高速光纤通信系统中电子色散补偿技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,随着宽带网络的快速发展,海量的数据业务需求引发了各式各样的致力于低成本、高速率的光纤传输系统的开发和研究。光纤传输网正经历着从10Gb/s系统到40Gb/s系统甚至到100Gb/s系统的飞跃,传输距离也大大增加。然而,随着数据量的增加,许多光纤传输中的有害机制成为系统进一步升级的制约因素。色散,作为制约因素的一种,在高速光纤通信系统中对性能的影响起着举足轻重的作用。色散会造成脉冲展宽,并最终导致码间干扰、误码率增加和系统传输性能降低。相较于传统的基于光域的色散补偿方法,电子色散补偿技术由于低成本、自适应性强等特点引起了广泛关注,成为近几年研究的热点。针对光纤链路中随着传输速率的提高、传输距离的增加所带来的信号严重损失,电子色散补偿技术具有强大的处理能力来消除信号畸变带来的影响。被动均衡技术与主动均衡技术可以看作是电子色散补偿的两种方案。被动均衡采用新型调制码型,充分利用其具有的较高色散容限和非线性容限、频谱利用率等特性来提升系统系能。该方案是是一种色散缓解措施。在传统的强度调制/直接检测光纤通信系统中,最常见的NRZ码型已经不能适应长距离传输的要求。新型的基于强度调制的不同占空比RZ码型和基于相位调制的DPSK、DQPSK等由于具有上述的特性更加受到人们关注。目前,伴随着调制技术的进一步发展,产生了频率效率更高的偏振复用系统和正交频分复用系统。信息载体也从基本的幅度、相位信息延伸到偏振态、频率等参量中去。被动均衡技术是为一种“预防式”的均衡技术,其消除信号损伤的作用弱于“主动式”补偿均衡技术。信号损伤对系统的影响不能完全消除被被动均衡技术消除,因而为了能更为有效的减少信号损伤的影响,使得系统性能得以提升,必须采用另外-种具有补偿功能的主动均衡技术。几种典型的均衡器可以作为这种主动式电子色散补偿方案,包括前馈均衡器、判决反馈均衡器和最大似然序列估计均衡器。这些均衡器可以相应的对光纤传输中的色度色散、偏振模色散进行有效补偿。而且随着电子技术以及信号处理技术的飞速发展,被人遗忘的相干检测技术由于其具有卓越的性能得到了重生。在接收机的数字信号处理模块中绝大多数电子色散方案都可以进行。本文针对光纤中的色散现象研究了新型调制格式及其传输性能,直接检测光纤通信系统的电子色散补偿技术以及偏振复用相干检测光纤通信系统的电子色散补偿技术。主要工作可以分为如下几个部分:(1)分析光纤色散的成因以及色度色散、偏振模色散的数学描述形式。简要介绍了基于光学方法的色散补偿技术和基于电域处理的色散补偿技术;(2)研究和分析了包括不同占空比的强度调制和各种相位调制的新型码型。通过Optisystem建立起完整的系统性能综合评估仿真平台,对新型调制格式的色散效应和其他的性能指标,包括非线性容限、接收机灵敏度、噪声灵敏度等进行仿真比较分析。(3)研究了前馈均衡器、判决反馈均衡器和最大似然序列估计均衡器的结构以及特点。分析了基于最小均方误差估计的LMS自适应算法。针对最大似然序列估计均衡器在光纤通信系统中的应用,提出了一种基于柱状图概率密度函数的信道估计方法和基于转换的Viterbi算法。通过Optisystem和Matlab联合仿真了不同均衡器结构在不同调制格式下的色散补偿性能。(4)分析了一种偏振复用QPSK相干检测光纤通信系统。研究产生偏振复用调制格式产生的方法,分析偏振模色散和偏振相关损耗对偏振复用系统所产生的影响。详细介绍了接收机DSP模块中的关键技术。(5)针对解复用算法进行了分析和研究。对恒模算法(CMA)在解复用过程中产生的奇异点现象进行探讨。阐明了奇异点在庞加莱球上的表现形式以及物理本质。分析CMA初始化对消除解复用过程中奇异性的方法。当光纤通信系统中的偏振相关损耗影响不可忽略时,提出约束自重置的CMA和基于负熵最大化的C-QAM独立分量分析算法两种方案进行解复用。最后通过Optisystem和Matlab联合仿真,对偏振复用相干检测光纤通信系统进行了建模和仿真分析。
Nowadays, massive amount of data demands have aroused a myriad of industrial and academic researches to develop cost-effective optical communication systems with the rapid development of wide-bandwidth networks. The data rates have gone from 10G to 40G even 100G. The transmission distance has steadily increased as well. However, as the capacity grows, many signal degradation effects become the prominent and seriously limit factors to further upgrade for the system. Dispersion, one of them, is playing a much important role to impact on high speed transmission system's performance. Dispersion can lead to considerable pulse broadening and distortion. As a consequent, these impairments cause intersymbol interference (ISI) at the receiver side result in significant penalties. Compared to the traditional optical compensation techniques for combating ISI, the applications of Electronic Dispersion Compensation (EDC) have recently gained attractive attention in optical communications. EDC offers adaptive compensation which will be required in future dynamic optical networks avoiding the expensive cost and high optical loss.There are two challenges comes with the realization of high speed optical communication systems:how to transmit and receive the signals effectively? How to deal with the severe signal distortions caused by the dispersion? EDC can provide the optimum solutions to face the challenges.The Passive EDC techniques are intended to relief distortions at the transmitter side. As the called "passive" EDC techniques, many novel modulation formats have been raised and applied recently. In the traditional transmission system, such as the intensive modulation/direct diction (IM/DD) system, No return to zero (NRZ) is the main modulation format in the current 10G transmission systems. These kinds of amplitude-based