferase. Plant Physiol.2001,125,189-198.
    Leah, R., Kigel, J., Svendsen, I., Mundy, J. Biochemical and molecular characterization of a barley seed beta-glucosidase. J. Biol. Chem.1995,270,15789-15797.
    Lee, K.H., Piao, H.L., Kim, H.Y., Choi, S.M., Jiang, F., Hartung, W., Hwang, I., Kwak, J.M., Lee, I.J., Hwang, I. Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid. Cell.2006,126,1109-1120.
    Leete, E. The biogenesis of the rauwolfia alkaloid. I. The incorporation of tryptophan into ajmaline. J. Am. Chem. Soc.1960,82,6338-6342.
    Legler, G. Glycoside hydrolases:mechanistic information from studies with reversible and irreversible inhibitors. Adv. Carbohydr. Chem. Biochem.1990,48,319-384.
    Leroy, E., Reymond, J.-L. Anomer-Selective Inhibition of Glycosidases Using Aminocyclopentanols. Org. Lett.1999,1,775-777.
    蔺海莉,蛇根木异胡豆苷糖苷酶及Vinorine合成酶表达、纯化、抑制剂抑制机理和复合物三维结构研究[硕士学位论文]浙江杭州,浙江大学,2013,46-67.
    Lovell, S.C., Davis, I.W., Arendall,W.B., Paul I., De Bakker, W., Word, J.M., Prisant, M.G., Richardson, J.S., Richardson, D.C. Structure validation by Ca geometry:Φ,Ψ and Cp deviation. Proteins.2003,50,437-450.
    Lu, H., Yin, D., Liu, Y., Guo, W., Zhou, R. Correlation between Protein Sequence Similarity and Crystallization Reagents in the Biological Macromolecule Crystallization Database. Int. J. Mol. Sci.2012,13,9514-9526.
    Ma, X., Koepke, J., Bayer, A., Linhard, V., Fritzsch, G., Zhang, B., Michel, H., Stockigt, J. Vinorine synthase from Rauvolfia:the first example of crystallization and preliminary X-ray diffraction analysis of an enzyme of the BAHD superfamily. Biochim. Biophy. Acta.2004,1701,129-132.
    Magnusson, A.O., Takwa, M., Hamberg, A. Hult, K. An S-Selective Lipase Was Created by Rational Redesign and the Enantioselectivity Increased with Temperature. Angew. Chem. Int. Ed.2005,44,4582-4585.
    Mallick, S.R., Jena, R.C., Samal, K.C. Rapid in vitro multiplication of an endagered medicinal plant sarpgandha (Rauvolfia serpentina). American Journal of Plant Sciences.2012,3,437-442.
    Malik, S., Cusido, R.M., Mirjalili, M.H., Moyano, E., Palazon, J. Production of the anticancer drug taxol in Taxus baccata suspension cultures:A review. Process Biochem.2011,46,23-34.
    Mendonca, L. M., Marana, S. R. The role in the substrate specificity and catalysis of residues forming the substrate aglycone-binding site of a β-glucosidase, FEBS J. 2008,275,2536-2547.
    Meents, A., Gutmann, S., Wagner, A., Schulze-Briese, C. Origin and temperature dependence of radiation damage in biological samples at cryogenic temperatures. Proc. Natl. Acad. Sci. USA.2010,107,1094-1099.
    Minami, H., Kim, J.S., Ikezawa, N., Takemura, T., Katayama, T., Kumagai, H., Sato, F. Microbial production of plant benzylisoquinoline alkaloids. Proc. Natl. Acad. Sci. USA.2008,105,7393-7398.
    Morant, A.V., Jorgensen, K., Jorgensen, C., Paquette, S.M., Sanchez-Perez, R., Moller, B.L., Bak, S. β-Glucosidases as detonators of plant chemical defense. Phytochemistry. 2008,69,1795-1813.
    Motulsky, H. Christopoulos, A. Fitting Models to Biological Data using Linear and Nonlinear Regression. A Practical Guide to Curve Fitting., Oxford University Press, New York,2004, ISBN:0195171802.
