纯镁及镁合金大气腐蚀和化学氧化工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金具有比强度高、减震性能好、易于压铸成型和可回收等优良的综合性能,逐渐受到交通工具和电子通讯器材等行业的青睐,被认为是21世纪最富有开发和应用潜力的“绿色材料”。但是,耐蚀性问题一直制约着镁合金的大量使用。目前关于变形镁合金腐蚀行为的报道较少,对其腐蚀机理研究不够深入。同时,镁合金化学氧化技术中,铬酸盐化学氧化工艺存在废液处理成本高和污染环境等问题。而无铬处理工艺目前还不够成熟,处理液寿命短,氧化膜耐蚀性不够理想,能耗高,工艺复杂。因此,研究变形镁合金的腐蚀机理,开发高效、低毒、环境友好的化学氧化处理工艺成为当前研究热点之一。
     本文对AZ31镁合金和纯镁暴露在大连地区海洋性气候中的腐蚀行为进行研究,同时进行室内模拟暴露实验和薄层液膜电化学检测,探讨了大气污染物对AZ31镁合金和纯镁腐蚀规律的影响。采用扫描电镜(SEM)、电子能谱(EDX)、电子探针(EPMA)以及X射线光电子能谱仪(XPS)等检测技术对表面腐蚀产物进行分析。400d的室外暴露实验结果表明,两种试样表面覆盖一层深灰色的腐蚀产物膜,AZ31镁合金表面腐蚀产物膜较纯镁光滑、致密,腐蚀程度较轻。去除腐蚀产物后发现,试样表面腐蚀轻微的区域形成了一些孤立的“小岛”,“小岛”之间出现较深的蚀坑。AZ31镁合金和纯镁腐蚀面积分别占各自总面积的42.3%和65.0%。AZ31镁合金表面腐蚀产物主要由MgO、Mg(OH)_2、Al(OH)_3、Al_2O_3以及镁和铝的碳酸盐,硫酸盐和氯化物所组成,纯镁腐蚀产物与AZ31镁合金基本相同,但不含Al元素。图像法统计腐蚀面积后拟合的AZ31镁合金和纯镁腐蚀动力学遵循指数关系,动力学方程分别为:H_(AZ31)=0.403×t~(0.653),H_(pMg)=0.549×t~(0.665)。
     室内模拟暴露实验研究发现,表面沉积NaCl、Na_2SO_4和NaNO_3后,AZ31镁合金和纯镁发生明显的局部腐蚀。随着表面盐沉积量的增加,腐蚀速度加快。NaCl、Na_2SO_4和NaNO_3对镁合金侵蚀性强度排序为:NaCl>Na_2SO_4>NaNO_3。薄层电解液中含有NaCl、Na_2SO_4和NaNO_3时的电化学测试表明,随着试样表面液层厚度的减薄,腐蚀产物的沉积速度加快导致腐蚀产物膜变得粗糙、疏松;液膜越薄,局部腐蚀越易发生。液膜较薄时,三种电解液中R_f和R_(ct)大小顺序为NaNO_3>Na_2SO_4>NaCl,表明其侵蚀性强度顺序为NaCl>Na_2SO_4>NaNO_3,验证了室内模拟暴露实验检测结果。此外,NaNO_3的液膜下,液膜厚度变化对镁合金极化行为的影响较NaCl和Na_2SO_4液膜下显著,这是由于阴极过程除了生成氢气外,还产生NO_3~-的去极化反应所致。
     开发了一种KMnO_4-REMS化学氧化工艺,AZ91、AM60、AZ31镁合金以及纯镁经该工艺氧化处理后,获得的氧化膜质量优于磷酸盐处理等典型的无铬镁合金化学氧化处理工艺,与传统铬酸盐处理工艺相当。经KMnO_4-REMS工艺氧化后,镁合金表面氧化膜层呈网状微裂纹结构,氧化膜厚度约为10μm,膜层的主要成分为CeO_2、MnO和MnO_2,还有少量MgO、Mg(OH)_2以及铝的化合物。镁合金表面的KMnO_4-REMS氧化膜具有三层结构,最内层是镁和铝的氧化物和氢氧化物,中间层则主要由锰的氧化物组成,表层沉积了铈的氧化物。氧化膜表面的网状微裂纹结构在氧化过程中形成,由镁合金结构和化学氧化处理后干燥过程中氢氧化物脱水所造成。
     为了解决氧化液存在的环境污染问题,本文对环保无毒的植酸氧化液在镁合金表面化学氧化工艺中的应用进行研究。发现植酸氧化液的最佳pH值范围为9~10,在AZ91、AM60、AZ31镁合金以及纯镁表面形成的氧化膜透明、光亮,膜层致密、均匀。经植酸处理后,在0.05mol·L~(-1)的NaCl溶液中耐蚀性能测试结果表明,镁及镁合金腐蚀电位升高,极化电流密度减小,电化学性能得到改善;化学浸泡8h未见腐蚀,耐蚀性能得到提高。植酸处理液在镁合金表面形成的氧化膜含有Mg、Al、Zn、O、P和C元素,膜的组成为植酸的镁盐和铝盐,以及镁和铝的氧化物和氢氧化物。植酸在镁合金表面发生化学吸附,形成一层致密的有机保护膜,膜层有效地阻滞活性离子向基体表面扩散,隔离基体与腐蚀介质,从而抑制镁合金腐蚀。
Magnesium alloys are of great importance at present and future fields of engineering for their attractive combination of low density and high strength/weight ratio. However, since magnesium is intrinsically active in the environment, the corrosion resistance of magnesium alloys is generally inadequate, which limits their application. In order to improve the corrosion resistance of magnesium alloys, surface treatment technologies, like chemical conversion, are commonly applied. Nowadays, the methods applied introduce chromate ions in the solutions, which is progressively restricted due to its high toxicity to the environment. The trend in the field is oriented to investigate the corrosion mechanism of magnesium alloy and develop environmental friendly chemical treatment technologies.
