油菜素内酯缓解番茄多环芳烃毒害及其解毒机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多环芳烃(PAHs)是一种对环境中植物和动物持久危害的一类化合物。由于他们对人类的诱变致癌、致畸活性,多环芳烃已成为全球性关注的环境问题。由于它们广泛分布于土壤、空气和水中,从那里进入植物,从而对人类的健康构成威胁。这就是为什么研究对多环芳烃的解毒作用,从而确保食品安全的重要性。因此,研究植物对多环芳烃胁迫的抗性以及增强植物对其抗性及解毒机制对缓解植物多环芳烃毒害是非常重要的。油菜素内酯(BRs)是一种广谱性的植物特异性的内源甾体激素,可引起植物对各种非生物胁迫如高温、干旱、盐度、重金属的诱导抗性,并促进农药代谢。针对BRs的作用诱导抗性,本研究利用番茄对多环芳烃、镉(Cd)以及多氯联苯(PCBs)胁迫的反应,以及通过形态学、生理生化、分子和组织生物学的手段研究了24-表油菜素内酯(EBR)对不同生长期进和生育条件下的缓解效应。主要结果如下:
     1.我们研究了不同浓度EBR (0.01、1、100nM)对不同浓度菲(PHE)(30、100、300μM)胁迫下番茄种子的发芽以及幼苗生长的影响。PHE胁迫延迟并降低了种子萌发率,处理10天后幼苗的高度和鲜重明显降低。EBR处理提高了种子萌发率以及幼苗鲜重,这种差异在PHE浓度为300μM表现最为显著。此外,与对照相比,EBR显著恢复了叶绿素荧光参数水平。在PHE胁迫下,各处理抗氧化酶表现不同,丙二醛(MDA)浓度明显增加。重要的是,EBR预处理增强了抗氧化酶活性并降低了MDA含量。综合考虑各研究参数,1nM EBR对缓解PHE胁迫的效果最好,其次为100nM和0.01nM。
     2.研究表明,PHE和芘(PYR)处理的植株,随着PHE和PYR浓度的增加,处理植株的光合色素含量、光合速率、气孔导度、Fv/Fm、ΦPSⅡ、qP呈剂量依赖的方式下降,而NPQ是上升的,PHE比PYR处理产生了更为严重的胁迫。但是采用50nM和5nM的EBR处理叶片和根系显著提高了光合水平,缓解了胁迫。伴随PHE或PYR浓度的增加,SOD酶活性呈下降趋势,但GPOD、CAT、APX、GR及MDA的含量呈上升趋势。此外PHE或PYR处理降低了GSH和GSSG的含量。有趣的是PHE或PYR处理后再处理EBR可以提高根系抗氧化酶和非酶物质的含量。研究结果表明,番茄幼苗遭遇PHE或PYR侵害,EBR可通过增强植物的解毒活性起到抗污染胁迫的作用。
     3.研究表明,以300μM的PHE处理21天时,通过气孔和非气孔因素,显著降低番茄幼苗的光合速率。叶绿素荧光参数的改变表明PHE处理发生了光抑制,进一步破坏光合作用机制。H2O2含量的积累及其在叶片中的定位表明,PHE处理产生了氧化胁迫。PHE处理诱导了与抗氧化相关的大多数酶活性。重要的是EBR+PHE处理比PHE单独处理显著增加了植株的生物量和光合速率,并且EBR+PHE处理比PHE单独处理更能够降低H202含量、增加抗氧化酶活性、促进解毒相关基因CYP90b3,GSH1和GST1的表达。有趣的是,PHE和PYR处理后,GSH含量和GSSG含量均呈降低趋势。相应GST含量的上升或许增加GSH的结合能力从而促进PHE的代谢。同时,EBR+PHE处理后,根系中较低的PHE含量表明PHE可能在根系中降解。结果表明,EBR通过植物解毒机制增强植物对PHE的抗性。
     4.研究了PHE和EBR对番茄根系次生代谢和超微结构的影响。PHE处理增加了植物次生代谢相关酶GST、G6PDH、SKDH、PAL、CAD的活性,诱导相关基因的表达。EBR单独处理或者EBR和PHE共同处理诱导的次生代谢相关酶活性和基因表达均高于PHE单独处理。PHE处理诱导了酚类和类黄酮物质含量和相应酶含量的增加及DPPH的活性,而EBR处理则进一步增强了上述各项参数。PHE处理根尖细胞,细胞的超微结构发生改变,细胞核变形,线粒体数目减少,细胞壁变薄和较多的液泡,但是EBR处理后显著缓解了这些症状,细胞壁增厚,线粒体和内质网数目增加,液泡变小。结果表明EBR通过调节根尖次生代谢增强番茄根系耐受性。
     5.重金属污染常伴随有机污染物,如PAHs,对这种协同污染的生理效应研究较少。但对混合污染的胁迫反应及抗性机理对植物的生长发育和抗性增强是非常重要的。因此,我们在温室内研究了100μM PHE和100μM Cd(?)昆合肋、迫效应以及EBR的缓解效应。处理40d后,PHE处理、Cd处理以及协同污染显著降低了同化物合成、光合作用以及叶绿素含量。让人出乎意料的是,PHE、Cd协同污染并没有降低生长量,相反却稍微提高了干物质量,光合速率和叶绿素含量。单一或复合污染提高了H202和MDA的含量、抗氧化物活性及相关基因表达,表明以上污染导致了氧化胁迫。另外PHE处理和Cd处理诱导了番茄叶片中次生代谢产物,解毒相关酶的活性及谷胱甘肽含量的提高。有趣的是,对胁迫植株外源喷施EBR后,可有效提高其生物量、光合、叶绿素,但降低了H202和MDA含量,同时伴随有抗氧化酶活性的提高。另外EBR激活了与次生代谢和解毒相关酶的活性,从而提高了其抗污染的能力。我们的结果表明,外源喷施EBR通过有效提高抗氧化能力、解毒能力和次生代谢从而提高混合污染胁迫抗性。
     6. PAHs能够影响多种种植的蔬菜植物,PAHs对蔬菜植物各种生理参数的影响及其植物对PAHs胁迫的响应是胁迫生物学重要的研究内容。PHE处理5种蔬菜植物14天叶龄的叶片,叶片的生长量、光合作用和叶绿素含量以剂量依赖的方式均呈现下降趋势,MDA和H202以剂量依赖的方式呈上升趋势,抗氧化酶活性上升,表明PHE产生了氧化胁迫。但是,在一定范围,不同蔬菜种类的生长量和抗氧化防御有所差异,从而导致植物产生不同的耐受性和植物毒性。总之,5种蔬菜植物遭遇PHE毒性顺序为小白菜、黄瓜、生菜、番茄和菜苔。
     7. PCBs是空气中常见的永久性有机污染物。空气中的PCBs的植物修复从而减轻对人体的伤害是一个新概念。然而空气中的PCBs对植物生长、光合和抗氧化系统研究较少。同时BRs已被作为一种潜在的植物调控相关的生理激素。因此,我们研究了PCBs和EBR对同化产物积累、光合机理、抗氧化酶活性的影响。不同浓度(0.4,2.0,10μg/L)的喷施显著降低了植株干重、光合速率、叶绿素含量。PCBs诱导的光合抑制与气孔、非气孔因素均相关。同时,不同水平的PCBs处理Fv/Fm、 ΦPSⅡ、 qP均明显降低,表明PCBs可诱导光抑制。H202和MDA的累计表明幼苗在PCBs的胁迫下遭受了氧化胁迫,进而产生了过量的ROS导致了抗氧化酶活性受抑制。相反,喷施100nmEBR提高了同化物质积累、光合速率、叶绿素含量、Fv/Fm、ΦPSⅡ、qP、进而降低了光抑制,EBR通过激活抗氧化活性减轻了ROS积累和MDA毒害。我们的结果表明,EBR具有对PCBs胁迫的保护作用,它通过提高植物抗性,进而加强了植物修复。
Polycyclic aromatic hydrocarbons (PAHs) are environmentally persistent organic micro pollutants. PAHs are of global environmental concerns because of their mutagenic, carcinogenic and teratogenic activities in humans. They are ubiquitous commonly found in soil, air and water, from where they enter plants, contaminate food chain and thus pose threat to human health. That is why, in planta detoxification of PAHs is very important to ensure food safety. Again, plants are important in removing PAHs, yet, understanding stress responses as well as strengthening plant tolerance and detoxification systems are important for plant based remediation of PAHs. Plant tolerance to PAHs is rate or capacity limiting as this is dependent on antioxidant and detoxification potential of plant. Hence, strengthening antioxidant and detoxification systems by hormonal supplementation may improve plant tolerance and degradation potential of xenobiotics like PAHs. Brassinosteroids (BRs), a class of plant-specific essential steroidal hormones are well known to induce plant tolerance against various abiotic stresses like high temperature, drought, salinity, heavy metal stress and also promote pesticide metabolism. Keeping in view the anti-stress properties of BRs, present study was carried out to understand the stress responses of tomato plant to PAHs (phenanthrene and pyrene), cadmium (Cd) and polychlorinated biphenyls (PCBs) as well as role of24-epibrassinolide (EBR) in stress amelioration through a series of experiments in different stages and conditions using morphological, physiological, biochemical, molecular and ultrastructural approaches. The salient findings are as follows:
     (1) The present experiment investigated the effects of seed treatment with various concentrations (0.01,1.0,100nM) of EBR on seed germination and early seedling growth in tomato under graded levels (30,100,300μM) of phenanthrene (PHE). Delayed and decreased seed germination; reduced length and fresh weight (FW) of shoot and root were observed following10days of PHE exposure in a dose dependent manner. However, seed treatment with EBR improved seed germination and increased length and FW of shoot and root. In addition, EBR remarkably restored the studied chlorophyll fluorescence parameters towards control levels. Different responses in antioxidant enzymes were observed following exposure to PHE, while malondialdehyde (MDA) was increased in a concentration dependent manner. Importantly, EBR pretreatment further increased activities of antioxidant enzymes but decreased the MDA content both in shoot and root of young tomato seedlings. Considering all the studied parameters, seed treatment with1.0nM EBR was most effective followed by100nM and0.01nM for improvement of germination and seedling growth under PHE stress in tomato.