    Muller, R., Weckert, E., Zellner, J., Drakopoulos, M. Investigation of radiation dose-induced changes in organic light-atom crystals by accurate d-spacing measurements. J Synchrotron Radiat.2002,9,368-374.
    Nei, M., Kumar, S.2000, Molecular Evolution and Phylogenetics. Oxford University Press, New York.
    Nicolaou, K.C., Montagnon, T. Molecules that changed the world, Chapter 10: Morphine, Wiley-VCH, Weinheim,2008, pp.67-78.
    Nogueira, C.R., Lopes, L.M.X. Antiplasmodial natural products. Molecules.2011,16, 2146-2190.
    Nomura, T., Quesada, A.L., Kutchan, T.M. The new beta-Dglucosidase in terpenoid-isoquinoline alkaloid biosynthesis in Psychotria ipecacuanha. J Biol. Chem. 2008,283,34650-34659
    Obitz, P., Endress, S., Stockigt, J. Enzymatic biosynthesis of raumacline. Phytochemistry.1995,40,1407-1417.
    Oliveira, A.B., Dolabela, M.F., Bragal, F.C., Jacome, R.L.R.P., Varotti, F.P., Povoa, M.M. Plant-derived antimalarial agents:new leads and efficient phythomedicines. Part Ⅰ. Alkaloids. An. Acad. Bras. Cienc.2009,81,715-740.
    Opassiri, R., Pomthong, B., Okoksoong, T., Akiyama, T., Esen, A., Ketudat Cairns, J.R. Analysis of rice glycosyl hydrolase family 1 and expression of Os4bglu12 β-glucosidase. BMC Plant Biol. 2006,6,33.
    Panday, N., Canac, Y., Vasella, A. Very strong inhibition of glucosidases by C(2)-substituted tetrahydroimidazopyridines. Helv. Chim. Acta.2000,83,58-79.
    Penny, D., Hendy, M.D. Steel, M.A. Progress with methods for constructing evolutionary trees. Trends in Ecol. Evol. 1992,7,73-79.
    Pickens, L.B., Tang, Y., Chooi, Y.H. Metabolic engineering for the production of natural products. Annu. Rev. Chem. Biomolecular Engineering.2011,2,211-236.
    Potterton, E., McNichlass, S., Krissinel, E. Development in the CCP4 molecular-graphics project. Acta Crystallogr. D.2004,60,2288-2294.
    Rajendran, C., Dworkowski, F.S.N., Wang, M.T., Schulze-Briese, C. Radiation damage in room-temperature data acquisition with the PILATUS 6M pixel detector. J. Synchrotron Radial 2011,18,318-328.
    Ravelli, R.B., Garman, E. Radiation damage in macromolecular crystallography. Curr. Opin. Struct. Biol.2006,16,624-629.
    Roberts, M.F., Mccarthy, D., Kutchan, T.M., Coscia C.J. Localization of enzymes and alkaloidal metabolites in Papaver latex. Arch. Biochem. Biophy.1983,222,599-609.
    Ruggiero, A., Smaldone, G., Squeglia, F., Berisio, R. Enhanced Crystallizability by Protein Engineering Approaches:A General Overview. Protein Peptide Lett.2012,19, 732-742.
    Ruppert, M., Ma, X., Stockigt, J. Alkaloid biosynthesis in Rauvolfia-cDNA cloning of major enzymes of the ajmaline pathway. Curr. Org. Chem.2005,9,1431-1444.
    Ruppert, M., Panjikar, S., Barleben, L., Stockigt, J. Heterologous expression, purification, crystallization and preliminary X-ray analysis of raucaffricine glucosidase, a plant enzyme specifically involved in Rauvolfia alkaloid biosynthesis. Acta Crystallogr. F.2006,62,257-260.
    Ruyter, C.M., Stockigt, J. Enzymatic formation of raucaffricine, the major indole alkaloid in Rauvolfia serpentine cell-suspension cultures. Helv. Chim. Acta.1991,74, 1707-1712.