     In this paper, the atmospheric corrosion behavior of extruded AZ31 magnesium alloy and pure magnesium samples is studied by weight loss test, electrochemical measurements and physical detection technologies, such as SEM, EDX, EPMA and XPS. After 400d atmospheric exposure station in Dalian city, the samples are covered with a plumbeous corrosion production film. Compared with pure magnesium sample, the film on AZ31 magnesium alloy is more compact. Moreover, after the corrosion production is wiped off, some insulated "island", which formed on the corrosion slightly area, are observed on the surface of the samples. The proportions of the corrosion region to the general area are 65.0% and 42.3% on AZ31 and pure magnesium, respectively. The compositiones of corrosion production on the two samples are almost similar. They are MgO, Mg(OH)_2, Al(OH)_3, Al_2O_3 and carbonate, sulfate and chloride of Mg and Al. The corrosion kinetics calculated by image methods accord with exponential equation and the dynamics equations for AZ31 and pure magnesium are H_(AZ31)=0.403×t~(0.653) and H_(PMg)=0.549×t~(0.665), respectively.
     The effect of NaCl, Na_2SO_4 and NaNO_3 on the atmospheric corrosion of AZ31 magnesium alloy and pure magnesium samples was studied by the indoor simulated exposure experiment and electrochemical test under thin electrolyte layers. After 40d indoor simulated exposure station with the addition of NaCl, Na_2SO_4 and NaNO_3 on the surface of AZ31 and pure magnesium, the samples occur local corrosion. The corrosion rate of the samples increases with the salt concentratiom increasing. The aggressiveness of the salt is NaCl > Na_2SO_4> NaNO_3 Electrochemical tests under thin electrolyte layers show that decreasing the thickness of electrolyte layers results in accelerating corrosion rate. The thinner the layer is, the easier the occurrence of local corrosion on the samples is. The difference of the corrosion behaviors between in solution and under thin layer is mainly due to the dissolve of O_2 and CO_2 in the electrolyte. In addition, the NO_3~- is more sensitive to the thickness of the layer than Cl~- and SO_4~-, which is caused by the participation of NO_3~- in the cathodic depolarization.
     In order to avoid high toxicity like Cr treatment to the environment and improve the corrosion resistance of magnesium alloys, KMnO_4-REMS chemical conversion treatment technique is developed in this paper. The conversion coatings obtained with this method show better corrosion resistance than previously used phosphate-based conversion treatment for AZ91, AM60, AZ31 and pure magnesium samples, and reach the levels of chrome-based treatment. Furthermore, the electrochemical polarization tests show that compared with the samples treated by chrome-based method, the anodic current density of the alloy coated in permanganate-REMS bath, at the same potential, decreases evidently in 0.05mol·L~(-1)NaCl solution. Simultaneously, the open-circuit potential of magnesium alloy increases 0.06V compared with blank samples. The thickness of the coating formed by the permanganate-REMS bath on AZ91 magnesium alloy is about 10μm and net-like cracks exists on the coatings. The conversion coating mainly composes of CeO_2, MnO, MnO_2, and some oxides of Mg and Al.
     Phytic acid, as an environmental- friendly agent, has been growing applied in the application of metal surface treatments. In this paper, the corrosion protects afforded by phytic acid conversion coatings on magnesium and magnesium alloy has been developed. The results show that optimal pH range for the treatment is 9-10. In 0.05mol L~(-1)NaCl solutions, Magnesium alloy coated by phytic acid solution don't corrode until 8 hours. Simultaneously, compared with blank samples, the open-circuit potential of magnesium alloy treated by phytic acid solutin is increased and the anodic current density is decreased at the same potential. A compact film is found on the surface of magnesium alloy with the combination of phytic acids and the metal. The film is mainly composed of phytate and some oxides of Mg and Al. This film may insulate the metal from the deleterious anion, thus protect the magnesium alloy against corrosion. Moreover, by reacting to the paint, the phytic acid coating can improve the resin binding power.
引文
[1] 张津,章宗和.镁合金及其应用.北京:化学工业出版社,2004.
    [2] 刘正,张奎,曾小勤.镁基轻质合金里理论基础及其应用.北京:机械工业出版社,2002.
    [3] 布鲁兜斯C R.有色合金的热处理组织与性能.北京:冶金工业出版社:1988.
    [4] 冶金工业部情报标准研究所.有色金属常识.北京:冶金工业部情报标准研究所:1972.
    [5] 许小忠,刘强,程军.镁合金在工业及国防中的应用.华北工学院学报,2002,23(3):190-194.
    [6] 訾灿涛,王辉.镁合金及其在工业中的应用.稀有金属,2004,28(J):229-231.
    [7] 邓玉勇,朱江,李立.新型金属材料镁合金的发展前景分析[J].科技导报,2002,10:37.