     (2) A concentration-dependent decrease in growth, photosynthetic pigment contents, net photosynthetic rate (Pn), stomatal conductance (Gs), maximal quantum yield of PSII (Fv/Fm), effective quantum yield of PSⅡ (ΦPSⅡ) and photochemical quenching coefficient (qP) has been observed following phenanthrene (PHE) and pyrene (PYR) exposure (0,10,30,100and300μM). By contrast, non-photochemical quenching coefficient (NPQ) was increased. PHE was found to induce higher stress than PYR. However, foliar or root application of EBR (50nM and5nM, respectively) alleviated all those depressions with a sharp improvement in the activity of photosynthetic machinery. Superoxide dismutase (SOD) activity was gradually declined with increased concentration of PHE or PYR. However, the activities of guaiacol peroxidase (GPOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) as well as content of MDA were increased in a dose-dependent manner. In addition, both reduced glutathione (GSH) and oxidized glutathione (GSSG) were induced by PHE or PYR. Interestingly, EBR application in either form further increased enzymatic and non enzymatic antioxidants in tomato roots treated with PHE or PYR. Our results suggest that EBR has an anti-stress effect on tomato seedlings contaminated with PHE or PYR and this effect is mainly attributed by increased detoxification activity.
     (3) Exposure to PHE (300μM) for21d significantly decreased Pn which was attributed by both stomatal and nonstomatal factors. Changes in chlorophyll fluorescence parameters showed that PHE induced photoinhibition and subsequent damage to the photosynthetic machinery. Increased H2O2contents and localized H2O2accumulation in leaves indicated PHE-induced oxidative damage. All most all of the studied antioxidant enzymes were induced by PHE. Importantly, foliar application of EBR (0.1μM) significantly increased Pn and plant biomass over PHE alone. Furthermore, EBR+PHE showed remarkably decreased H2O2contents accompanied with increased antioxidant enzymes activities over PHE alone. Enhanced expression of detoxification related genes CYP90b3, GSH1and GST1suggested a strong coordinated detoxification under EBR+PHE treatment. Increased GSH and decreased GSSG contents resulted high GSH/GSSG in EBL+PHE treatment. In agreement with gene expression, a concurrent increment of glutathione S-transferase (GST) activity in EBL+PHE treatment over PHE alone was observed. Increased GST activity might promote conjugation of PHE with GSH and thereby improving metabolism of PHE. Meanwhile, remarkably lower PHE residue in root under EBR+PHE treatment suggested possible PHE degradation in root. Our results indicate that EBR application could be an effective tool to enhance plant tolerance against PHE stress via in planta detoxification.
     (4) This experiment was carried out to investigate the effects of PHE and EBR on secondary metabolism and ultra structure in tomato root. Exposure to PHE increased the activity of secondary metabolism related enzymes activities viz. GST, glucose-6-phosphate dehydrogenase (G6PDH), shikimate dehydrogenase (SKDH), phenylalanine ammonialyase (PAL) and cinnamyl alcohol dehydrogenase (CAD). The expressions of related genes were also induced by PHE. Meanwhile, EBR alone or in combination with PHE increased the enzymes activity and gene expression significantly over control and PHE alone, respectively. Consistent with enzymes activities contents of phenols, flavonoids and activity of DPPH were induced by PHE, while EBR application further increased all those studied parameters. Obvious ultrastructural alterations characterized by irregular shaped nucleus, less mitochondria, thin cell wall and more vacuolation were observed in PHE-treated root tip cells. However, EBR application saved root cell from severe PHE-induced damage which was clearly observed by relatively thick cell wall, more mitochondria, endoplasmic reticulum and small size vacuole in EBR+PHE-treated root tip cells. These observations suggest that EBR regulates secondary metabolism in tomato which might enhance tolerance to PHE.
     (5) Environmental pollution by heavy metal is often occurred with organic contaminants such as PAHs. However, plant stress physiology under co-contamination is poorly understood area. But knowledge on stress responses and stress tolerance is very important to develop and strengthen plant based remediation of mixed pollution as well as for food safety. Therefore, a greenhouse experiment was conducted to understand the stress responses of PHE and/or Cd to tomato plant and role of EBR in stress amelioration. PHE or Cd alone or in combination significantly reduced the biomass, Pn and photosynthetic pigment contents in tomato plant after40d of respective treatments. Surprisingly, combination of PHE and Cd did not reduce the growth synergistically, rather slightly improved the dry weight, Pn and leaf pigments. Single or dual pollution increased H2O2, MDA content, antioxidant enzymes activity and related genes expression which indicate an occurrence of oxidative stress. In addition, PHE and/or Cd induced the secondary metabolism and detoxification related enzymes activity as well as glutathione contents in tomato leaves. The foliar application of EBR on stressed plants, increased biomass, Pn, leaf pigments, but decreased H2O2and MDA contents by the action of enhanced antioxidant enzymes activity. EBR stimulates the secondary metabolism and xenobiotics detoxification related enzymes activity as well as gene expression towards enhanced tolerance to pollutant stress. Additionally, PHE and/or Cd residues were significantly decreased both in leaves and roots after application of EBR that indicate a possible promotion in degradation and detoxification of pollutants. Our results suggest that EBR could alleviate PHE-Cd co-contamination-induced stress by enhancing photosynthesis, antioxidant defense, secondary metabolism and pollutant detoxification capacity.
     (6) Cultivated vegetable species are continuously exposed to atmospheric PAHs; yet, information on their effects on different physiological parameters and related stress responses is an important part of stress biology. Two weeks foliar exposure of PHE resulted more or less dose dependent decrease in growth, photosynthesis and chlorophyll contents in five studied vegetables. With few exceptions, activities of antioxidant enzymes were upregulated following PHE exposure. Dose dependent increase in MDA contents together with H2O2accumulation suggested an occurrence of oxidative stress by PHE. However, to some extent, growth and antioxidant defense responses differ from species to species. Difference in defense capacity might result different tolerance and phytotoxicity among the studied vegetables. Taken together, phytotoxicity of PHE to five vegetables could be sequenced in the following order: pakchoi>cucumber>lettuce>tomato>chinese flowering cabbage.
     (7) PCBs are persistent organic pollutants often found in the atmosphere. Phytoremediation of airborne PCBs is an emerging new concept to minimize potential human exposure. However, effects of atmospheric PCBs on plant growth, photosynthesis and antioxidant defence system are poorly understood area. Meanwhile, BRs have been proposed as potential phytohormone for "Assisted phytoremediation by plant growth regulators" program. Hence, we studied the effects of PCBs and EBR on biomass accumulation, photo synthetic machinery and antioxidant system in tomato plants. PCBs (0.4,2.0and10μg/1) mist spray significantly decreased dry weight, photosynthesis, chlorophyll contents in a dose dependent manner. Both stomatal and non stomatal factors are involved in PCBs-induced photosynthetic inhibition. Meanwhile, Fv/Fm, ΦPSⅡ and qP were increasingly decreased by various levels of PCBs, suggested an induction of photoinhibition. Increased accumulation of H2O2accompanied with high lipid peroxidation suggested that seedlings faced oxidative stress upon PCBs exposure. Accordingly, antioxidant enzyme activity was inhibited due to inactivation of enzymes by over production of reactive oxygen species (ROS). In contrast, EBR (100nM) application increased biomass, photosynthetic capacity, chlorophyll contents and alleviated photoinhibition by enhancing Fv/Fm, ΦPSⅡ and qP. EBR significantly decreased harmful ROS accumulation and lipid peroxidation through upregulating antioxidant enzymes activity. Our results suggest a protective role of EBR against PCBs stress which may strengthen phytoremediation approaches by enhancing plant tolerance.
