用户名: 密码: 验证码:
生物可降解性药物缓释支架下肢缺血血运重建研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在缺血局部持续稳定的释放外源性生长因子,如重组人碱性成纤维细胞生长因子(rhbFGF)是治疗心肌缺血性疾病或下肢缺血性疾病的有效方法。rhbFGF稳定性差易失活,制备过程须严格控制以维持其活性。在本研究中,我们制备了双层支架,内层为螺旋镁(Mg),外层为包载rhbFGF的高分子聚合物聚乳酸-聚乙醇酸共聚物(PLGA)。我们研究了此双层支架在促进下肢缺血大鼠模型血管新生方面的作用。
     牛血清白蛋白(BSA)被用作模拟药物,体外药物释放实验表明,BSA可以缓慢持续释放4周。在磷酸盐缓冲液(PBS)中孵育时间为4周时,Mg-PLGA支架中释放的BSA的量为75.29±1.33%,而PLGA支架中释放的BSA的量仅为54.73±2.89%。通过光谱法(紫外可见分光光谱UV-Vis,荧光光谱,圆二色谱CD)研究不同浓度的Mg2+对BSA结构、构型的影响,结果表明BSA的二级结构并未受到影响。同时,我们研究了支架体外降解行为,通过扫描电镜观察支架表面形貌的变化,分析了不同时间点支架的降解百分比以及腐蚀溶液pH值的变化。
     体外细胞实验表明,与PLGA-rhbFGF支架相比,Mg-PLGA-rhbFGF支架对血管平滑肌细胞(SMC)有更低的毒性,更能促进细胞的增殖与迁移。在体内动物实验中,我们制备了大鼠下肢缺血模型,机械打孔后置入支架。术后2、4、6周,取支架周围组织进行分析。HE染色及CD31‘免疫组织化学染色显示:Mg-PLGA-rhbFGF支架中释放的rhbFGF更能促进下肢血管的新生。支架置入6周,Mg-PLGA-rhbFGF支架组的血管密度为85.3±10.1(number/mm2),明显高于PLGA-rhbFGF支架组(71.0±5.6)(number/mm2)和对照组(8.7±0.6)(number/mm2),p<0.01。Mg-PLGA-rhbFGF和PLGA-rhbFGF支架组的血流灌注恢复分别达到99.08±0.029%和80.68±0.032%,而对照组缺血下肢血流基本上未恢复。支架置入组大鼠体内Mg2+浓度在正常范围内,血常规及内脏病理学检测均正常,表明我们制备的支架具有良好的生物相容性。
     葛根素是从豆科植物野葛或甘葛藤根中提取的一种异黄酮类化合物,被广泛应用于冠状动脉疾病,其在下肢缺血性疾病中的应用未曾见报道,且在以往的报道与研究中,葛根素的给药途径均局限为静脉注射、腹腔注射或灌胃。本研究中,我们将葛根素包载于高分子聚合物PLGA中,制得PLGA-葛根素支架,达到了缓释的效果,将其置入下肢缺血模型大鼠缺血下肢中,观察其促进血管新生的作用。此支架在大鼠缺血下肢血管新生及血流灌注方面均取得了良好的效果。我们对机制也进行了初步的探讨,结果发现,在支架置入组,骨骼肌中与血管新生密切相关的一氧化氮合酶(eNOs)、血管衍生生长因子-β(PDGF-β)、血管内皮生长因子(VEGF)mRNA均有着高表达量。支架置入组大鼠并未出现溶血反应,血常规及内脏病理学检测均正常,表明支架具有良好的生物相容性。之后我们将葛根素应用于创伤修复中,也取得了较好的效果。
     综上所述,载rhbFGF的Mg-PLGA药物涂层支架及载葛根素的PLGA药物涂层支架可促进下肢缺血大鼠缺血骨骼肌血管新生,为危重症下肢缺血性疾病的治疗提供理论基础。
     制备新型脑主动靶向抗体0X26耦联的超支化聚甘油接枝的聚乳酸-聚乙醇酸(hyperbranched polyglycerol-conjugated poly(lactic-co-glycolic acid), HPG-PLGA)纳米粒子。合成、表征聚合物HPG-PLGA,并通过复合乳液法制备纳米粒子,透射电镜显示纳米粒子平均粒径为170±20nm,X射线光电子能谱进行表面元素分析。内吗啡肽,作为模拟药物,被包载于纳米粒子中。体外药物释放实验表面内吗啡肽可以持续释放长达72h。细胞实验表明脑微血管内皮细胞对纳米离子的摄取作用是时间依赖性和浓度依赖性,摄取抑制实验表明这是一个caveolae相关的吸附介导的内吞过程。动物实验在慢性坐骨神经结扎大鼠模型上进行,0X26耦联的纳米粒子组与其他组相比,有较好的镇痛效果。因而,0X26耦联的HPG-PLGA纳米粒子是一个有广阔应用前景的脑靶向转运体。
Site-specific controlled release of exogenous, angiogenic growth factors such as recombinant human basic fibroblast growth factor (rhbFGF) has become a promising approach to improve ischemic heart disease or peripheral vascular disease. RhbFGF is unstable and the preparation process must be controlled strictively to maintain the bio-activity of rhbFGF. In the present study, we prepared a tubular stent composed by spiral magnesium (Mg) in the inner and a coating including a therapeutic agent rhbFGF and poly(lactic-co-glycolic acid)(PLGA) as matrix in the outer. We tested its effect on promoting angiogenesis in rat limb ischemic model.