modulation cannot be suitable for the next generation transmission systems because of which require the high optical-signal-to-noise ratio (OSNR), high dispersion and nonlinearities tolerances. Compared to NRZ, some new different duty circle RZ formats and phase shift keying (PSK) formats are widely used for the high speed transmission systems becase they have the characteristics mentioned above. Moreover, frequence and polarization of light are used to carry information besides amplitude and phase. Polarization Division Multiplexing (PDM) and Orthogonal Frequency Division Multiplexing (OFDM) are come out in recent years.However, as precautions against those effects passive schemes cannot solve the challenges perfectly, the active EDC techniques are necessary. There are some typical equalizers as active EDC techniques, such as feed forward equalizer (FFE), decision feedback equalizer (DFE) and maximum likelihood sequence estimation (MLSE) equalizer. These equalizers have the corresponding modules to compensate the chromatic dispersion (CD) and polarization mode dispersion (PMD) effectively. Additionally, with the rapid development of electronics and signal processing techniques, coherent detection is come back. The DSP at the receiver side can be implemented by the most of equalizers..In this thesis investigates the novel modulation formats, EDC in IM/DD and coherent optical communication systems. It will be make further research on simulation and design realization of DSP scheme. The work can be divided into four parts.1. Theoretical analysis of dispersion in fiber including CD and PMD and elaborates the techniques of dispersion compensation in optical domain and electrical domain briefly.2. Firstly, the different duty circles of RZ, DPSK and DQPSK are introduced and analyzed. Secondly, the simulation systems in Optisystem are set up and carried out. The simulation results show that CSRZ formant has the best performance in the intensity modulations. In phase modulation formats, the most outstanding format is DPSK. DQPSK modulation is also a very promising choice if the noise disturbance could be resolved.3. The structures of FFE, DFE and MLSE equalizer are discussed. The LMS theory based on MMSE (Minimum Mean Square Error) is explained. A new channel estimation method called "histogram" probability density function (PDF) and Viterbi algorithm based on transitions are proposed. The simulation systems in IM/DD are established by Optisystem and Matlab. The co-simulations via different equalizers and different modulation formats are carried out. The simulation results show that equalizers of EDC have improved the systems performance in some intensity formats. However, FFE and DFE show a slight better performance in CSRZ and phase shift keying formats, where as MLSE plays a much better role in all kinds of modulation formats. 4. A PDM-QPSK coherent optical communication system is introduced. The structure of every module is analyzed. The singularity problem is discussed. A point of view in Poincare sphere to explain the singularity problem is proposed. In the presence of polarization dependent loss (PDL), a constrained self-reconfiguring CMA and complex-valued QAM (C-QAM) ICA algorithm are brought forward and expounded. A 100Gb/s PDM-QPSK coherent optical communication system is simulated in Optisystem and Matlab. The simulation results show constrained self-reconfiguring CMA and C-QAM ICA algorithm are singularity-free and robust against source loss to polarization demultiplexing correctly.