引文
Adams, S. V., Passarelli, M. N., Newcomb, P. A.,2012. Cadmium exposure and cancer mortality in the Third National Health and Nutrition Examination Survey cohort. Occup. Environ. Med.69,153-156.
    Ahammed, G. J., Yuan, H.-L., Ogweno, J. O., Zhou, Y.-H., Xia, X.-J., Mao, W.-H., Shi, K., Yu, J.-Q.,2012. Brassinosteroid alleviates phenanthrene and pyrene phytotoxicity by increasing detoxification activity and photosynthesis in tomato. Chemosphere 86,546-555.
    Aken, B.V., Correa, P.A., Schnoor, J.L.,2009. Phytoremediation of Polychlorinated Biphenyls:New Trends and Promises. Environ. Sci. Technol.44,2767-2776.
    Albert, P.H.,1995. Petroleum and individual polycyclic aromatic hydrocarbons. In: Hoffman, D.J., Rattner, B.A., Burton, G.A., Jr., Cairos, J., Jr. (Eds.), Handbook of Ecotoxicology. CRC Press, Boca Raton, pp.330-355.
    Ali, R.M., Abbas, H.M.,2003. Response of salt stressed barley seedlings to phenylurea. Plant Soil Environ.49,158-162.
    Ali, M.B., Singh, N., Shohael, A.M., Hahn, E.J., Paek, K.Y.,2006. Phenolics metabolism and lignin synthesis in root suspension cultures of Panax ginseng in response to copper stress.Plant Sci.171,147-154.
    Alkio, M., Tabuchi, T.M., Wang, X.C., Colon-Carmona, A.,2005. Stress responses to polycyclic aromatic hydrocarbons in Arabidopsis include growth inhibition and hypersensitive response-like symptoms. J. Exp. Bot.56,2983-2994.
    Allen, M.D., Kropat, J., Tottey, S., Del Campo, J.A., Merchant, S.S.,2007. Manganese deficiency in Chlamydomonas results in loss of photosystem Ⅱ and MnSOD function, sensitivity toperoxides, and secondary phosphorus and iron deficiency. Plant Physiol.143,263-277
    Alscher R. G., Donahue J. L., Cramer, C. L.1997. Reactive oxygen species and antioxidants:Relationships in green cells. Physiologia Plant.100,224-233.
    Apel, K., Hirt, H.,2004. Reactive oxygen species:Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol.55,373-399.
    Arnon, D.,1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol.24,1-15.
    Asada, K.,1999. The water-water cycle in chloroplasts:Scavenging of active oxygens anddissipation of excess photons. Ann. Rev. Plant Physiol. Plant Mol. Biol.50, 601-639.
    ASTDR, Toxicological Profile for Polycyclic Aromatic Hydrocarbons (PAHs) Agency for Toxic Substances and Disease Registry, Division of Toxicology and Environmental Medicine,1995, http://www.atsdr.cdc.gov/toxprofiles/tp69.html (updated February 27,2007).
    Babu, T. S., Marder, J. B., Tripuranthakam, S., Dixon, D. G., Greenberg, B. M.,2001. Synergistic effects of a photooxidized polycyclic aromatic hydrocarbon and copper on photosynthesis and plant growth:Evidence that in vivo formation of reactive oxygen species is a mechanism of copper toxicity. Environ. Toxicol. Chem.20,1351-1358.
    Baek, K., Kim, H., Oh, H., Yoon, B., Kim, J., Lee, I.,2004. Effects of crude oil, oil components, and bioremediation on plant growth. J. Environ Sci. Health 39, 2465-2472.
    Bajguz, A.,2000. Effect of brassinosteroids on nucleic acid and protein content in cultured cell of Chlorella vulgaris. Plant Physiol. Biochem.38,209-215.
    Bajguz, A.,2007. Metabolism of brassinosteroids in plants. Plant Physiol. Biochem. 45,95-107.
    Bajguz, A., Hayat, S.,2009. Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol. Biochem.47,1-8.
    Bajguz, A.2010. An enhancing effect of exogenous brassinolide on the growth and antioxidant activity in Chlorella vulgaris cultures under heavy metals stress. Environ. Exp. Bot.68,175-179.
    Baque, M.A., Lee, E.J., Paek, K.Y.,2010. Medium salt strength induced changes in growth, physiology and secondary metabolite content in adventitious roots of Morinda citrifolia:the role of antioxidant enzymes and phenylalanine ammonia lyase. Plant Cell Rep 29,685-694.
    Barbafieri, M., Tassi, E.,2011. Brassinosteroids for phytoremediation application. In: Hayat S, Ahmad A (eds) Brassinosteroids:A Class of Plant Hormone. Springer Netherlands, Dordrecht Heidelberg London New York, pp 403-437.
    Bari, R., Jones, J.,2009. Role of plant hormones in plant defence responses. Plant Mol. Biol.69,473-488.
    Bartholomew, D.M., Dyk, D.E.V., Lau, S.M.C., Keefe, D.P.O., Rea, P.A., Viitanen, P.V.,2002. Alternate energy-dependent pathways for the vacuFolar uptake of glucose and glutathione conjugates. Plant Physiol.130,1562-1572.
    Baud-Grasset, F., Baud-Grasset, S., Safferman, S. L.,1993. Evaluation of the bioremediation of a contaminated soil with phytotoxicity tests. Chemosphere, 26,1365-1374.
    Beebe, A.,2011. Phytoremediation of airborne polychlorinated biphenyls. Master's thesis, University of Iowa, Iowa City. http.//ir.uiowa.edu/etd/1123.
    Beggs, C.J., Kuhn, K., Bocker, R., Wellmann, E.,1987. Phytochrome-induced flavonoid biosynthesis in mustard(Sinapis alba L.) cotyledons. Enzymic control and differential regulation of anthocyanin and quercetin formation. Planta 172,121-126.
    Bewley, J.D., Black M.1994. Seeds-physiology of development and germination, 2nd edn. New York, NY, USA:Plenum Press.
    Bilger, W., Bjorkman, O.,1990. Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth. Res.25,173-185.
    Bradford, M.M.,1976. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal. Biochem. 72,248-254.
    Briggs, G. G.; Bromilow, R. H.; Evans, A. A.,1982. Relationships Between Lipophilicity and Root Uptake and Translocation of Non-Ionizedm Chemicals By Barley. Pestic. Sci.13,495-504.
    Buadze, O., Sadunishvili, T., Kvesitadze, G.,1998. The effect of 1,2-benzanthracene and 3,4-benzpyrene on the ultrastructure of maize cells. Int. Biodeterior. Biodegrad.41,119-125.
    Cabane, M., Pireaux, J. C., Leger, E., Weber, E., Dizengremel, P., Pollet, B., Lapierre, C,2004. Condensed lignins are synthesized in poplar leaves exposed to ozone. Plant Physiol.134,586-594.
    Cakmak, I., Marschner, H.,1992. Magnesium-deficiency and high light-intensity enhance activities of superoxide-dismutase, ascorbate peroxidase, and glutathione-reductase in bean-leaves. Plant Physiol.98,1222-1227.
    Camargo, M. C. R., Toledo, M. C. F.,2003. Polycyclic aromatic hydrocarbons in Brazilian vegetables and fruits. Food Control 14,49-53.
    Cao, X.D., Ma, L.Q., Tu, C.,2004. Antioxidative responses to arsenic in the arsenic-hyperaccumulator Chinese brake fern (Pteris vittata L.). Environ. Pollut.128, 317-325.
    Cao, S.Q., Xu, Q.T., Cao, Y.J., Qian, K., An, K., Zhu, Y., Hu, B.Z., Zhao, H.F., Kuai, B.K.,2005. Loss-of-function mutations in DET2 gene lead to an enhanced resistance to oxidative stress in Arabidopsis. Physiol. Plant.123,57-66.
    Chekol, T., Vough, L.R., Chaney, R.L.,2004. Phytoremediation of polychlorinated biphenyl-contaminated soils:the rhizosphere effect. Environ. Int.30,799-804
    Chen, F., Liu, C.J., Tschaplinski, T.J., Zhao, N.,2009. Genomics of Secondary Metabolism in Populus:Interactions with Biotic and Abiotic Environments. Crit. Rev. Plant Sci.28,375-392.