    [8] 叶久新,陈明安,周健等.镁合金及其成型技术在工业中的应用.湖南大学学报,2002,29(3):112-116.
    [9] 郑润芬,梁成浩.镁合金的腐蚀与表面氧化技术研究进展.轻合金加工技术,2005,33(9):12-15.
    [10] 曾荣吕,柯伟,徐永波等.镁合金的最新发展及应用前景.金属学报,2001,37(7):673-685.
    [11] Emley E F. Principle of magnesium technology. New york: Pergamon Pr., 1996.
    [12] 翟春泉,曾小勤,丁文江等.镁合金的开发与利用.机械工程材料,2001,25(1):6-10.
    [13] Polmear I J. Magnesium allioys and applications. Materials science and technology, 1994, 10(1):114-116.
    [14] Rozak P. Compressing forming of metals. Magnesium, 1998,27(3):13-15.
    [15] Sun B. Great applied potentialities of magnesium alloy die-casting in automobile trade. Special Casting & Nonferrous Alloys, 1998,21(3):4044-4050.
    [16] 余琨,黎文献,王日初等.变形镁合金的研究、开发及应用.中国有色金属学报,2003,13(2):277-286.
    [17] Mao W M, Zhao A M. New progress and project of application of semi-solid metals forming. Special Casting & Nonferrous Alloys, 1998,30(6):3335-3340.
    [18] Flemings M C. Behavior of metal alloys in the semi-solid state. Metall Trans B, 1991, 22B(6):269293.
    [19] Xie S S, Huang S H. Semi-solid metal forming and applications. Beijing: Metallurgical Industry Press, 1999.
    [20] Luo S J, Tian W B, Xie S S et al. Semi-solid technology and appli-cation. The Chinese Journal of Nonferrous Metals, 2000,10(6):765-773.
    [21] 王渠东,丁文江.镁合金研究开发现状与展望.有色金属,2003,(7):8-11.
    [22] Asm International, Magnesium and magnesium Alloy. OH: Metal Park, 1999.
    [23] 徐关庆,赵晓宏,付蓉等.铡合金汽车零件表面处理技术研等.汽车工艺与材料,2004,(7):57-59.
    [24] 陈力禾,刘正,林立.镁—汽车工业通向新世纪的轻量化之路.铸造,2004,53(1):5-11.
    [25] 除力禾,赵慧杰.镁合金压铸及其在汽车工业中的应用.铸造,1999,(10):45-57.
    [26] 罗思东.镁合金在汽车上的开发与应用.汽车工艺与材料,2004,(6):38-41.
    [27] 袁序弟,镁合金在汽车工业的应用前景.汽车技术,2002,(3):1-3.
    [28] 郭洪河,刘生发,黄尚宇等.镁合金在汽车中的应用与发展.汽车工艺与材料,2003,(10):34-36
    [29] 钟皓,刘培英,剧铁涛.镁合金在航空航天中的应用及前景.航空工程与维修,2002,(4):41-42.
    [30] 吴吕胜.AZ31镁合金阳极氧化工艺及其腐蚀行为研究:(硕十学位论文).杭州:浙江大学,2005.
    [31] 潘先曾.镁合金特性及其压铸工艺要点.铸造技术,1999,(5):79-84.
    [32] 克雷莫夫,维什克瓦柯.镁合金定型铸造.北京:国防工业出版社,1956.
    [33] 卫爱丽,付珍,赵沽峰.镁合金的生产及应用.铸造设备研究.2003,(1):35.
    [34] 曹楚南.腐蚀电化学原理.北京:化学工业出版社,1989.
    [35] Perrault G G. The potential-pH diagram of the magnesium-water system. Journal of Electroanalytical Chemistry. 1974,51:107-119.
    [36] Markar G L, Kruger J. Corrosion of magnesium. International Materials Reviews, 1993, 38(3):138-153.
    [37] Jones H, Joshi S, Rowe R G et al. The current status of rapid solidification of Magnesium base and Titanium-base alloys. Interinal Journal of Powder Metal, 1987,23 (1):13-24.
    [38] Grosjean M H, Zidoune M, Roue Let al. Effect of ball milling on the corrosion resistance of magnesium in aqueous media. Electrochimica Acta, 2004,49 (15):2461-2470.
    [39] Daloz D, Steinmetz P, Michot G. Corrosion behavior of rapidly solidified magnesiumaluminum-zinc alloys. Corrosion, 1997, 53(2): 944-954.
    [40] 宋光玲.镁合金腐蚀与防护.北京:化学工业出版社,2007.
    [41] Tunold R, Holtan H, Hagg Berfe M Bet al. The corrosion of magnesium in aqueous solution containing chloride ions. Corrosion Science, 1977,17(4): 353-365.
    [42] MakarG L, Kruger J, Joshi A. The effect of alloying elements on the corrosion resistance of rapidly solidified magnesium alloys. Advances in Magnesium Alloys and Composites, International Magnesium Association and the Non-Ferrous Metals Committee. TMS, Phoenix, Arizona, 1998,26:105-121.
    [43] 贾素秋.镁合金的腐蚀行为与防护:(博士学位论文).吉林:吉林大学,2006.
    [44] Skar J I. Corrosion and corrosion prevention of magnesium alloys. Materials and Corrosion, 1999,50(1): 2-6.
    [45] Song G L, Johannesson B, Hapugoda S et al. Galvanic corrosion of magnesium alloy AZ91D in contact with an aluminium alloy, steel and zinc. Corrosion Science, 2004, 46(3):955-977.