引文
[1] G. Keiser. Optical Fiber Communications (Third Edition)电子工业出版社,2002:84-85,340-357
    [2] M. Furlong, A. Ghiasi. "Electronic dispersion compensation brings native 10 Gbps to networks". http://www.edn.com/article/CA6317075.html. Mar.2006
    [3]顾畹仪,李国瑞.光纤通信系统(修订版).北京邮电大学出版社,2006
    [4]张国斌.“全球半导体增长趋缓创新应用勇担重任”.国际电子商情,2006(10)
    [5] H. Bulow, F. Buchali, and A. Klekamp, "Electronic Dispersion Compensation," J. Light-wave Technol.,2008(26):158-167
    [6] I. P. Kaminow, T. Y. Li, A. E. Willner, Optical Fiber Telecommunications V B: Systems and Networks, Academic Press,2008
    [7] ITU-T.2003, Network Node Interface for Optical Transport Networks, G.975.1
    [8] S. Saito, Y. Yamamoto and T. Kimura, "Optical Heterodyne Detection of Directly Frequency Modulated Semiconductor Laser Signals," Electron. Lett.,16,22, pp. 826-827,1980.
    [9] J. Yu, M. F. Huang, "Polarization insensitive wavelength conversion techniques for 100Gb/s polarization-diversity signal", in Proc. OECC'09:l-2
    [10] A. Sano, E.Yamada, H.Masuda, "No-Guard-Interval coherent optical OFDM for 100Gb/s Long-Haul WDM Transmission", Lightwave Technol., vol.27, no.16, 2009:3705-3717
    [11] G.959.1. http://www.itu.int/rec/T-REC-G.959.1-200603-I/en
    [12] 1 OGb/s-BASE-LRM. http://standards.ieee.org/reading/ieee/std/numerical.html
    [13] IEEE Std 802.3. http://standards.ieee.org/findstds/standard/802.3bg-2011.html
    [14] G.709. http://www.itu.int/ITU-T/studygroups/com15/otn/
    [15] Q. Yu, "On the Decision-Feedback Equalizer in Optically Amplified Direct-Detection Systems," Lightwave Technol., vol.25, pp.2090-2097.2007.
    [16] H.M. Bae, J.B. Ashbrook, et al. "An MLSE Receiver for Electronic Dispersion Compensation of OC-192 Fiber Links," IEEE J. Solid-States Circuits, Vo1.41, No.11, pp.2541-2553,2006
    [17] H.Hu, L.Han, R. Ludwig. "107 Gb/s RZ-DQPSK signal transmission over 108km SMF using optical phase conjugation in SOA", in Proc. OFC/NFOEC 2009, OThF6.
    [18] C.J.Xie, "Interchannel nonlinearites in coherent PDM-QPSK systems", IEEE Photonics Technology Letters, Vol.21, No.5,2009:274-276.
    [19] S.L.Jansen, "132.2-Gb/s PDM-8QAM-OFDM Transmission at 4-b/s/Hz Spectral Efficiency", IEEE Photonics Technology Letters, Vol.21, No.12,2009:802-804
    [20] J.J. Yu, "High-Speed PDM-RZ-8QAM DWDM Transmission (160×114 Gb/s) Over 640 km of Standard Single-Mode Fiber", IEEE Photonics Technology Letters, Vo1.21, No.18,2009:1299-1301
    [21] J.J. Yu, Z. Dong, X. Xiao, etc., "Generation, transmission and coherent detection of 11.2 Tb/s (112×l00Gb/s) single source optical OFDM superchannel", in Proc. OFC/NFOEC 2011:1-3
    [22] D. Qian, M. Huang, E. Ip, Y. Huang, Y. Shao, J. Hu, and T. Wang, "101.7-Tb/s (370×294-Gb/s) PDM-128QAM-OFDM Transmission over 3×55-km SSMF using Pilot-based Phase Noise Mitigation," in Proc. OFC/NFOEC 2011:PDPB5
    [23] G. P. Agrawal, Lightwave Technology:Telecommunication Systems, John Wiley & Sons, Inc.2005
    [24]胡先志,余少华,光纤通信基本理论与技术(第一版),华中科技大学出版社,2008
    [25]延凤平,裴丽,宁提纲,光纤通信系统(第一版),科学出版社,2006
    [26] D. H. Goldstein, E. Collett, Polarized Light, Marcel Dekker, New York,2003
    [27] S. Huard, Polarization of light, Wiley, New York,1997
    [28] C. Brosseau, Fundamentals of polarized light, Wiley, New York,1998
    [29] P. Rosenau, "Random Walker and the Telegrapher's Equation:A Paradigm of a Generalized Hydrodynamics", Phys. Rev. E, vol.48, no.2,1993:655-657
    [30] C. F. Bohren, D. Huffman, Absorption and Scattering of Light by Small Particles,
    John & Wiley, New York,1983.