    Cho, U.H., Sohn, J.Y.,2002. Effect of 2,4,5-Trichlorobiphenyl (PCB-29) on Oxidative Stress and Activities of Antioxidant Enzymes in Tomato Seedlings. J. Ecol. field biol.26,371-377.
    Choudhary, S.P., Kanwar, M., Bhardwaj, R. Gupta, B.D., Gupta, R.K.,2011. Epibrassinolide ameliorates Cr (Ⅵ) stress via influencing the levels of indole-3-acetic acid, abscisic acid, polyamines and antioxidant system of radish seedlings. Chemosphere 84,592-600.
    Ci, D., Jiang, D., Wollenweber, B., Dai, T., Jing, Q., Cao, W.,2010. Cadmium stress in wheat seedlings:growth, cadmium accumulation and photosynthesis. Acta Physiol. Plant.32,365-373.
    Coleman, J., Blake-Kalff, M., Davies, E.,1997. Detoxification of xenobiotics by plants:chemical modification and vacuolar compartmentation. Trends Plant Sci.2,144-151.
    Collins, C., Fryer, M., Grosso, A.,2006. Plant uptake of non-ionic organic chemicals. Environ. Sci. Technol.40,45-52.
    Collins, C.D., Martin, I., Doucette, W.,2011. Plant Uptake of Xenobiotics. In: Schroder P, Collins CD (eds) Organic Xenobiotics and Plants, vol 8. Plant Ecophysiology. Springer Netherlands, pp 3-16.
    Cui, J.X., Zhou, Y.H., Ding, J.G., Xia, X.J., Shi, K., Chen, S.C., Asami, T., Chen, Z., Yu, J.Q.,2011. Role of nitric oxide in hydrogen peroxide-dependent induction of abiotic stress tolerance by brassinosteroids in cucumber. Plant Cell Environ. 34,347-358.
    Dalla Valle, M., Dachs, J., Sweetman, A.J., Jones, K. C.,2004. Maximum reservoir capacity of vegetation for persistent organic pollutants:Implications for global cycling. Global Biogeochem. Cycles 18,1-12.
    de Abreu, I.N., Mazzafera, P.,2005. Effect of water and temperature stress on the content of active constituents of Hypericum brasiliense Choisy. Plant Physiol. Bioch.43,241-248.
    Debnam, P.M., Emes, M J.,1999. Subcellular distribution of enzymes of the oxidative pentose phosphate pathway in root and leaf tissues. J. Exp. Bot.50,1653-1661.
    Diaz, J., Bernal, A., Pomar, F., Merino, F.,2001. Induction of shikimate dehydrogenase and peroxidase in pepper(Capsicum annuum L.) seedlings in response to copper stress and its relation to lignification. Plant Sci.161,179-188.
    Ding, K. Q., Luo, Y. M., Liu, S. L., Song, J., Wu, L. H., Xing, W. Q., Li, Z. G.,2004. Dynamics in benzo[a]pyrene concentrations in soil as influenced by ryegrass plants. Acta Pedol. Sin.41,348-353.
    Divi, U. K., Krishna, P.,2009. Brassinosteroid:a biotechnological target for enhancing crop yield and stress tolerance. New Biotechnol.26,131-136.
    Divi, U.K., Krishna, P.,2010. Overexpression of the Brassinosteroid Biosynthetic Gene AtDWF4 in Arabidopsis Seeds Overcomes Abscisic Acid-induced Inhibition of Germination and Increases Cold Tolerance in Transgenic Seedlings. J Plant Growth Regul.29,385-393.
    Dixit, P., Mukherjee, P. K., Sherkhane, P. D., Kale, S. P., Eapen, S.,2011. Enhanced tolerance and remediation of anthracene by transgenic tobacco plants expressing a fungal glutathione transferase gene. J. Hazard. Mater.192,270-276.
    Dixon, R.A., Paiva, N.L.,1995. Stress-induced phenylpropanoid metabolism. Plant Cell 7,1085-1097.
    Dixon, D.P., Skipsey, M., Edwards, R.,2010. Roles for glutathione transferases in plant secondary metabolism. Phytochem.71,338-350.
    dos Santos, W.D., Ferrarese, M.D.L., Ferrarese, O.,2006. High performance liquid chromatography method for the determination of cinnamyl alcohol dehydrogenase activity in soybean roots. Plant Physiol. Biochem.44,511-515.
    Dowling, D.K., Simmonsm L.W.,2009. Reactive oxygen species as universal constraints in life-history evolution. Proc. Royal Soc. B. Biol. Sci.276,1737-1745
    Duxbury, C.L., Dixon, D.G., Greenberg, B.M.,1997. Effects of simulated solar radiation on the bioaccumulation of polycyclic aromatic hydrocarbons by the duckweed Lemna gibba. Environ. Toxicol. Chem.16,1739-1748.
    EC,2001. Ambient air pollution by polycyclic aromatic hydrocarbons (PAH). Position Paper European Communities.
    Edwards, R., Dixon, D. P., Walbot, V.,2000. Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci.5, 193-198.
    Erickson, M., Kaley, R.,2011. Applications of polychlorinated biphenyls. Environ. Sci.Pollut. Res.18,135-151.
    Falco, G., Bocio, A., Llobet, J.M., Domingo, J.L.,2005. Health risks of dietary intake of environmental pollutants by elite sportsmen and sportswomen. Food Chem. Toxicol.43,1713-1721.
    Fang, G. C., Wu, Y. S., Fu, P. P. C., Yang, I. L., Chen, M. H.,2004. Polycyclic aromatic hydrocarbons in the ambient air of suburban and industrial regions of central Taiwan. Chemosphere 54,443-452.
    Farkas, M. H., Berry, J. O., Aga, D. S.,2007. Chlortetracycline detoxification in maize via induction of glutathione S-transferases after antibiotic exposure. Environ. Sci. Technol.41,1450-1456.
    Finkelstein, R.R., Gampala, S.S.L., Rock, C.D.,2002. Abscisic acid signaling in seeds and seedlings. Plant Cell 14, S15-S45.
    Fismes, J., Perrin-Ganier, C., Empereur-Bissonnet, P., Morel, J.L.,2002. Soil-to-root transfer and translocation of polycyclic aromatic hydrocarbons by vegetables grown on industrial contaminated soils. J. Environ. Qual.31,1649-1656.
    Fitzgerald, E.F., Shrestha, S., Palmer, P.M., Wilson, L.R., Belanger, E.E., Gomez, M.I., Cayo, M.R., Hwang, S.A.,2011. Polychlorinated biphenyls (PCBs) in indoor air and in serum among older residents of upper Hudson River communities. Chemosphere 85,225-231.
    Flocco, C. G., Lindblom, S. D., Smits, E. A. H. P.,2004. Overexpression of enzymes involved in glutathione synthesis enhances tolerance to organic pollutants in Brassica juncea. Int. J. Phytoremediat.6,289-304.
    Foyer, C. H., Halliwell, B.,1976. The presence of glutathione and glutathione reductase in chloroplasts:A proposed role in ascorbic acid metabolism. Planta 133,21-25.
    Foyer, C. H., Noctor, G.,2005. Redox homeostasis and antioxidant signaling:A metabolic interface between stress perception and physiological responses. Plant Cell 17,1866-1875.
    Foyer, C.H. and Noctor, G.,2009. Redox regulation in photo synthetic organisms: signaling, acclimation, and practical implications. Antioxid. Redox Sign.11, 861-905
    Gao, Y., Zhu, L.Z.,2004. Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils. Chemosphere 55,1169-1178.
    Gao, Y.Z., Zhu, L.Z.,2005. Phytoremediation for phenanthrene and pyrene contaminated soils. J. Environ. Sci.-China 17,14-18.
    Gao, Y. Z., Shen, Q., Ling, W. T., Ren, L. L.,2008. Uptake of polycyclic aromatic hydrocarbons by Trifolium pretense L. from water in the presence of a nonionic surfactant. Chemosphere 72,636-643.
    Gaspar, T., Franck, T., Bisbis, B., Kevers, C., Jouve, L., Hausman, J.F., Dommes, J., 2002. Concepts in plant stress physiology. Application to plant tissue cultures. Plant growth Regul.37,263-285.
    Genty, B., Briantais, J. M., Baker, N. R.,1989. The relationship between the quantum yield of photosynthetic electron-transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990,87-92.
    Giannopolitis, C.N., Ries, S.K.,1977. Superoxide Dismutases:I. Occurrence in Higher Plants. Plant Physiol.59,309-314.