    [46] Parasher S K S, Basu D K, Banerjee M K. Localised/galvanic corrosion of Mg-Zn-Al alloy. Journal of Metakkurgy anti Materials Science, 2003,45(3): 137-141.
    [47] Boese E, Gollner J, Heyn A et al. Galvanic corrosion hehaviour of magnesium alloy in contact with coated components. Materials and Corrosion, 2001, 52:247-256.
    [48] 童震松,张巍,李久青.压铸镁合金在防冻液中的电偶腐蚀规律研究.材料保护,2005,年38(5):14-17.
    [49] 何积铨,王湛,张巍.模拟大气环境中加速镁合金电偶腐蚀的研究.腐蚀科学与防护技术,2004,16(5):141-143.
    [50] Tahara A, Kodama T. Potential distribution measurement in galvanic corrosion of Zn/Fe couple by means of Kelvin probe. Corrosion Science, 2000,42(4):655-673.
    [51] Song G L, Atrens A. Corrosion meehanisms of magnesium alloys. Advanced Engineering Materials, 1999, 1 (1): 11-33.
    [52] Lafront A M, Zhang W, Jin et al. Pitting corrosion of AZ91D and AJ62x magnesium alloys in alkaline chloride medium using electrochemical techniques. Electrochimica Acta, 2005, 51 (3) :489-501.
    [53] Lunder O, Lein J E, ttesjevik S M et al. Corrosion morphologies on magnesium alloy AZ91. Materials and Corrosion, 1994,45(1):331-34.
    [54] Song R G, Blawert C, Dietzel W et al. A study on stress corrosion cracking and hydrogen embrittlement of AZ31 magnesium alloy, Materials Science and Engineering A, 2005, 399 (2): 308-317.
    [55] Winzer N, Atrens A, Song G Let al. A critical review of the stress corrosion cracking (SCC) of magnesium alloys. Advanced Engineering Materials, 2005,7(8): 659-693.
    [56] 王光雍,王海江,李兴濂.自然环境中的腐蚀与防护.北京:化学工业出版社,1997.
    [57] Wang S Y, Song S Z. Image analysis of atmospheric corrosion exposure of zinc. Materials Science and Engineering A, 2004,385:377-381.
    [58] 张玮,梁成浩.金属材料表面腐蚀形貌分形特征提取.大连理工大学学报,2003,43(1):61-64.
    [59] 李瑛,张涛,王福会.AZ91D镁合金手汗腐蚀机理研究Ⅰ.手汗模拟液中AZ91D镁合金腐蚀的动力学规律.中国腐蚀与防护学报,2004,24(5):276-279.
    [60] Song G L, Andrej A, David J S. An hydrogen evolution method for the estimation of the corrosion rate of magnesium alloys. Magnesium Technology 2001, TMS (The Minerals, Metals & Materials Society), 2001.
    [61] 朱祖芳.有色金属的耐腐蚀性能及其应用.北京:化学工业出版社,1995.
    [62] Song G L, Atrens A, Oarguscha M. Influence of microstructure on the corrosion of diecast AZ91D. Corrosion Science, 1999,41(1):249-273.
    [63] Song G L, Atrens A, Wu X L. Corrosion Behavior of AZ21, AZ50 and AZ91 in Sodium Chloride. Corrosion Science. 1998,40(11):1769-1791.
    [64] 李瑛,张涛,王福会.AZ9ID镁合金手汗腐蚀机理研究Ⅱ手汗液中尿素对AZ91D腐蚀的缓蚀机制.中国腐蚀与防护学报,2004,24(6):334-338.
    [65] 张涛,李瑛,王福会.AZ91D镁合金手汗腐蚀机理研究Ⅲ乳酸对AZ91D镁合金的腐蚀机制.中国腐蚀与防护学报,2004,24(6):334-338.
    [66] Hikmet A, Sadri S. Studies on the influence of chloride ion concentration and pH on the corrosion and electrochemical behaviour of AZ63 magnesium alloy. Materials and Design, 2004, 25 (7) :637-643.
    [67] Genevie Baril, Christine Blanc, Michel Keddam et al. Local Electrochemical Impedance Spectroscopy Applied to the Corrosion Behavior of an AZ91 Magnesium Alloy. Journal of The Electrochemical Society, 2003,150(10):B488-B493.
    [68] Inoue H, Sugnhara K, Yamamoto A. Corrosion rate of magnesium and its alloys in buffered chloride solutions. Corrosion Science, 2002,44(3):603-610.
    [69] Chert J, Wang J Q, Han E et al. AC impedance spectroscopy study of the corrosion behavior of an AZ91 magnesium alloy in 0.1M sodium sulfate solution. Electrochimica Acta, 2007,52(9):3299-3309.
    [70] Genevie B, Christine B, Nadine P. AC Impedance Spectroscopy in Characte-rizing Time-Dependent Corrosion of AZ91 and AM50 Magnesium Alloys. Journal of The Electrochemical Society, 2001,148(12):B489-B496.
    [71] Udhayan R, Prakash D. On the Corrosion behaviour of magnesium and its alloys using electrochemical techniques. Journal of Power Sources, 1996,63(1):103-107.
    [72] Schmutz P, Guillaumin V, Lillard R S. InflUence of Dichromate Ions on Corrosion Processes on Pure Magnesium. Journal of The Electrochemical Society, 2003,150(4):B99-B110.