    Sahu, B.N. Rauvolfia serpentina (sarpagandha), Vol.1-Botany, and Agronomy-R.8vo. Today and Tomorrow's Printers and Publishers, New Delhi-110005,1979, p.5.
    Sahu, B.N. Rauvolfia serpentina (sarpagandha), Vol.2-Chemistry, and Pharmacology-R. 8vo. Today and Tomorrow's Printers and Publishers, New Delhi-110005,1979, p.47.
    Saitou, N., Nei, M. The neighbor-joining method:A new method for reconstructing phylogenetic trees. Mol. Biol. Evol.1987,4,406-425.
    Salonen, L.M., Ellermann, M., Diederich, F. Aromatic Rings in Chemical and Biological Recognition:Energetics and Structures. Angew. Chem. Int. Edit.2011,50, 4808-4842.
    Sato, F., Takeshita, N., Fitchen, J.H., Fujiwara, H., Yamada, Y. S-adenosyl-L-methionine:scoulerine-9-O-methyltransferase from cultured Coptis japonica cells. Phytochemistry.1993,32,659-664.
    Sato, F., Tsujita, T., Katagiri, Y., Yoshida, S., Yamada, Y. Purification and characterization of S-adenosyl-L-methionine:norcoclaurine 6-O-methyltransferase from cultured Coptis japonica cells. Eur. J. Biochem.1994,225,125-131
    Schumann, G., Gao, S., Stockigt, J. Vomilenine reductase-a novel enzyme catalyzing a crucial step in the biosynthesis of the therapeutically applied antiarrythmic alkaloid ajmaline. Bioorgan. Med. Chem.2002,10,1913-1918.
    Schubel, H., Stockigt, J., Feicht, R., Simon, H. Partial purification and characterization of raucaffricine β-D-glucosidase from plant cell-suspension cultures of Rauvolfia serpentina Benth. Helv. Chim. Acta.1986,69,538-547.
    Schubel, H., Ruyter, C.M., Stockigt, J. Improved production of raucaffricine by cultivated Rauvolfia cells. Phytochemistry.1989,28,491-494.
    Shoji, T., Hashimoto, T.2011, Nicotine Biosynthesis, in Plant Metabolism and Biotechnology (eds H. Ashihara, A. Crozier and A. Komamine), John Wiley & Sons, Ltd, Chichester, UK. doi:10.1002/9781119991311.ch7.
    Shukla, Y.M., Dhruve, J.J., Patel, N.J., Bhatnagar, R., Talati, J.G., Kathiria, K.B. Plant Secondary Metabolites, New India Publishing Agency, India,2009, pp.73-74.
    Southworth-Davies, R.J., Medina, M.A., Carmichael, I., Garman, E.F. Observation of decreased radiation damage at higher dose rates in room temperature protein crystallography. Structure.2007,15,1531-1541.
    Stockigt, J. Enzymatic formation of intermediated in the biosynthesis of ajmalicine: strictosidine and cathenamine. Phytochemistry.1979,18,965-971.
    Stockigt, J. In The Alkaloid, Vol.47; Cordell, G.A., Ed.; Academic Press:New York, 1995, Chapter 2.
    Stockigt, J., Hammes, B., Ruppert, M. Construction and expression of a dual vector for chemo-enzymatic synthasis of plant indole alkaloids in Escherichia coli. Nat. Prod. Res.2010,24,759-766.
    Sudha, C.G., Obul Reddy, B., Ravishankar, G.A., Seeni, S. Production of ajmalicine and ajmaline in hairy root cultures of Rauvolfia micrantha Hook f., a rare and endemic medicinal plant. Biotechnol. Lett.2003,25,631-636.
    Sue, M., Nakamura, C., Miyamoto, T., Yajima, S. Active-site architecture of benzoxazinone-glucoside P-D-glucosidases in Triticeae. Plant Sei.2011,180, 268-275.