    Goda, H.; Shimada, Y.; Asami, T.; Fujioka, S.; Yoshida, S.,2002. Micro-array analysis of brassinosteroid-regulated genes in Arabidopsis. Plant Physiol.130, 1319-1334.
    Goda, H., Sasaki, E., Akiyama, K., Maruyama-Nakashita, A., Nakabayashi, K., Li, W., Ogawa, M., Yamauchi, Y., Preston, J., Aoki, K., Kiba, T., Takatsuto, S., Fujioka, S., Asami, T., Nakano, T., Kato, H., Mizuno, T., Sakakibara, H., Yamaguchi, S., Nambara, E., Kamiya, Y., Takahashi, H., Hirai, M. Y., Sakurai, T., Shinozaki, K., Saito, K., Yoshida, S., Shimada, Y.,2008. The AtGenExpress hormone and chemical treatment data set:experimental design, data evaluation, model data analysis and data access. Plant J.55,526-542.
    Govindjee.1995. Sixty-three years since Kautsky:Chlorophyll a fluorescence. Aust. J. Plant Physiol.22,131-160.
    Greenberg, B.M., Huang, X.D., Mallakin, A., Babu, S.B., Duxbury, C.A., Marder, J.B.,1997. Inhibition of photosynthesis by polycyclic aromatic hydrocarbon pollutants. Plant Physiol.114,204-204.
    Grove, M. D., Spencer, G. F., Rohwedder, W. K., Mandava, N., Worley, J. F., Warthen, J. D., Steffens, G. L., Flippen-Anderson, J. L., Cook, J. C.,1979. Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 281,216-217.
    Guo, H., Lee, S. C., Ho, K. F., Wang, X. M., Zou, S. C.,2003. Particle-associated polycyclic aromatic hydrocarbons in urban air of Hong Kong. Atmos. Environ. 37,5307-5317.
    Habig, W. H., Jakoby, W. B.,1981. Assays for differentiation of glutathione S-Transferases. In:Jakoby, W. B, (Ed.), Methods in Enzymology. Academic Press, New York, pp.398-405.
    Halliday, K. J.,2004. Plant Hormones:The Interplay of Brassinosteroids and Auxin. Curr. Biol.14,1008-1010.
    Haritash, A.K., Kaushik, C.P.,2009. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs):A review. J. Hazard. Mater.169,1-15.
    Hansen, M., Chae, H. S., Kieber, J. J.,2009. Regulation of ACS protein stability by cytokinin and brassinosteroid. Plant J.57,606-614.
    Hasan, S.A., Hayat, S., Ahmad, A.,2011. Brassinosteroids protect photosynthetic machinery against the cadmium induced oxidative stress in two tomato cultivars. Chemosphere 84,1446-1451.
    Heiser, I., Elstner, E.F.,1998. The biochemistry of plant stress and disease. Ann. NY. Acad. Sci.851,224-232
    Herbinger, K., Tausz, M., Wonisch, A., Soja, G., Sorger, A., Grill, D.,2002. Complex interactive effects of drought and ozone stress on the antioxidant defence systems of two wheat cultivars. Plant Physiol. Biochem.40,691-696.
    Hodges, D.M., DeLong, J.M., Forney, C.F., Prange, R.K.,1999. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207,604-611.
    Holoubek, I., Korinek, P., Seda, Z., Schneiderova, E., Holoubkova, I., Pacl, A., Triska J., Cudlin, P., Caslavsky, J.,2000. The use of mosses and pine needles to detect persistent organic pollutants at local and regional scales. Environ. Pollut. 109,283-292.
    Holstein, S.A., Hohl, R.J.,2004. Isoprenoids:remarkable diversity of form and function. Lipids 34,293-309.
    Hossain, M.A. Hoque, M.Z,.2011. Polycyclic aromatic hydrocarbons in Bangladeshi vegetables and fruits, Food Chem Toxicol.49,244-247.
    Huang, X. D., Zeiler, L. F., Dixon, D. G., Greenberg, B. M.,1996. Photoinduced toxicity of PAHs to the foliar regions of Brassica napus (Canola) and Cucumbis sativus (Cucumber) in simulated solar radiation. Ecotoxicol. Environ. Saf.35,190-197.
    Huang, X.-D., McConkey, B.J., Babu, T.S., Greenberg, B.M.,1997. Mechanisms of photoinduced toxicity of photomodified anthracene to plants:Inhibition of photosynthesis in the aquatic higher plant Lemna gibba (duckweed). Environ. Toxicol. Chem.16,1707-1715.
    Iriti, M., Faoro, F.,2004. Plant defense and human nutrition:the phenylpropanoids on the menu. Curr. Top. Nutrac. Res.2,47-95
    Iriti, M., Faoro, F.,2009. Ozone-Induced Changes in Plant Secondary Metabolism.-In:Singh, S.N. (ed.):Climate Change and Crops. Pp.245-268. Springer, Berlin Heidelberg.
    Ishida, H., Makino, A., Mae, T.,1999. Fragmentation of the Large Subunit of Ribulose-1,5-bisphosphate Carboxylase by Reactive Oxygen Species Occurs near Gly-329. J. Biol. Chem.274,5222-5226.
    Jiang, Y.P., Cheng, F., Zhou, Y.H., Xia, X.J., Shi, K., Yu, J.Q.,2012. Interactive effects of CO2 enrichment and brassinosteroid on CO2 assimilation and photo synthetic electron transport in Cucumis sativus. Environ. Exp. Bot. 75:98-106
    Kagale, S., Divi, U., Krochko, J., Keller, W., Krishna, P.,2007. Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta.225,353-364.
    Kiss, G., Varga-Puchony, Z., Tolnai, B., Varga, B., Gelencser, A., Krivacsy, Z., Hlavay, J.,2001. The seasonal changes in the concentration of polycyclic aromatic hydrocarbons in precipitation and aerosol near Lake Balaton, Hungary. Environ. Pollut.114,55-61.
    Klein, M., Martinoia, B.B.E.,2006. The multidrug resistance-associated protein (MRP/ABCC) subfamily of ATP-binding cassette transporters in plants. FEBS Lett.580,1112-1122.
    Kletzien, R.F., Harris, P.K.W., Foellmi, L.A.,1994. Glucose-6-phosphate-dehydrogenase-a housekeeping enzyme subject to tissue-specific regulation by hormones, nutrients, and oxidant stress. Faseb J.8,174-181.
    Kolattukudy, P. E.,1980. Cutin, suberin, and waves. In the Biochemistry of Plants:A Comprehensive treatise. Vol.4, lipids:Structure and Function (P. K. Stumpf, Ed.), pp.571-645. Academic Press, New York.
    Kolb, M., Harms, H.,2000. Metabolism of fluoranthene in different plant cell cultures and intact plants. Environ. Toxicol. Chem.19,1304-1310.
    Komp, P., McLachlan, M.S.,2000. The kinetics and reversibility of the partitioning of polychlorinated biphenyls between air and ryegrass. Sci. Total Environ.250, 63-71.
    Korte, F., Kvesitadze, G., Ugrekhelidze, D., Gordeziani, M., Khatisashvili, G., Buadze, O., Zaalishvili, G., Coulston, F.,2000. Organic toxicants and plants. Ecotoxicol. Environ. Saf.47,1-26.
    Kovacik, J., Klejdus, B., Hedbavny, J., Backor, M.,2009. Salicylic acid alleviates NaCl-induced changes in the metabolism of Matricaria chamomilla plants. Ecotoxicology.18,544-554.
    Krause G.H., Weis E.,1991. Chlorophyll fluorescence and photosynthesis:The Basics. Ann. Rev. Plant Physiol.42,313-349.
    Krishna, P.,2003. Brassinosteroid-Mediated Stress Responses. J. Plant Growth Regul. 22,289-297.
    Kruger, N.J., von Schaewen, A.,2003. The oxidative pentose phosphate pathway: structure and organisation. Curr. Opin. Plant Biol.6,236-246.
    Kummerova, M., Gloser, J., Slovak, L., Holoubek, I.,1996. Project TOCOEN. The fate of selected organic compounds in the environment. The growth response of maize to increasing concentration of fluoranthene. Toxicol Environ Chem 54:99-106.
    Kummerova, M., Kmentova, E.,2004. Photoinduced toxicity of fluoranthene on germination and early development of plant seedling. Chemosphere 56,387-393.
    Kummerova, M., Krulova, J., Zezulka, S., Triska, J.,2006. Evaluation of fluoranthene phytotoxicity in pea plants by Hill reaction and chlorophyll fluorescence. Chemosphere 65,489-496.