    [73] Song G L, Stjohn D H, Abbott T. Corrosion behaviour of a pressure die cast magnesium alloy. International Journal of CastMetals Research. 2005,18(3):174-180.
    [74] Ballerini G, Bardi U, Bignucolo R. About some corrosion mechanisms of AZ91D magnesium alloy. Corrosion Science, 2005,47(9):2173-2154.
    [75] Mathieu S, Rapin C, itazan Jet al. Corrosioa bohaviour of high pressure die-cast and semi-solid cast AZ91D alloys. Corrosion Science, 2002,44(12):2737-2756.
    [76] Bonora P L, Andrei M, Elizere A et al. Corrosion behavior of stressed magnesium. Science. Science, 2004(44):729-749.
    [77] Eliezer A, Gutman E M, Abramov E. Corrosion fatigue of die-cast and extruded magnesium alloys. Journal of light metals, 2001,1(3):179-186.
    [78] Unigovski Y, Eliezer A, Abramov E. Corrosion'fatigue of extruded magnesium alloys. Materials and Engineering A, 2003,360(2):132-139.
    [79] Gutman E M, Unigovski Y, Eliezer A. Mechanoelectrochemical Behavior of Pure Magnesium and Magnesium Alloys Stressed in Aqueous Solutions. Journal of Materials Synthesis and Processing, 2000,8(3):133-138,
    [80] Wang Z Y. The review of atmospheric corrosion research on metal materials. General Corrosion Control. 1995,(4):1-3.
    [81] 莱格拉大C,雷格德尔T.大气腐蚀.北京:化学工业出版社,2005.
    [82] Sun Z H, Li J G, Li M Z. Future of accelerated atmospheric corrosion testing of metal materials. Material Engineering, 1995, (12):41-42
    [83] Khobaib M, Chang F C, Keltic E E et el. Accelerated atmospheric corrosion testing. ASymposium Sponsored by ASTM Committee G1 on Corrosion of Metals. DenverColo:1980.
    [84] Svensson J E, Johansson L G. The temperature-dependence of the S02-induced atmospheric corrosion of zinc. Corrosion Science, 1996,38(12):2225-2233.
    [85] Falk T, Svensson J E, Johansson L G. Influence of C02 and NaCl on the atmospheric corrosion of zinc. Journal of the Electrochemieal Society, 1998,145(9):2993-2999.
    [86] Svensson J E, Johansson L G, A laboratory studyof the initial stage of the atmospheric corrosion of zinc. Corrosioa Science, 1993,34(5):721-740.
    [87] Boelen B, Schmitz B, Defourny J et el. A literature survey on the development of an accelerated laboratory test method for atmospheric corrosion of precoated steel products. Corrosion Science, 1993, 34(11):1923-1931.
    [88] 曹献龙,ACM技术研究人气环境腐蚀严酷性:(硕士学位论文).武汉:武汉材料研究所,2005.
    [89] Gonzalez J A. Electro chemical sensors for atmospheric corrosion rates. British Corrosion Journal. 1984, 19(2):89-95.
    [90] Mansfeld F, Kenkel J V. Electro chemical monitoring of atmospheric corrosion phenomenon. Corrosion Science, 1976 16(3):111-116.
    [91] Mansfeld F, Kenkel J V. Electro chemical measuremonts of time of-wetness and atmospheric corrosion rates. Corrosion, 1977,33(1):13-17.
    [92] Haagenrud S. On the mechanism of break doom of passivity of iron for instationary conditions. Werkst. Korros, 1980,31(5):543-548.
    [93] Gonzalez J A, Otero E, Cabans C. Recording polarization curves in thin electrolyte layer by electro chesical atmospheric corrosion monitors. British Corrosion Journal, 1990, 25(2):125.
    [94] Mansfeld F, Tsai S. Laboratory studies of atmospheric corrosion. Corrosion Science, 1980,20(7):853.
    [95] Stratmann M, The investigation of the corrosion properties of metals covered with adsorbed electrolyte layers: a new experimental technique, Corrosion Science, 1987, 27(8): 869-872.
    [96] Cox A, S. Lyon B. An electrochemical study of the atmospheric corrosion of mild steel-Ⅰ. Experimental method. Corrosion Science, 1990, 36 (7): 1167-1176.
    [97] 唐鸿雁,宋光玲,曹楚南.土壤腐蚀体系后插参比测量法的研究.腐蚀科学与防护技术,1994,6(4):352-356.
    [98] 张学元,柯克,杜元龙.金属在薄层液膜下电化学腐蚀电池的设计.中国腐蚀与防护学报,2001,21(2):117-122.
    [99] Stratmann M, Streckel H. On the atmospheric corrosion of metals which are covered with thin electrolyte layers-Ⅰ. Verification of the experimental technique. Corrosion Science, 1990, 30(6/7):681-696.
    [100] Stratmann M, Streckel H. On the atmospheric corrosion of metals which are covered with thin electrolyte layers-Ⅱ. Experimental results. Corrosion Science, 1990, 30 (6/7):697-714.
    [101] Stratmann M, Streckel H, Kim K T et al. On the atmospheric corrosion of metals which are covered with thin electrolyte layers-Ⅲ. the measurement of polarization curves on metals which are covered with thin electrolyte layers. Corrosion Science, 1990, 30 (6/7): 715-734.
    [102] Hou W T, Liang C F. 8-Year Atmospheric Corrosion Exposure of Steels in China. Corrosion, 1999, 55 (1):65-70.