    [31] ITU-T G. Sup 39, Optical System Design and Engineering Considerations,2006
    [32] Quellet, "Dispersion Cancellation Using Linearly Chirped Bragg Grating Filters in Optical Waveguides", Optics Letters.1987(12):847-849
    [33]崔艳玲.新型光子晶体光纤的色散特性和带隙特性研究[硕士学位论文].燕山大学,2010.
    [34] W. Cheng. "A 40Gb/s ADC-DAC in 0.12um Si-Ge", ISSCC Dig. Tech. Paper, Feb, 2004:262-263
    [35]王欣,高速光纤通信系统调制格式的研究[硕士学位论文],华中科技大学,2007:10-13,16-17
    [36]李玉权等,光波导理论与技术,人民邮电出版社,北京,2002
    [37]杨祥林,光纤通信系统,国防工业出版社,北京,2002
    [38]徐坤,周光涛.基于LiNbO3光波导调制器高速光码型调制技术的比较.北京邮电大学学报,2004,27(4):50-54
    [39]李毛和,张美敦.光纤干涉仪臂差的测量.光子学报,1999,28(8):740-743
    [40] P. S. Cho, V. S. Grigoryan, Y. A. Godin, A. Salamon, and Y. Achiam, Transmission of 25-Gb/s RZ-DQPSK signals with 25-GHz channel spacing over 1000 km of SMF-28 fiber, IEEE Photon. Technol. Lett.,2003(15):473-475
    [41] J. Hsieh, Athermal demodulator for 42.7-Gb/s DPSK signals, in Proc. ECOC 2005:paper Thl.5.6
    [42] J. Kahn, Keang-Po Ho, Spectral efficiency limits and modulation/detection techniques for DWDM systems, IEEE Journal of Selected Topics in Quantum Electronics,2004,10(2):259-272
    [43] C. Xu, L. Xiang, W. Xing, Differential phase-shift keying for high spectral efficiency optical transmissions, IEEE Journal of Selected Topics in Quantum Electronics,2004, 10(2):281-293
    [44] M. Ohm, T. Freckmann, Comparison of different DQPSK transmitters with NRZ and RZ impulse shaping. IEEE/LEOS Workshop on Advanced Modulation Formats, 2004:7-8
    [45] M. Serbay, C. Wree, W. Rosenkranz, Comparison of six different RZ-DQPSK transmitter set-ups regarding their tolerance towards fibre impairments in 8x40Gb/s WDM-systems, IEEE/LEOS Workshop on Advanced Modulation Formats, 2004:9-10
    [46] R.A. Griffin. Integrated DQPSK transmitters, in Proc. OFC/NFOEC 2005(3)
    [47] L. N. Binh, Digital Optical Communications, CRC Press, New York,2009
    [48] P. J. Winzer, R. J. Essiambre, Advanced Modulation Formats for High-Capacity Optical Transport Networks, J. Lightwave Technol, Vol.24,2006(12):4711-4728
    [49] A. H. Gnauck, P. J. Winzer, Optical Phase-Shift-Keyed Transmission, J. Lightwave Technol., Vol.23,2005(1):115-130
    [50] J. Wang, J. M. Kahn, Impact of chromatic and polarization-mode dispersion on DPSK and DQPSK systems using interfermetric demodulation and direct detection, J. Lightw. Technol., vol.22,2004(2):362-371
    [51] T. Tokle, C. R. Davidson, M. Nissov,6500km transmission of RZ-DQPSK WDM signals, Electron. Lett., vol.40,2004(7):444-445
    [52] C. Wree. Experimental investigation of receiver sensitivity of RZ-DQPSK modulation format using balanced detection, in Proc. OFC/NFOEC 2003, paper ThE5
    [53] E. Forestieri, Evaluating the error probability in lightwave systems with chromatic dispersion, arbitrary pulse shape and pre-and postdetection filtering, J. Lightw. Technol., vol.18,2004(11):1493-1503
    [54] G. P. Agrawal. Nonlinear Fiber Optics,3rd ed., Academic Press, San Diego, CA,2001
    [55] T. T. Ha, G. E. Keiser, R. L. Borchardt. Bit error probabilities of OOK lightwave systems with optical amplifiers. J. Opt. Commun., vol.18,1997:151-155
    [56] T. Sakamoto, T. Kawanishi, M. Izutsu. Initial phase control method for high-speed external modulation in optical minimum-shift keying format, in Proc. OFC/NFOEC 2005(4):853-854
    [57] C. Wree. RZ-DQPSK format with high spectral efficiency and high robustness towards fiber nonlinearities. Technical report, University of Kiel, Germany,2006
    [58] P.J. Winzer. Optical transmitters, receivers, and noise. In Wiley encyclopedia of telecommunications, ed. J.G. Proakis, New York,2002.