    Sun, L., Chen, Y., Rajendran, C., Mueller, U., Panjikar, S., Wang, M., Mindnich, R., Rosenthal, C., Penning, T.M., Stockigt, J. Crystal structure of rerakine reductase, founding member of a novel aldo-keto reductase (AKR) subfamily that undergoes unique conformational changes during NADPH binding. J. Bio. Chem.2012,287,14, 11213-11221.
    Suzuki, H., Takahashi, S., Watanabe, R., Fukushima, Y., Fujita, N., Noguchi, A., Yokoyama, R., Nishitani, K., Nishino, T., Nakayama, T. An isoflavone conjugate-hydrolyzing beta-glucosidase from the roots of soybean (Glycine max) seedlings-purification, gene cloning, phylogenetics, and cellular localization. J. Biol. Chem.2006,281,30251-30259.
    Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S. MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol. Biol. Evol.2011, doi: 10.1093/molbev/msr121.
    Tao, B., Zhang, A., Lan, R. Advances in studies on analgesic cukaloids and their analgesic mechnism. Lishizhen Medicine and Materia Medica Research.2011,22, 957-960.
    Tropea, J.E., Kaushal, G.P., Patushak, J., Mitchell, M., Aoyagi, T., Molyneux, R.M., Elbein, A.D. Mannostatin A, a new glycoprotein-processing inhibitor. Biochemistry. 1990,29,10062-10069.
    Vakil, R.J. Rauwolfia serpentina in the treatment of high blood pressure:A review of the literature. Circulation.1955,12,220-229.
    Vasella, A., Davies, G. J., Bohm, M. Glycosidase mechanisms. Curr. Opin. Chem. Biol. 2002,6,619-629.
    Vocadlo, D. J., Davies, G. J. Mechanistic insights into glycosidase chemistry. Curr. Opin. Chem. Biol.2008,12,539-555.
    Von Itzstein, M., Wu, W.-Y., Kok, G. B., Pegg, M.S., Dyason, J.C., Jin, B., Phan, T.V., Smythe, M.L., White, H.F., Oliver, S.W., Colman, P.M., Varghese, J.N., Ryan, D.M., Woods, J.M., Bethell, R.C., Hotham, V. J., Cameron, J.M., Penn, C.R. Rational design of potent sialidase-based inhibitors of influenza virus replication, Nature. 1993,363,418-423.
    Walker, K., Croteau, R. Taxol biosynthetic genes. Phytochemistry.2001,58,1-7.
    Warzecha H, Obitz P, Stockigt J. Purification, partial amino acid sequence and structure of the product of raucaffricine-O-beta-D-glucosidase from plant cell cultures of Rauvolfia serpentina. Phytochemistry.1999,50,1099-1109.
    Warzecha H, Gerasimenko I, Kutchan TM, Stockigt J. Molecular cloning and functional bacterial expression of a plant glucosidase specifically involved in alkaloid biosynthesis. Phytochemistry.2000,54,657-666.
    Wolfenden, R., Snider, M.J. The Depth of Chemical Time and the Power of Enzymes as Catalysts. Ace. Chem. Res.2001,34,938-945.
    Wu, S., Chappell, J. Metabolic engineering of natural products in plants; tools of the trade and challenges for the future. Curr. Opin. Biotech.2008,19,145152.
    Xia, L., Ruppert, M., Wang, M., Panjikar, S., Lin, H., Rajendran, C., Barleben, L., Stockigt, J. Structures of Alkaloid Biosynthetic Glucosidases Decode Substrate Specifictiy,ACS Chem. Biol.2012,7,226-234.
    Xia, L., Rajendran, C., Ruppert, M., Panjikar, S., Wang, M., Stockigt, J. High speed X-ray analysis of plant enzymes at room temperature. Phytochemistry.2013,91, 88-92.
    Xu, Z., Escamilla-Trevino, L.L., Zeng, L., Lalgondar, M., Bevan, D.R., Winkel, B.S.J., Mohamed, A., Cheng, C., Shih, M., Poulton, J.E., Esen, A. Functional genomic analysis of Arabidopsis thaliana glycoside hydrolase family 1. Plant Mol. Biol.2004, 55,343-367.