    Kummerova, M., Vanova, L., Krulova, J., Zezulka, S.,2008. The use of physiological characteristics for comparison of organic compounds phytotoxicity. Chemosphere 71,2050-2059
    Kurepa, J., Herouart, D., Van Montagu, M., Inze, D.,1997. Differential expression of CuZn- and Fe-superoxide dismutase genes of tobacco during development, oxidative stress, and hormonal treatments. Plant Cell Physiol 38,463-470.
    Larsen, P. B., Deslauriers, S. D.,2010. FERONIA Is a Key Modulator of Brassinosteroid and Ethylene Responsiveness in Arabidopsis Hypocotyls. Mol. Plant.3,626-640.
    Law, R.J., Dawes, V.J., Woodhead, R.J., Matthiessen, P.,1997. Polycyclic aromatic hydrocarbons (PAH) in seawater around England and Wales. Mar. Pollut. Bull. 34,306-322.
    Li, Z., Kong, S., Chen, L., Bai, Z., Ji, Y., Liu, J., Lu, B., Han, B., Wang, Q.2011a. Concentrations, spatial distributions and congener profiles of polychlorinated biphenyls in soils from a coastal city-Tianjin, China. Chemosphere 85,494-501.
    Li, J.H., Yu, X.Z., Wu, S.C., Wang, X.R., Wang, S.H., Tam, N.F.Y., Wong, M.H., 2011b. Responses of bioaugmented ryegrass to PAH soil contamination. Int. J. Phytoremediat.13,441-455.
    Liao, B.H., Liu, H.Y., Zeng, Q.E., Yu, P.Z., Probst, A., Probst, J.L.,2005. Complex toxic effects of Cd2+, Zn2+, and acid rain on growth of kidney bean (Phaseolus vulgaris L). Environ. Int.31,891-895.
    Lichtenthaler, H.K., Wellburn, A.R.,1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 11,591-592.
    Lichtenthaler, H.K.1998. The stress concept in plants:an introduction. Ann. NY. Acad. Sci.851,187-198
    Lin, Q., Shen, K.-L., Zhao, H.-M., Li, W.-H.,2008. Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants. J. Hazard. Mater.150,515-521.
    Liu, H., Weisman, D., Ye, Y.B., Cui, B., Huang, Y.H., Colon-Carmona, A., Wang, Z.H.,2009. An oxidative stress response to polycyclic aromatic hydrocarbon exposure is rapid and complex in Arabidopsis thaliana. Plant Sci.176,375-382.
    Liu, C., Guo, J., Cui, Y., Lii, T., Zhang, X., Shi, G.,2011. Effects of cadmium and salicylic acid on growth, spectral reflectance and photosynthesis of castor bean seedlings. Plant Soil.344,131-141.
    Livak, K. J., Schmittgen, T. D.,2001. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCT Method. Methods 25,402-408.
    Lopez-Millan, A.-F., Sagardoy, R., Solanas, M., Abadia, A., Abadia, J.,2009. Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics. Environ. Exp. Bot.65,376-385.
    Luch, A.,2005. The carcinogenic effects of polycyclic aromatic hydrocarbons. Imperial College Press, London,2005, ISBN 1-86094-417-5.
    Maliszewska-Kordybach, B., Smreczak, B.,2000. Ecotoxicological activity of soils polluted with polycyclic aromatic hydrocarbons (PAHs)- effect on plants. Environ. Technol.21,1099-1110.
    Mallick, N., Mohn, F.H.,2003. Use of chlorophyll fluorescence in metal-stress research:a case study with the green microalga Scenedesmus. Ecotoxicol. Environ.Safe.55,64-69.
    Marschner, H.,1995. Mineral nutrition of higher plants.2nd edition. London: Academic Press, pp 6-78.
    Masood, A., Iqbal, N., Khan, N. A.,2012. Role of ethylene in alleviation of cadmium-induced photosynthetic capacity inhibition by sulphur in mustard. Plant, Cell & Environment.35,524-533.
    Maxwell K., Johnson, G. N.,2000. Chlorophyll fluorescence- a practical guide. J. Exp. Bot.51,659-668
    Mei, X., Lin, D. H., Xu, Y., Wu, Y. Y., Tu, Y. Y.,2009. Effects of phenanthrene on chemical composition and enzyme activity in fresh tea leaves. Food Chem. 115,569-573.
    Meng, H., Hua, S., Shamsi, I., Jilani, G., Li, Y., Jiang, L.,2009. Cadmium-induced stress on the seed germination and seedling growth of Brassica napus L., and its alleviation through exogenous plant growth regulators. Plant Growth Regul. 58,47-59.
    Miguel, A., Faure, M., Ravanel, P., Raveton, M.,2012. Biological responses of maize (Zea mays) plants exposed to chlorobenzenes. Case study of monochloro-,1,4-dichloro- and 1,2,4-trichloro-benzenes. Ecotoxicology 21,31-324.
    Mitchell, H.J., Hall, J.L., Barber, M.S.,1994. Elicitor-Induced Cinnamyl Alcohol-Dehydrogenase Activity in Lignifying Wheat(Triticum aestivum L) Leaves. Plant Physiol.104,551-556.
    Mittler, R.,2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7,405-410.
    Mittler, R., Vanderauwera, S., Gollery, M., Van Breusegem, F.,2004. Reactive oxygen gene network of plants. Trends Plant Sci.9,490-498.
    Mo, C.H., Cai, Q.Y., Tang, S.R., Zeng, Q.Y., Wu, Q.T.,2009. Polycyclic aromatic hydrocarbons and phthalic acid esters in vegetables from nine farms of the Pearl River Delta, South China. Arch. Environ. Contain. Toxicol.56,181-189.
    Mussig, C.; Fischer, S.; Altmann, T.,2002. Brassinosteroid-regulated gene expression. Plant Physiol.129,1241-1251.
    Muthukumarasamy, M., Gupta, S. D., Panneerselvam, R.,2000. Enhancement of peroxidase, polyphenol oxidase and superoxide dismutase activities by triadimefon in NaCl stressed Raphanus sativus L. Biol. Plant.43,317-320.
    Nadal, M., Schuhmacher, M., Domingo, J. L.,2004. Levels of PAHs in soil and vegetation samples from Tarragona County, Spain. Environ. Pollut.132,1-11.
    Nakano, Y., Asada, K.,1981. Hydrogen-peroxide is scavenged by ascorbate-specific peroxidase in spinach-chloroplasts. Plant Cell Physiol.22,867-880.
    Nakashita, H., Yasuda, M., Nitta, T., Asami, T., Fujioka, S., Arai, Y., Sekimata, K. Takatsuto, S., Yamaguchi, I., Yoshida, S.,2003. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J.33,887-898.
    Nelson, D.R.,2011. Progress in tracing the evolutionary paths of cytochrome P450. Biochim. Biophys. Acta 1814,14-18.
    Nemhauser, J. L., Hong, F., Chory, J.,2006. Different Plant Hormones Regulate Similar Processes through Largely Nonoverlapping Transcriptional Responses. Cell 126,467-475.
    Nguyen, T.B.T., Ketsa, S., van Doorn, W.G.,2003. Relationship between browning and the activities of polyphenol oxidase and phenylalanine ammonia lyase in banana peel during low temperature storage. Postharvest Biol. Tec.30,187-193.
    Noctor, G., Foyer, C.H.,1998. Ascorbate and glutathione:Keeping active oxygen under control. Annu. Rev. Plant Physiol.49,249-279.
    Oguntimehin, I., Eissa, F., Sakugawa, H.,2010. Negative effects of fluoranthene on the ecophysiology of tomato plants(Lycopersicon esculentum Mill): Fluoranthene mists negatively affected tomato plants. Chemosphere 78,877-884.
    Ogweno, J.O., Song, X.S., Shi, K., Hu, W.H., Mao, W.H., Zhou, Y.H., Yu, J.Q., Nogues, S.,2008. Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. J. Plant Growth Regul.27, 49-57.
    Paiva, N.,2000. An introduction to the biosynthesis of chemicals used in plant-microbe communication. J Plant Growth Regul.19,131-143.
    Pell, E.J., Schlagnhaufer, C.D., Arteca, R.N.,1997. Ozone-induced oxidative stress mechanisms of action and reaction. Physiol. Plant.100,264-273.
    Phillips, D. H.,1999. Polycyclic aromatic hydrocarbons in the diet. Mutat. Res. Gen. Tox. En.443,139-147.
    Piccardo, M.T., Pala, M., Bonaccurso, B., Stella, A., Redaelli, A., Paola, G., Valerio, F.,2005. Pinus nigra and Pinus pinaster needles as passive samplers of polycyclic aromatic hydrocarbons. Environ. Pollut.133,293-301.
    Pilon-Smits, E.,2005. Phytoremediation. Annu. Rev. Plant Biol.56,15-39.