    [103] 侯文泰,于敬敦,梁彩凤.碳钢及低合金钢的大气腐.中国腐蚀与防护学报,1993,13(4):291-293.
    [104] 唐其环.用GM模型拟合大气腐蚀数据.腐蚀与防护,1993,14(1):40-43.
    [105] 蔡建平,柯伟.应用人工神经网络预测碳钢、低合金钢的大气腐蚀.中国腐蚀与防护学报,1997,17(4):304-307.
    [106] 马小彦,栾艳冰,屈祖玉等.神经网络在金属大气腐蚀率预测中的应用.北京科技大学学报,2001,23(2):123-126.
    [107] 王海涛,韩恩厚,柯伟.腐蚀领域中人工神经网络的应用进展.腐蚀科学与防护技术,2004,16(3):147-150.
    [108] Lindstrom R, Svensson J E, Johansson L G,The influence of carbon dioxide on the atmospheric corrosion of some magnesium alloys in the presence of NaCl. Journal of Electrochemical Society, 2002,149(4):B103-B107.
    [109] Lindstrom R, Johansson L G, Svensson J E. The influence of NaCl and CO2 on the atmospheric corrosion of magnesium alloy AZ91. Materials and Corrosion, 2003, 54: 587-594.
    [110] Nordlien J H, Nisancioglu K, Sachiko O. Morphology and structure of oxide films formed on MgAl alloys by exposure to air and water. Journal of Electrochemical Society, 1996, 143(8):2564-2572.
    [111] Lin C, LI X G, Role of CO2 in the initial stage of atmospheric corrosion of AZ91 magnesium alloy in the presence of NaCl. Rare Metals, 2006, 25(2):190-196.
    [112] Rakel L, Lars-Gunnar J, George E T. Corrosion of magnesium in humid air. Corrosion Science, 2004, 46(5):1141-1158.
    [113] Lin C, Li X G. Initial corrosion behaviors of AZ91 magnesium alloy in the presence of SO2. Journal of University of Science and Technology Beijing, 2004, 11 (5):433-441.
    [114] Nakatsugawa I, Martin R, Knystautas E J. ImprovingCorrosion Resistance of AZ91D Magnesium Alloy by Nitrogen Ion Implantation. Corrosion Science, 1996, 52 (12):921-926.
    [115] Shigematsu I, Nakamura M, Satou N et al. Surface treatment ofAZ91D magnesium alloy by aluminum diffusio coating. Journal of Materials Science Letters, 2000, (19):473-475.
    [116] Frank H, Renate W, Jana S. Characteristics of PVD-eoatings on AZ31hp magnesium alloys. Surface and Coatings Technology, 2003, 162(2):261-268.
    [117] Wu G S, Zeng X Q, Ding W B et al. Characterization of ceramic PVD thin films on AZ31 magnesium alloys. Applied Surface Science, 2006,252(20):7422-7429.
    [118] Koutsomichalis A, Saettas L, Badekas H. Laser treatment ofmagnesium. Journal of Materials Science, 1994, 29(6):543-547.
    [119] Abbas G, Liu Z B, Skeldon P. Broad-beam laser cladding of Al-Si alloy coating on AZ91HP magnesium alloy. Surface and Coatings Technology, 2006, 201(6):2701-2706.
    [120] 胡文彬,向阳辉,刘新宽等.镁合金化学镀镍预处理过程表面状况的研究.中国腐蚀与防护学报,2001,21(6):340-344.
    [121] 向阳辉.直接化学镀镍的初始沉积机制.上海交通大学学报,2000,34(12):1638-1640.
    [122] 王赫莹,李德高.镁及镁合金表面电镀镍工艺的研究.表面技术,2004,33(5):48-49.
    [123] Habermann C E. Anticorrosive Coated Retifier Metals and Their Alloys. U.S. Patent. 4668347. 1998.
    [124] 李国英.表面工程手册.北京:机械工业出版社,1997.
    [125] Houng Y H, Hua C T, Wen T T. Anodization of AZ91D magnesium alloy in silicate-containing electrolytes. Surface and Coatings Technology, 2005,199(2): 127-134.
    [126] Mizutani Y, Kim S J, Ichino R et al. Anodizing of Mg alloys in alkaline solutions. Surface and Coatings Technology, 2003,169-170(2) 143-146.
    [127] Abulsain M, Berkani A, Bonilla F A. Anodic oxidation of Mg-Cu and Mg-Zn alloys. Electrochimica Acta, 2004, 49(6):899-904.
    [128] 许越,陈湘,吕祖舜等.镁合金表面的腐蚀特性及其防护技术.哈尔滨工业大学学报,2001,3(6):753-757.
    [129] 汪洋,沈承金,缪姚军.添加剂对镁铝合金微弧氧化作用的研究.腐蚀与防护,2006,27(8):387-390.
    [130] Chen F, Zhou H, Yap B. Corrosion resistance property of the ceramic coasting obtained through microarc oxidation on the AZ31 magnesium alloy surfaces. Surface and Coatings Technology, 2007,201(10):4905-4908.
    [131] Liang J, Hu L T, Hao J C. Improvement of corrosion properties of microarc oxidation coating on magnesium alloy by optimizing current density parameters Applied Surface Science, 2007,253(16),:6939-6945.