    Ziegler, J., Facchini, P.J. Alkaloid biosynthesis:metabolism and trafficking. Annu. Rev. Plant Biol.2008,59,735-769.
    Zographos, S.E., Oikonomakos, N.G., Tsitsanou, K.E., Leonidas, D.D., Chrysina, E.D., Skamnaki, V.T., Bischoff, H., Goldmann, S., Watson, K.A., Johnson, L.N., The structure of glycogen phosphorylase b with an alkyl-dihydropyridine-dicarboxylic acid compound, a novel and potent inhibitor. Structure.1997,5,1413-1425.
    Anfinsen, C.B. Principles that govern the folding of protein chains. Science.1973,181, 223-230.
    Arnold, K., Bordoli, L., Kopp, J., Schwede, T. The SWISS-MODEL Workspace:A web-based environment for protein structure homology modelling. Bioinformatics. 2006,22,195-201.
    Bernhardt, P., McCoy, E., O'Connor, S.E. Rapid identification of enzyme variants for reengineered alkaloid biosynthesis in Perwinkle. Chem. Biol.2007,14,888-897.
    Bernhardt, P., Usera, A.R., O'Connor, S.E. Biocatalytic asymmetric formation of tetrahydro-β-carbolines. Tetrahedron Lett.2010,51,4400-4402.
    Bililign, T., Hyun, C.G., Williams, J.S., Czisny, A.M., Thorson, J.S. The Hedamycin Locus Implicates a Novel Aromatic PKS Priming Mechanism. Chem. Biol.2004,11, 959-969.
    Boutet, S., Lomb, L., Williams G.J. et al. High-Resolution protein structure determination by serial femtosecond crystallography. Science.2012,337,362-364.
    Bracher, D., Kutchan, T.M. Strictosidine synthase from Rauvolfia serpentina:Analysis of a gene involved in indole alkaloid biosynthesis. Arch. Biochem. Biophys.1992, 294,717-723.
    Chen, S., Galan, M.C., Coltharp, C., O'Connor, S.E. Redesign of a central enzyme in alkaloid biosynthesis. Chem. Biol.2006,13,1137-1141.
    Cheng X. Hydration in protein crystals a neutron diffraction analysis of carbonmonoxymyoglobin. Acta Crystallogr. B.1990,46,195-208
    Chical, R.A., Doucet, N., Pelletier, J.N. Semi-rational approaches to engineering enzyme activity:combining the benefits of directed evolution and rational design. Curr. Opin. Biotech. 2005,16,378-384.
    Chrzanowska, M., Rozwadowska, M.D. Asymmetric Synthesis of Isoquinoline Alkaloids. Chem. Rev.2004,104,3341-3370.
    DeWaal, A., Meijer, A.H., Verpoorte, R. Strictosidine synthase from Catharanthus roseus:Purification and characterization of multiple forms. Biochem. J.1995,306, 571-580.
    Durr, C., Hoffmeister, D., Wohlert, S.E., Ichinose, K., Weber, M., Von Mulert, U., Thorson, J.S., and Bechthold, A. The glycosyltransferase UrdGT2 catalyzes both C-and O-glycosidic sugar transfers. Angew. Chem. Int. Ed. 2004,43,2962-2965.
    Ema, T. Mechanism of Enantioselectivity of Lipases and Other Synthetically Useful Hydrolases. Curr. Org. Chem.2004,8,1009-1025.
    Gold, N.D., Jackson, R.M. SitesBase:a database for structure-based protein-ligand binding site comparisons. Nucleic Acid Res.2006,34, D231-D234.
    Gutmann, A. Nidetzky, B. Switching between O- and C-Glycosyltransferase through Exchange of Active-Site Motifs. Angw. Chem. Int. Edit.2012,51,12879-12883.
    Hampp, N., Zenk, M.H. Homogeneous strictosidine synthase from cell suspension cultures of Rauvolfia serpentina. Phytochemistry.1988,27,3811-3815.