    Rady, M.M.,2011. Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean(Phaseolus vulgaris L.) plants under salinity and cadmium stress. Sci. Horticult.129,232-237.
    Rao, K. V. M., Raghavendra, A. S., Reddy, K. J.,2006. Physiology and molecular biology of stress tolerance in plants. Springer.
    Reade, J.P.H., Milner, L.J., Cobb, A.H.,2004. A role for glutathione S-transferases in resistance to herbicides in grasses. Weed Sci.52,468-474.
    Reddy, P., M., Vora, B., A.,1986. Changes in pigment composition, Hill reaction activity and saccharides metabolism in Bajra (Pennisetum typhoides S & H) leaves under NaCl salinity. Photosynthetica.20,50-55.
    Ritter, L., Solomon, K.R., Forget, J. Stemeroff, M., O'Leary, C.2007. Persistent organic pollutants. United Nations Environment Programme. Retrieved 2007-09-16.
    Ruiz, J. M., Garcia, P. C., Rivero, R. M., Romero, L.,1999. Response of phenolic metabolism to the application of carbendazim plus boron in tobacco. Physiol. Plant.106,151-157.
    Sams(?)e-Petersen, L., Larsen, E.H., Larsen, P.B., Bruun, P.,2002. Uptake of trace elements and PAHs by fruit and vegetables from contaminated soils. Environ Sci Technol.36,3057-3063.
    Sandrin, T. R., Maier, R. M.,2003. Impact of Metals on the Biodegradation of Organic Pollutants. Environ. Health Perspect.111,1093-1101.
    Sasse, J.M.,2003. Physiological actions of brassinosteroids:An update. J. Plant Growth Regul.22,276-288.
    Schutzendubel, A., Polle, A.,2002. Plant responses to abiotic stresses:heavy metal-induced oxidative stress and protection by mycorrhization. J. Exp. Bot.53, 1351-1365.
    Schwab, A. P.; Al-Assi, A. A.; Banks, M. K.,1998. Adsorption of naphthalene onto plant roots. J. Environ. Qual.,27,220-224.
    Schwitzguebel, J.P., Page, V., Martins, Dias S., Davies, L.C., Vasilyeva, G., Strijakova, E.,2011. Using Plants to Remove Foreign Compounds from Contaminated Water and Soil. In:Schroder P, Collins CD (eds), Organic Xenobiotics and Plants. vol 8. Plant Ecophysiology. Springer Netherlands, pp 149-189.
    Sgherri, C. L. M., Navariizzo, F.,1995. Sunflower seedlings subjected to increasing water-deficit stress-oxidative stress and defense-mechanisms. Physiol. Plant. 93,25-30.
    Sharma, Y. K., Davis, K. R.,1994. Ozone-Induced Expression of Stress-Related Genes in Arabidopsis thaliana. Plant Physiol.105,1089-1096.
    Sharma, P., Bhardwaj, R., Arora, N., Arora, H., Kumar, A.,2008. Effects of 28-homobrassinolide on nickel uptake, protein content and antioxidative defence system in Brassica juncea. Biol. Plant.52,767-770.
    Sharma, I., Pati, P.K., Bhardwaj, R.,2011. Effect of 28-homobrassinolide on antioxidant defence system in Raphanus salivus L. under chromium toxicity. Ecotoxicology 20,862-874.
    Singer, A. C., Crowley, D. E., Thompson, I. P.,2003. Secondary plant metabolites in phytoremediation and biotransformation. Trends Biotechnol.21,123-130.
    Singh, K., Kumar, S., Rani, A., Gulati, A., Ahuja, P.S.,2009. Phenylalanine ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H) and catechins (flavan-3-ols) accumulation in tea. Funct. Integr. Genomics 9,125-34.
    Singleton, V.L., Rossi, J.A.:Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic.16:144-158,1965.
    Skorzynska-Polit, E., Drazkiewicz, M., Krupa, Z.,2010. Lipid peroxidation and antioxidative response in Arabidopsis thaliana exposed to cadmium and copper. Act. Physiol. Plant.32,169-175.
    Smirnoff, N.,1995. Antioxidant systems and plant response to the environment. In: Smirnoff, N., ed. Environment and Plant Metabolism:Flexibility and Acclimation. Oxford (UK):Bios Scientific Publishers. p.217-243.
    Srogi, K.,2007. Monitoring of environmental exposure to polycyclic aromatic hydrocarbons:a review. Environ. Chem. Lett.5,169-195.
    Starck, Z.,1999. Response of plants to multiply stresses in aspect of source-sink relations. Zesz. Probl. Postepow Nauk Roln.469a,145-158.
    Steber, C.M., McCourt, P.,2001. A role for brassinosteroids in germination in Arabidopsis. Plant Physiol.125,763-769.
    Stewart, R. R. C., Bewley, J. D.,1980. Lipid-Peroxidation Associated with Accelerated Aging of Soybean Axes. Plant Physiol.65,245-248.
    Sun, L., Yan, X., Liao, X., Wen, Y., Chong, Z., Liang, T.,2011. Interactions of arsenic and phenanthrene on their uptake and antioxidative response in Pteris vittata L. Environ. Pollut.159,3398-3405.
    Sundberg, K., Seidel, A., Mannervik, B., Jernstrom, B.,1998. Detoxication of carcinogenic fjord-region diol epoxides of polycyclic aromatic hydrocarbons by glutathione transferase P1-1 variants and glutathione. FEBS Letters.438, 206-210.
    Sverdrup, L.E., Krogh, P.H., Nielsen, T., Kj(?)r, C., Stenersen, J.,2003. Toxicity of eight polycyclic aromatic compounds to red clover(Trifolium pratense), ryegrass (Lolium perenne), and mustard (Sinapsis alba). Chemosphere 53, 993-1003.
    Swamy, K.N., Rao, S.S.R.,2011. Effect of Brassinosteroids on the Performance of Coleus (Coleus forskohlii). J. Herbs, Spices Med. Plants 17,12-20.
    Tadolini, B., Juliano, C., Piu, L., Franconi, F., Cabrini, L.,2000. Resveratrol inhibition of lipid peroxidation. Free Radical Res.33,105-114.
    Takatsuto, S.,1994. Brassinosteroids:Distribution in plants, bioassays and microanalysts by gas chromatography—mass spectrometry. J. Chromatogr. A. 658,3-15.
    Tanaka, K., Nakamura, Y., Asami, T., Yoshida, S., Matsuo, T., Okamoto, S.,2003. Physiological roles of brassinosteroids in early growth of Arabidopsis: Brassinosteroids have a synergistic relationship with gibberellin as well as auxin in light-grown hypocotyl elongation. J. Plant Growth Regul.22,259-271.
    Tao, S., Jiao, X.C., Chen, S. H., Liu, W.X., Coveney, JR R.M., Zhu, L.Z., Luo, Y.M., 2006. Accumulation and distribution of polycyclic aromatic hydrocarbons in rice(Oiyza sativa). Environ. Pollut.140,406-415.
    Tato, L., Tremolada, P., Ballabio, C., Guazzoni, N., Parolini, M., Caccianiga, M., Binelli, A.,2011. Seasonal and spatial variability of polychlorinated biphenyls (PCBs) in vegetation and cow milk from a high altitude pasture in the Italian Alps. Environ Pollut 159,2656-2664.
    Thordal-Christensen, H., Zhang, Z., Wei, Y., Collinge, D. B.,1997. Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J.11,1187-1194.
    Trapp, S.,2004. Plant uptake and transport models for neutral and ionic chemicals. Environ. Sci. Pollut. Res.11,33-39.
    Ugrekhelidze, D., Korte, F., and Kvesitadze, G. (1997). Uptake and transformation of benzene and toluene by plant leaves. Ecotoxicol. Environ. Saf.37,24-28.
    USEPA,1990. US Environmental Protection Agency. USEPA Method 550. In: Hodgeson, J.W.(Ed.), Determination of Polycyclic Aromatic Hydrocarbons in Drinking Water by Liquid-Liquid Extraction and HPLC with Coupled Ultraviolet and Fluorescence Detection, Environmental Monitoring Systems Laboratory, Cincinnati, US.
    Vankooten, O., Snel, J. F. H.,1990. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth. Res.25,147-150.
    Vanova, L., Kummerova, M., Klems, M., Zezulka, S.,2009. Fluoranthene influences endogenous abscisic acid level and primary photo synthetic processes in pea (Pisum sativum L.) plants in vitro. Plant Growth Regul.57,39-47.
    Vlasankova, E., Kohout, L., Klems, M., Eder, J., Reinohl, V., Hradilik, J.,2009. Evaluation of biological activity of new synthetic brassinolide analogs. Acta Physiol. Plant.31,987-993.