    [59] S. Haykin. Adaptive Filter Theory,4th ed., Prentice Hall,2002
    [60] S. Haykin. Communication Systems,4th ed., John Wiley & Sons,2001.
    [61] J. G. Proakis, Digital Communications,4th ed., McGraw-Hill,2001
    [62] M. E. Said, J. Stitch, M. Elmasry. An electrically pre-equalized 10 Gb/s duobinary transmission system. J. Lightw. Technol., vol.23,2005(1):388-400
    [63] M. Francechini, G. Bongioni, G. Ferrari, et al. Fundamental limits of electronic signal processing in direct detection optical communications. J. Lightw. Technol., vol.25, 2007(7):1742-1752
    [64] A. Goldsmith. Wireless Communications. Cambridge University Press,2005
    [65] P. Watts, V. Mikhailov, S. Savory,et al. Performance of Single-Mode Fiber Links Using Electronic Feed-Forward and Decision Feedback Equalizers, IEEE Photonics Technology Letters, vol.17,2005(10).
    [66] H. Haunstein. PMD and chromatic dispersion control for 10 and 40Gb/s systems. In Proc. OFC 2004, Thu3
    [67] P. Diniz. Adaptive filtering:Algorithms and Practical Implementation.2nd, ed., Kluwer Academic Publishers,2002
    [68] M. G. Bellanger. Adaptive Digital Filter and Signal Analysis. Marcel Dekker Inc., 1985
    [69] B. Widrow, E. Walach. On the statistical efficiency of the LMS algorithm with nonstationary inputs. IEEE Tran. on Information Theory, vol. IT-30,1984:211-221
    [70] A. J. Viterbi. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm, IEEE Trans, on Information Theory, vol. IT-13,1967:260-269
    [71] G. D.Forney. The Viterbi Algorithm:A Personal History, MIT,2005
    [72] L. Lu, J. M. Lei, X. C. Zou, et al., Probability density functions of channel estimation for MLSE in optical communications. In Proceedings of the SPIE, Volume 8309, 2011:830932-830932-6.
    [73] J. D. Downie, Relationship of Q penalty to eye-closure penalty for NRZ and RZ
    signals with signal-dependent noise, J. Lightw. Technol., Vol.23,2005:2031-2038
    [74] W. Rosenkranz, C. Xia. Electrical equalization for advanced optical communications systems. Journal of Electronics and Communications,61,2007:153-157.
    [75] C. Xia, W. Rosenkranz. Nonlinear Electrical Equalization for Different Modulation Formats With Optical Filtering. J. Lightw. Technol., Vol.25,2007(4):996-1001
    [76] M.Taylor. Coherent Detection Method Using DSP for Demodulation of Signal and Subsequent Equalization of Propagation Impairments. IEEE Photon. Technol. Lett., vol.16,2004(2):674-676.
    [77] S. J. Savory, G. Gavioli, R. I. Killey, et al. Transmission of 42.8Gbit/sPolarization Multiplexed NRZ-QPSK over 6400km of Standard Fiber with no Optical Dispersion Compensation. In Proc. OFC 2007, paper OTuA1.
    [78] Renaudier, G. Charlet, M. Salsi, et al. Linear fiber impairments mitigation of 40-Gbit/s polarization-multiplexed QPSK by digital processing in a coherent receiver. J. Lightw. Technol., vol.26,2008(1):36-42.