    Harle, J., Gunther, S., Lauinger, B., Weber, M., Kammerer, B., Zechel, D.L., Luzhetskyy, A., Bechthold, A. Rational Design of an Aryl-C-Glycoside Catalyst from a Natural Product O-Glycosyltransferase. Chem. Biol 2011,18,520-530.
    Heddle, J., and Maxwell, A. Quinolone-binding pocket of DNA gyrase:role of GyrB. Antimicrob. Agents Chemother.2002,46,1805-1815.
    Koepke, J., Ma, X., Fritzsch, G., Michel, H., Stockigt, J. Crystallization and preliminary X-ray analysis of strictosidine synthase and its complex with the substrate tryptamine. Acta Crystallogr. D.2005,61,690-693.
    Lee, H., Yerkes, N., O'Connor, S.E. Aza-Tryptamine substrates in momoterpene indole alkaloid biosynthesis. Chem. Biol.2009,16,1225-1229.
    Lee, J., Lee, S.H., Seo, H.J., Son, E.J., Lee, S.H., Jung, M.E., Lee, M., Han, H.K., Kim, J., Kang, J., Lee, J. Novel C-aryl glucoside SGLT2 inhibitors as potential antidiabetic agents:1,3,4-Thiadiazolylmethylphenyl glucoside congeners. Bioorg. Med. Chem. 2010,18,2178-2194.
    Liu, G., Shen, Y., Atreya, H.S., Parish, D., Shao, Y, Sukumaran, D.K., Xiao, R., Yee, Adelinda., Lemak, A., Bhattacharya, A., Acton, T.A., Arrowsmith C.H., Montelione, G.T., Szyperski, T. NMR data collection and analysis protocol for high-throughput protein structure determination. Proc. Natl. Acad. Sci. USA.2005,102,10487-10492.
    Loris, E.A., Panjikar, S., Ruppert, M., Barleben, L., Unger, M., Schubel, H., Stockigt, J. Structure-based engineering of strictosidine synthase:Auxiliary for alkaloid libraries. Chem. Biol.2007,14,979-985.
    Ma, X., Panjikar, S., Koepke, J., Loris, E., Stockigt, J. The structure of rauvolfia serpentina strictosidine synthase is a novel six-bladed β-propeller fold in plant proteins. Plant cell.2006,18,907-920.
    Magnusson, A.O., Takwa, M., Hamberg, A. Hult, K. An S-Selective Lipase Was Created by Rational Redesign and the Enantioselectivity Increased with Temperature. Angew. Chem. Int. Ed.2005,44,4582-4585.
    Martinelle, M., Hult, K. Kinetics of acyl transfer reactions in organic media catalysed by Candida antarctica lipase B. Biochim. Biophy. Acta.1995,1251,191-197.
    McCoy, E., Galan, M.C., O'Connor, S.E. Substrate specificity of strictosidine synthase. Bioorg. Med. Chem. Lett.2006,16,2475-2478.
    Mittler, M., Bechthold, A., Schulz, G.E. Structure and action of the C-C bond-forming glycosyltransferase UrdGT2 involved in the biosynthesis of the antibiotic urdamycin. J. Mol. Biol.2007,372,67-76.
    Rosenthal, C., Mueller, U., Panjikar, S., Sun, L., Ruppert, M., Zhao, Y., Stockigt, J. Expression, purification, crystallization and preliminary X-ray analysis of perakine reductase, a new member of the AKR enzyme superfamily from higher plants. Acta Crystallogr. F.2006,62,1286-1289.
    Rotticcia, D., Haeffnera, F., Orreniusa, C., Norina, T., Hult, K. Molecular recognition of sec-alcohol enantiomers by Candida antarctica lipase B. J. Mol. Catal. B.1998,5, 267-272.
    Rotticci, D., Rotticci-Mulder, J.C., Denman, S., Norin, T., Hult, K. Improved Enantioselectivity of a Lipase by Rational Protein Engineering. ChemBioChem.2001, 2,766-770.
    Roy, A., Zhang, Y. Recognizing Protein-Ligand Binding Sites by Global Structural Alignment and Local Geometry Refinement. Structure.2012,20,987-997.