    [132] Verdier S, Boinet M, Maximovitch S et al. Formation, structure and composition of anodic films on AM60 magnesium alloy obtainedb by DC plasma anodizing Corrosion Science, 2005, 47(6):1429-1444.
    [133] 吴敏,吕柏林,梁平.镁及其合金表面处理研究现状.表面技术,2005,34(5):13-15.
    [134] Gonzalez-nunez M A, Nuenez-lopez C A, Skeldona P et al. Non-chromate conversion coating for magnesium alloys and magnesium-based metal matrix composites. Corrosion Science, 1995,37(11):1763-1772.
    [135] Chong K Z, Teng S S. Conversion-coating treatment for magnesium alloys by a permanganate- phosphate solution. Materials Chemistry and Physics, 2003,80:191-200.
    [136] Vuorilehto K. An environmentally friendly water-activated manganese dioxide battery. Journal of Applied Electrochemistry, 2003,33(1): 15-21.
    [137] Ghali E. Corrosion and protection of magnesium alloys. Materials Science Forum, 2000, 350: 261-272.
    [138] Takaya M. Produce of manganence-type chemical conversion coatings for magnesium alloys and their corrosion resistance. Journal of Japan Institute of Light Metals, 1995, 45(12):713-718.
    [139] Huo H W, Li Y, Wang F H. Corrosion of AZ91D magnesium alloy with a chemical conversion coating and electroless nickel layer, Corrosion Science, 2004,46(6):1467-1477.
    [140] 大下贤一郎,本泽正博.镁合金的表面处理方法及镁合金构件.中国,发明专利,CN1317598,2001.
    [141] 西方直广,近藤义明,西川幸男等.镁或镁合金的表面处理制品,表面预处理方法和涂装方法.中国,发明专利,CN1302341,2001.
    [142] 赖资源,黄国伦,林永键等.镁合金化学改性皮膜的非铬系处理.中国,发明专利,CN 1294205,2001.
    [143] Bengst.on J, Wojtaszek M, Wojcik G er al. Magnesium conversion coating composition and method of using same. U.S. Patent, US6692583, 2004.
    [144] 张燕,孙伯勤.压铸镁合金的表面处理技术.特种铸造及有色合金,2000,增刊(1):22-23.
    [145] Hagans P L, Hass C M. Chromate conversion coating. Surface Engineering. 1994, (5):10-13
    [146] Sharma A K. Chromate Conversion Coatings for Magnesium-Lithium Alloys. Metal Finishing, 1989,87(2):73-74.
    [147] 蒲以明,张志强,杜荣.镁及镁合金表面处理初探.铝加工,2002,25(4):32-36.
    [148] 郭洪飞,安茂忠,刘荣娟.镁及其合金表面化学转化处理技术.轻合金加工技术.2003,31(8):35-38.
    [149] Gray J E, Luan B. Protective coatings on magneisum and its alloy - a critical review. Journal of Alloys and Compounds. 2002,336:88-113.
    [150] 边风刚,李国禄,刘金海等.镁合金表面处理的发展现状.材料保护,2002,35(3):1-4.
    [151] 李宁,黎德育.镁合金压铸件的性能及表面处理.电镀与涂饰,2002,21(4):39-45.
    [152] 余刚,刘跃龙,叶立元等.镁合金的表面处理及其发展趋势.表面技术,2003,32(2):1-5.
    [153] 蔡启舟,王立世,魏伯康.镁合金防蚀处理的研究现状及动向.特种铸造及有色合金,2003,3:33-35.
    [154] 赵明,吴树森,罗吉荣等.镁合金无铬表面处理现状和前景.铸造,2003,52(7):462-465.
    [155] 李宝东.申泽骥.镁合金铸件表面处理技术现状.材料保护,2002,35(4):1-3.
    [156] Umehara H, Takaya M, Kojima Y. An investigation of the structure and corrosion resistance of a permanganate conversion coatings on AZ91D magnesium alloy. Journal of Japan Institute of Light Metals, 2002,50(3):109-115.
    [157] Takaya M. Recent tendency of surface treamnet technology for magnesium. Journal of Japan Institute of Ligh Metals, 2000,50(11):567-576.
    [158] Hawkeq D, Albright D L.A Phosphate-Permanganate Conversion Coating for Magnesium. Metal Finishing, 1995(10):34-38.
    [159] 王渠东,吕宜振,曾小勤等.镁合金在电子器材壳体中的应用.材料导报,2000,14(6):22-24.
    [160] Manuele D, Katya B, Earico N et al, Cerium-based chemical conversion coating on AZ63 magnesium alloy, Surface Coating technology. 2003, 172 (2-3):227-132.
    [161] 张洪生.无毒植酸在金属防护中的应用.Electroplating & Finishing,1999,18(4):38-41.
    [162] 柏冬.pH值对植酸络合能力的影响.山东师范大学学报(自然科学版),2004,19(2):104-106.
    [163] 胡会利,程瑾宁,李宁.植酸性金属防护中的应用现状及展望.材料保护,2005,38(12):39-43.
    [164] 梁红野,陈彦泽.金属表面植酸钝化处理实验研究.石油化工腐蚀与防护,2004,21(6):5-8.
    [165] 赵地顺,刘会茹,徐智策等.植酸盐缓蚀制及其机理研究.高竺等学校化学学报,2005,26(2):334-336.
    [166] 胡会利,李宁,程瑾宁.镀锌植酸钝化膜耐蚀性的研究.电镀与环保,2005,146(6):21-25.