    Wang, J.W., Kong, F.X., Tan, R.X.,2002. Improved artemisinin accumulation in hairy root cultures of Artemisia annua by (22S,23S)-homobrassinolide. Biotechnol. Lett.24,1573-1577.
    Wang, G. D., Li, Q. J., Luo, B., Chen, X. Y.,2004. Ex planta phytoremediation of trichlorophenol and phenolic allelochemicals via an engineered secretory laccase. Nat. Biotechnol.22,893-897.
    Wang, D., Chen, J., Xu, Z., Qiao, X., Huang, L.,2005. Disappearance of polycyclic aromatic hydrocarbons sorbed on sufraces of pine(Pinua thubergii) needles under irradiation of sunlight:Volatilization and photolysis. Atmos. Environ. 39,4583-4591.
    Wang, Z., Chen, J.W., Qiao, X.L., Yang, P., Tian, F.L., Huang, L.P.,2007. Distribution and sources of polycyclic aromatic hydrocarbons from urban to rural soils:A case study in Dalian, China. Chemosphere 68,965-971.
    Wang, X., Ma, Y., Huang, C., Wan, Q., Li, N., Bi, Y.,2008. Glucose-6-phosphate dehydrogenase plays a central role in modulating reduced glutathione levels in reed callus under salt stress. Planta 227,611-623.
    Wang, J.T., Jiang, Y.P., Chen, S.C., Xia, X.J., Shi, K., Zhou, Y.H., Yu, Y.L., Yu, J.Q., 2010a. The different responses of glutathione-dependent detoxification pathway to fungicide chlorothalonil and carbendazim in tomato leaves. Chemosphere 79,958-965.
    Wang, M., Jiang, W., Yu, H.,2010b. Effects of Exogenous Epibrassinolide on Photo synthetic Characteristics in Tomato (Lycopersicon esculentum Mill) Seedlings under Weak Light Stress. J. Agric. Food Chem.58,3642-3645.
    Wang, C., Lu, J., Zhang, S.H., Wang, P.F., Hou, J., Qian, J.,2011. Effects of Pb stress on nutrient uptake and secondary metabolism in submerged macrophyte Vallisneria natans. Ecotox. Environ. Safe.74,1297-1303.
    Wania, F., Daly, G.L.,2002. Estimating the contribution of degradation in air and deposition to the deep sea to the global loss of PCBs. Atmos. Environ.36, 5581-5593.
    Weisman, D., Alkio, M., Colon-Carmona, A.,2010. Transcriptional responses to polycyclic aromatic hydrocarbon-induced stress in Arabidopsis thaliana reveal the involvement of hormone and defense signaling pathways. BMC Plant Biol. 10.
    Wetzel, A., Alexander, T., Brandt, S., Haas, R., Werner, D.,1994. Reduction by fluoranthene of copper and lead accumulation in Triticum aestivum L. Bulletin Environ. Contam. Toxicol.53,856-862.
    Wieczorek, J. K., Wieczorek, Z. J.,2007. Phytotoxicity and accumulation of anthracene applied to the foliage and sandy substrate in lettuce and radish plants. Ecotoxicol. Environ. Saf.66,369-377.
    Wild, S.R., Jones, K.C.,1995. Polynuclear aromatic hydrocarbons in the United Kingdom environment:a preliminary source in inventory and budget. Environ. Pollut.88,91-108.
    Wild, E., Dent, J., Thomas, G.O., Jones, K.C.,2005. Direct observation of organic contaminant uptake, storage, and metabolism within plant roots. Environ. Sci. Technol.39,3695-3702.
    Wild, E., Dent, J., Thomas, G. O., Jones, K. C.,2006. Visualizing the Air-To-Leaf Transfer and Within-Leaf Movement and Distribution of Phenanthrene: Further Studies Utilizing Two-Photon Excitation Microscopy. Environ. Sci. Technol.40,907-916.
    Willekens, H., Chamnongpol, S., Davey, M., Schraudner, M., Langebartels, C., Van Montagu, M., Inze, D., Van Camp, W.,1997. Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO J.16,4806-4816.
    Wu, J., Teng, M., Gao, L., Zheng, M.,2011. Background air levels of polychlorinated biphenyls in China. Sci. Total Environ.409,1818-1823.
    Xia, X. H., Huang, Y. Y., Wang, L., Huang, L. F., Yu, Y. L., Zhou, Y. H., Yu, J. Q., 2006. Pesticides-induced depression of photosynthesis was alleviated by 24-epibrassinolide pretreatment in Cucumis sativus L. Pestic. Biochem. Physiol. 86,42-48.
    Xia, X.-J., Wang, Y.-J., Zhou, Y.-H., Tao, Y., Mao, W.-H., Shi, K., Asami, T., Chen, Z., Yu, J.-Q.,2009a. Reactive Oxygen Species Are Involved in Brassinosteroid- Induced Stress Tolerance in Cucumber. Plant Physiol.150, 801-814.
    Xia, X. J., Zhang, Y., Wu, J. X., Wang, J. T., Zhou, Y. H., Shi, K., Yu, Y. L., Yu, J. Q.,2009b. Brassinosteroids Promote Metabolism of Pesticides in Cucumber. J. Agric. Food Chem.57,8406-8413.
    Xie, L., Yang, C., Wang, X.,2011. Brassinosteroids can regulate cellulose biosynthesis by controlling the expression of CESA genes in Arabidopsis. J. Exp. Bot.62,4495-4506.
    Yang, Y.H., Zhang, H., Cao, R.Q.,1999. Effect of Brassinolide on Growth and Shikonin Formation in Cultured Onosma paniculatum Cells. J. Plant Growth Regul.18,89-92.
    Yang, C.J., Zhang, C., Lu, Y.-N., Jin, J.Q., Wang, X.L.,2011. The Mechanisms of Brassinosteroids' Action:From Signal Transduction to Plant Development. Mol. Plant 4,588-600.
    Yin, Y., Wang, X., Sun, Y., Guo, H, Yin, D.,2008. Bioaccumulation and oxidative stress in submerged macrophyte Ceratophyllum demersum L. upon exposure to pyrene. Environ. Toxicol.23,328-336.
    Yin, Y., Wang, X.R., Yang, L.Y., Sun, Y.Y., Guo, H.Y.,2010. Bioaccumulation and ROS generation in Coontail Ceratophyllum demersum L. exposed to phenanthrene. Ecotoxicology 19,1102-1110.
    Yu, J. Q., Huang, L. F., Hu, W. H., Zhou, Y. H., Mao, W. H., Ye, S. F., Nogues, S., 2004. A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. J. Exp. Bot.55,1135-1143.
    Yuan, G.F., Jia, C.G., Li, Z., Sun, B., Zhang, L.P., Liu, N., Wang, Q.M.,2010. Effect of brassinosteroids on drought resistance and abscisic acid concentration in tomato under water stress. Sci. Horticult.126,103-108.
    Zhan, X.H., Ma, H.L., Zhou, L.X., Liang, J.R., Jiang, T.H., Xu, G.H.,2010. Accumulation of phenanthrene by roots of intact wheat (Triticum acstivnm L.) seedlings:passive or active uptake? BMC plant biol.10,52.
    Zhang, S.S., Cai, Z.Y., Wang, X.L.,2009a. The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling. P. Natl. Acad. Sci. 106,4543-4548.
    Zhang, S., Wei, Y, Lu, Y., Wang, X.,2009b. Mechanisms of brassinosteroids interacting with multiple hormones. Plant Signal Behav.4,1117-1120.
    Zhang, B., Chu, G., Wei, C., Ye, J., Li, Z., Liang, Y.,2011a. The growth and antioxidant defense responses of wheat seedlings to omethoate stress. Pestic. Biochem. Physiol.100,273-279.
    Zhang, Y. Y., Liu, J. H.,2011b. Transgenic alfalfa plants co-expressing glutathione S-transferase (GST) and human CYP2E1 show enhanced resistance to mixed contaminates of heavy metals and organic pollutants. J. Hazard. Mater.189, 357-362.
    Zhang, Z. H., Rengel, Z., Meney, K., Pantelic, L., Tomanovic, R.,2011c. Polynuclear aromatic hydrocarbons (PAHs) mediate cadmium toxicity to an emergent wetland species. J. Hazard. Mater.189,119-126.
    Zhao, J., Davis, L.C., Verpoorte, R.,2005. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol. Adv.23,283-333.
    Zhishen, J., Mengcheng, T., Jianming, W.,1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem.64,555-559.
    Zhu, L. Z., Wang, J.,2003. Sources and patterns of polycyclic aromatic hydrocarbons pollution in kitchen air, China. Chemosphere 50,611-618.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700