    Scoble, J., McAlister, A.D., Fulton, Z., Troy, S., Byres, E., Vivian, J.P., Brammananth R., Wilce, M.C.J., Le Nours, J., Zaker-Tabrizi, L., Coppel, R.L., Crellin, P.K., Rossjohn, J., Beddoe, T. Crystal structure and comparative functional analyses of a Mycobacterium aldo-keto reductase. J. Mol. Biol.2010,398,26-39.
    Simpson, P. J., Tantitadapitak, C., Reed, A.M., Mather, O.C., Bunce, C.M., White, S.A., Ride, J.P. Characterization of two novel aldo-keto reductases from Arabidopsis: expression patterns, broad substrate specificity, and an open active-site structure suggest a role in toxicant metabolism following stress. J. Mol. Biol.2009,392, 465-480.
    Sterner, R. Merkl, R., Raushel, F. Computational enzyme design. Chem. Biol.2008,15, 421-423.
    Stevens, L.H., Giroud, C., Pennings, E.J.M., Verpoorte, R. Purification and characterization of strictosidine synthase from a suspension culture of Cinchona robusta. Phytochemistry.1993,33,99-106.
    Stockigt, J., Barleben, L., Panjikar, S., Loris, E.A.3D-Structure and function of strictosidine synthase-the key enzyme of monoterpenoid indole alkaloid biosynthesis. Plant Physiology and Biochemistry.2008,46,340-355.
    Stockigt, J., Antonchick, A.P., Wu F., Waldmann, H. The pictet-spengler reaction in nature and in organic chemistry. Angew. Chem. Int. Edit.2012,50,8538-8564.
    Sun, L., Chen, Y, Rajendran, C., Mueller, U., Panjikar, S., Wang, M., Mindnich, R., Rosenthal, C., Penning, T.M., Stockigt, J. Crystal structure of rerakine reductase, founding member of a novel aldo-keto reductase (AKR) subfamily that undergoes unique conformational changes during NADPH binding. J. Bio. Chem.2012,287,14, 11213-11221.
    Treimer, J.F., Zenk, M.H. Strictosidine synthase form cell cultures of apocynaceae plants. FEBS Lett.1979a,97,159-162.
    Treimer, J.F., Zenk, M.H. Purification and properties of strictosidine synthase, the key enzyme in indole alkaloid formation. Eur. J. Biochem.1979b,101,225-233.
    Uppenberg, J., Hansen, M.T., Patkar, S., Jones, T.A. The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica. Structure.1994,2,293-308.
    Uppenberg, J., Ohrner, N., Norin, M., Hult, K., Kleywegt, G.J., Patkar, S., Waagen, V., Anthonsen, T., Jones, T.A. Crystallographic and molecular-modeling studies of lipase B from Candida antarctica reveal a stereospecificity pocket for secondary alcohols. Biochemistry.1995,34,16838-16851.
    Walsh, C.T., Chen, H., Keating, T.A. Hubbard, B.K., Losey, H.C, Luo, L., Marshall, C.G., Miller, D.A., Patel, H.M. Tailoring enzymes that modify nonribosomal peptides during and after chain elongation on NRPS assembly lines. Curr. Opin. Chem. Biol. 2001,5,525-534,
    Wu, F., Zhu, H., Sun, L., Rajendran, C., Wang, M., Ren, X., Panjikar, S., Cherkasov, A., Zou, H.,,Stockigt, J. Scaffold Tailoring by a Newly Detected Pictet-Spenglerase Activity of Strictosidine Synthase:From the Common Tryptoline Skeleton to the Rare Piperazino-indole Framework. J. Am. Chem. Soc.2012,134,1498-1500.
    Yamazaki, Y., Urano, A., Sudo, H., Kitajima, M., Takayama, H., Yamazaki, M., Aimi, N., Saito, K. Metabolite profiling of alkaloids and strictosidine synthase activity in camptothecin producing plants. Phytochemistry.2003,62,461-470.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700