    [79] C. Lin, X. Zhang, R. Zhang, et al. The Influences of Polarization Mode Dispersion on Multi-channel Optical Communication System. Acta Photonica Sinica, vol.33, 2004(4):443-447.
    [80] X. Qin, Y. Chen, J. Cao.et al. Influence of Dispersion Compensation Schemes on Phase Noise of Phase Modulation System. Chinese Journal of Lasers, vol.34, 2007(1):62-66.
    [81] F. Derr. Optical OPSK transmission system with novel digital receiver concept. Electronics letters, vol.27,1991(23):2177-2179
    [82] D. Maylon. Digital fiber transmission using optical homodyne detection. Electronics letters, vol.20,1984(7):281-283
    [83] C. Fludger, T. Duthel, D. van den Borne, et al. Coherent Equalization and POLMUX-RZ-DQPSK for Robust 100-GE Transmission. J. Lightw. Technol., vol.26, 2008(1):64-72.
    [84] S. Savory, Digital Signal Processing Options in Long Haul Transmission. In Proc. OFC 2008, paper OTuO3.
    [85] M. Oerder, H. Meyr. Digital Filter and Square Time Recovery. IEEE Trans. Commun. Vol.36,1988(5):605-612
    [86] L. Rabiner, B. Gold. Theory Application of Digital Signal Processing. Englewood Cliffs, New Jersey, Prentice-Hall,1975
    [87] J. Shynk. Frequency-Domain and Multirate Adaptive Filtering. IEEE Signal Processing Magazine, vol.9,1992:14-37
    [88] R. Kudo, T. Kobayashi, K. Ishihara, et al. Coherent Optical Single Carrier Transmission Using Overlap Frequency Domain Equalization for Long-Haul Optical Systems. J. Lightwave Technol.2009(27):3721-3728
    [89] M. Core, Cross Polarization Interference Cancellation for Fiber Optics Systems. J. Lightwave Technol., vol.24,2006(1):305-312
    [90] S. Calabro, T. Dullweber, E. Gottwald et al., An Electrical Polarization-state Controller and Demultiplexer for Polarization Multiplexed Optical Signals. In Proc. ECOC,2003,paperTh2.2.2
    [91] A. Leven, N. Kaneda, U. Koc, et al., Frequency Estimation in Intradyne Reception. IEEE Photon. Technol. Lett., vol.19 2007(6):366-368
    [92] A. J. Viterbi and A. M. Viterbi. Nonlinear Estiamtion of PSK-modulated Carrier Phase with Application to Burst Digital Transmission. IEEE Trans. Inf. Theory, vol.IT-29.1983(4).
    [93] Hyeon-Min Bae, Jonathan B. Ashrook, Jinki Park, et al. An MLSE Receiver for Electronic Dispersion Compensation of OC-192 Fiber Links. IEEE Journal of Solid-State Circuits,40(11):2541-2554
    [94] S. Savory. Digital Filters for Coherent Optical Receivers. Optics Expess, vol.16, 2008(2):804-817
    [95] J. Stone. Independent Component Analysis:A Tutorial Introduction. MIT Press,2004
    [96] H. Zhang, Z. Tao, L.Liu, et al., Polarization Demultiplexing Based on Independent Component Analysis in Optical Coherent Receivers. In Proc. ECOC 2008. paper Mo.3.D.5
    [97] J. Treichler. Transient and Convergent Behavior of the Adaptive Line Enhancer.
    IEEE Trans. Acoustics, Speech and Signal Processing, vol.ASSP-27,1979:53-62
    [98] J. Treichler, M. Larimore, The tone capture properties of CMA-based interference suppressors. IEEE Trans. Acoustics, Speech and Signal Processing, vol.33, 1985(4):946-958.
    [99] D. Godard. Self-recovering Equalization and Carrier Tracking in a Two-dimensional Data Communication Systems. IEEE Trans. Commun., vol.28,1980:1867-1875
    [100] S. Ryu. Coherent Lightwave Communication Systems. Artech House, Inc.,1995, Chap.6.