    [167] Yang H F, Feng J, Liu Y L. Electrochemical and Surface Enhanced Raman Scattering Spectroelectrochemical Study of Phytic Acid on the Silver Electrode. Journal of Physical Chemistry B, 2004, 1(18(45):17412-17417.
    [168] Yang H F, Yang Y, Yang Y H. Formation of inositol hexaphosphate monolayers at the copper surface from a Na-salt of phytic acid solution studied by in situ surface enhanced Ramah scattering spectroscopy, Raman mapping and polarization measurement. Analytica Chimica Acta, 2005, 548(1-2):159-165.
    [169] Notoya T, Otieno A V, Schweinsberg D P. The corrosion and polarization heha- viour of copper in domestic water in the presence of Ca, Mg and Na-salts of phytic acid. Corrosion Science, 1995, 37 (1): 55-65.
    [170] 纪钢,韩逢庆,张伦武等.材料腐蚀特征的图像模式识别处理.合肥工业大学学报(自然科学版),2002,25(2):312-315.
    [171] Codaro E N, Nakazato R Z, Horovistiz A L. An image processing method for morphology characterization and pitting corrosion evaluation. Materials Science and Engineering A, 2002, 334(1-2):298-306.
    [172] Wang S Y, Song S Z. Image analysis of atmospheric corrosion exposure of zinc. Materials Science and Engineering A, 2004,385(1-2):377-381.
    [173] 魏铭炎.季节气候条件和暴晒试验角度对钢材大气腐蚀的影响.环境技术,2004,3(6):46-48.
    [174] Aswal D K, Muthea K P, Shilpa T et al. XPS and AFM investigations of annealing induced surface modifications of MgO single crystals. Journal of Crystal Growth, 2002,236(4):661-666.
    [175] Verdier S, Vander L N, Delalande S et al. The surface reactivity of a magnesium-aluminium alloy in acidic fluoride solutions studied by electrochemical techniques and XPS. Applied Surface Science, 2004, 235(4:):513-524.
    [176] Kwo Z C, Teng S S. Conversion-coating treatment for magnesium alloys by a permanganate-phosphate solution. Materials Chemistry and Physics, 2003,80 (1):191-200.
    [177] Chen C, Splinter S J, Do T et al. Measurement of oxide film growth on Mg and Al surfaces over extended periods using XPS. Surface Science, 1997,382 (1-3):L652-L657.
    [178] Fournier V, Marcus P, olefjord I. Oxidation of magnesium Surface and interface analysis. Surface Interface Anal, 2002,34:494-97.
    [179] Handbook of X-ray Photoelectron spectroscopy. Perkin-Elmer Corporation, Physical Electronics Division.
    [180] 大连理工大学无机化学教妍室.无机化学第四版.北京:高等教育出版社,2001.
    [181] 林翠,李晓刚.AZ91D镁合金在含SO2大气环境中的初期腐蚀行为.中国有色金属学报,2004,14(10):1658-1665.
    [182] 王凤平,李晓刚,林翠.AZ91D镁合金在北京地区的大气腐蚀行为研究.中国腐蚀与防护学报,2004,24(6):345-349.
    [183] 杨武,顾潜祥,肖京先等.金属的局部腐蚀.北京:化学工业出版社,1995.
    [184] 曹楚男,张鉴清.电化学阻抗谱导论.北京:科学出版社,2002.
    [185] Umehara H, Takaya M, Kojima Y. An investigation of the structure and corrosion resistance of a permanganate conversion coatings on AZ91D magnesium alloy. Journal of Japan Institute of Light Metals, 2002, 50(3): 109-115.
    [186] Umehara H, Takaya, M, Terauchi S. Chromo-free surface treatment for magnesium alloy, Surface Coating technology. 2003, 167,170(1):666-669.
    [187] 镁合金化学氧化膜层技术条件,中华人民共和国航天工业部部标准,QJ468-85.
    [188] 镁合金化学氧化膜层生产说明书,中华人民共和国航天工业部部标准,QJ/Z134-85.
    [189] Standard practice for applying non-electrolytic conversion coatings on magnesium and magnesium alloyl, ASTM, B879-2003.
    [190] Standard practice for preparation of magnesium alloy surface for paniting, ASTM, D1732-03.
    [191] Wang C, Jiang F, Wang F. The characterization and corrosion resistance of cerium chemical conversion coatings for 304 stainless steels. Corrosion Science 2004, 46(1): 75-89.
    [192] Beng J T, Kenneth J K, Peter M A. XPS studies of solvated metal atom dispersed catalysts. Evidence for layered cobalt-manganese particles on alumina and silica. Journal of America chemical society, 1991, 113: 855-861.
    [193] Kwo Z C, Teng S S, Conversion-coationg treatment for magnesium alloys by a permanganate phosphate solution. Materials Chemistry and Physics, 2003,80(1): 191-200.
    [194] Song G L, Atrens A, Corrosion mechanisms of magnesium alloys, Anvance engineering materials, 1999, 1 (1): 11-33.
    [195] 吴谋成 袁俊华,植酸的毒理学评价和食用安全性,食品科学,1997,18(2):46-49.
    [196] 郑润芬,梁成浩,邵林.AZ91D镁合金植酸转化膜组成与耐蚀性能研究.大连理工大学学报 2006,46,(1):16-19.
    [197] 孙琢琏,董振温.有机光波谱分析的原理和应用.大连:大连理工大学出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700