    [101] R. Johnson, P. Schniter, T. Endres, et al. Blind Equalization Using the Constant Modulus Criterion:A review. In Proc. IEEE, vol.86,1998(10):1927-1950
    [102] N. Rozental, F. Portela, V. Souto, et al. Experimental analysis of singularity-avoidance techniques for CMA equalization in DP-QPSK 112-Gb/s optical systems. Opt. Express,2011(19):18655-18664
    [103] C. Jutten, J. Herault. Blind Seperation of Sources, Part I:An adapative algorithm based on neuromimatic architecture. Signal Processing, vo1.24,1991(1):1-10
    [104] P. Comon. Independent Component Analysis, a new concept. Signal Processing, vol. 36,1994:287-314
    [105]马建仓,牛亦龙,陈海洋.盲信号处理.国防工业出版社,2006
    [106]杨福生,洪波.独立分量分析的原理与应用.清华大学出版社,2006
    [107] J. Cardoso, H. Laheld. Equivariant Adaptive Source Seperation. IEEE Trans. Signal Processing, vol.44,1996(10):3017-3030
    [108] J. Cardoso. Blind Signal Seperation:Statistical Principles. In Proc. IEEE, vol.86, 1998(10):2009-2025
    [109] J. Cardoso, J. Delabrouille, G. Patanchon. Independent Component Analysis of the Cosmic Microwave Background. In Proc. ICA,2003:1111-1116
    [110] S. Makeig. Independent Component Analysis in Electroencephalographic Data. In Advances in Neural Information Processing Systems, vol.8, MIT Press. 1996:145-151
    [111] J. Bell, J. Sejnowski. An Information-maximization Approach to Blind Separation
    and Blind Deconvolution. Neural Computation, vol.7,1995(6):1004-1034.
    [112] C. Papadias, A. Paulraj. A Constant Modulus Algorithm for Multi-user Signal Separation in Presence of Delay Spread Using Antenna Arrays. IEEE Signal Processing Lett.,1997(4):178-181.
    [113] M. Novey, T. Adah. Complex ICA by Negentropy Maximization. IEEE Trans. Neural Networks, vol.19,2008(4):596-609.
    [114] A. van den Bos. Estimation of complex parameters. System Identification, 1994(3):495-499.
    [115] A. van den Bos. Complex gradient and Hessian. In IEE Proc. Image Signal Processing,1994(141):380-382.
    [116] A. van den Bos. The Multivariate Complex Normal Distribution-A Generalization. IEEE Trans. Information Theory, vol.41,1995(2):537-539.
    [117] E. Moreau, O. Macchi. Complex self-adaptive algorithms for source separationbased on higher order contrasts. In Proc. VII European Signal Processing Conference,1994, 11:1157-1160.
    [118] S. Amari. Natual Gradient Works Efficiently in Learning. Neural Computation, vol.10,1998:251-276.
    [119] E. Bingham, A. Hyvarinen. A Fast Fixed-point Algorithm for Independent Component Analysis of complex-valued signals. Int. J. Neural Systems, vol.10, 2000,(1):1-8.
    [120] F. Neeser, J. Massey. Proper Complex Random Processes with Applications to Information Theory. IEEE Trans. Information Theory, vol.39 1993(4):1293-1302.
    [121] A. Hyvarinen, E. Oja. Independent Component Analysis by General Non-linear Hebbian-likeLearning Rules. Signal Processing, vol.64, (1998) 301-313.
    [122] T. Adah, T. Kim, V. Calhoun. Independent Component Analysis by Complex Nonlinearities. In Proc. ICASSP, vol.5, (2004):525-528.
    [123] A. Hyvarinen, J. Karhunen, E. Oja. Independent Component Analysis. John Wiley & Sons,2001.
    [124] S. Oda, T. Tanaka, T. Hoshida. Digital Coherent Transmission:A Paradigm shift of
    Optical Transmission Technology. In Proc. Suboptic,2010.
    [125] Norman Swenson, Diego Crivelli, Martin Serra, et al. Experiment Study of Linear Equalization Combined with MLSE at 10.7 Gbps. Optical Fiber Communication, 2009:1-3
    [126] A. Lowery, S. Wang, M. Premaratne. Calculation of Power Limit Due to Fiber Nonlinearity in Optical OFDM Systems. Optics Express, vol,15,2007(20): 13282-13287.
    [127] L. Lu, J. Lei, X. Zou. Electronic Dispersion Compensation for High-speed Rate Coherent Optical Communication Systems with QAM Signals. In Proc. ACP 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700