     In vitro release studies showed that the model protein bovine serum albumin (BSA) was released continuously for4weeks. BSA was released75.29±1.33%from Mg-PLGA stent and54.73±2.89%from PLGA stent4weeks after immersion in phosphate buffered saline (PBS). Influence of different concentrations of Mg2+on the structure of BSA was investigated by ultraviolet-visible (UV-Vis) spectra, fluorescence spectra and circular dichroism (CD) spectra. Results indicated that the secondary structure of BSA was not influenced by the addition of Mg2+. The in vitro degradation study was processed. The corrosion morphology was observed by scanning electron microscopy (SEM). The degradation percentage and the pH of the solution were tested at predetermined time points.
     The in vitro cell experiments revealed that Mg-PLGA-rhbFGF stent had advantages over PLGA-rhbFGF stent on cytotoxicity, proliferation and migration. Rat limb ischemic model was build and stent was implanted into the adductor muscle after the creation of a mechanical channel.2,4and6weeks post stents implantation, muscle adjescent to the stent was retrieved for analysis. HE staining and CD31+immunostaining revealed that the controlled release of rhbFGF from Mg-PLGA-rhbFGF stent was superior in promoting angiogenesis to PLGA-rhbFGF stent.6weeks post stent implantation, the capillary density of Mg-PLGA-rhbFGF group was85.3±10.1(number/mm2), much higher to PLGA-rhbFGF group (71.0±5.6)(number/mm2) and control group (8.7±0.6)(number/mm2), p<0.01. What's more, the limb blood perfusion ratio of Mg-PLGA-rhbFGF and PLGA-rhbFGF group were dramatically increased, with data99.08±0.029%and80.68±0.032%, respectively, whereas the ischemia limb didn't recover in the control group. The concentrations of Mg2+were within normal range in the body fluid. Routine blood test and visceral pathology were conducted and no adverse effect was detected. The stents we prepared had good biocompatibility.
     Puerarin is a major effective isoflavonoids extracted from the traditional Chinese medicine Ge-gen (Radix Puerariae, RP). Puerarin has been used to treat patients with coronary artery diseases (CAD). Limited data related to the effect of puerarin on PVD were seen. In the previous study, the routes of administration of puerarin were focused up on intravenous, intraperitoneal injection or gavage administration. In this study, puerarin was encapsulated in the copolymer PLGA and the role of PLGA-puerarin on angiogenesis in rat limb ischemic model was tested. It was found that PLGA-puerarin induced angiogenesis and increased blood perfusion ratio in the rat ischemic limb. The gene expression or activation of endothelial nitric oxide synthase (eNOS), platelet derived growth factor-β (PDGF-β) and vascular endothelial growth factor (VEGF) that correlated with angiogenesis were with high expression in the muscle adjescent to the implanted PLGA-puerarin stent. The stents we prepared didn't induce any hemolytic reaction. Routine blood test and visceral pathology were conducted and no adverse effect was detected. The stent we prepared had good biocompatibility. Wound healing study was conducted and results Indicated that puerarin had benefit effect on wound healing.
     RhbFGF loaded Mg-PLGA stent and puerarin loaded PLGA stent could promote angiogenesis of rat limb ischemia, and they may provide a theoretical basis for the critical ill patients suffered from lower limb ischemic disease.
     A novel nanoparticles (NPs)-based brain drug delivery system made of hyperbranched polyglycerol-conjugated poly (lactic-co-glycolic acid)(HPG-PLGA) which was surface functionalized with transferrin antibody (0X26) was prepared. HPG-PLGA was synthesized, characterized and applied to prepare NPs by means of double emulsion solvent evaporation technique. Transmission electron micrograph showed that NPs had a round and regular shape with a mean diameter of170±20nm. Surface chemical composition was detected by X-ray photoelectron spectroscopy. Endomorphins (EM), as a model drug, was encapsulated in the NPs. In vitro drug release study showed that EM was released continuously for72h. Cellular uptake study showed that the uptake of NPs by the brain microvascular endothelial cells was both time-and concentration-dependant. Further uptake inhibition study indicated that the uptake of NPs was via a caveolae-mediated endocytic pathway. In vivo EM brain delivery ability was evaluated based upon the rat model of chronic constriction injury of sciatic nerve.0X26modified NPs had achieved better analgesic effects, compared with other groups. Thus,0X26modified HPG-PLGA NPs may be a promising brain drug delivery carrier.
引文
[1]Schanzer A, Conte MS. Critical limb ischemia. Curt Treat Options Cardiovasc Med.2010;12:214-29.
    [2]Novo S, Coppola G, Milio G. Critical limb ischemia:definition and natural history. Curr Drug Targets Cardiovasc Haematol Disord. 2004;4:219-5.
    [3]Emmerich J. Current state and perspective on medical treatment of critical leg ischemia:gene and cell therapy. Wounds.2005;4:234-41.
    [4]Ozkan U, Oguzkurt L, Tercan F. Atherosclerotic risk factors and segmental distribution in symptomatic peripheral artery disease. J Vasc Inter Radiol. 2009;20:437-41.
    [5]Lloyd M, Taylor J, Daniel H. Limb salvage vs amputation for critical ischemia. Arch Surg.1991:126:1251-8.
    [6]Isner JM, Asahara T. Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J Clin Invest. 1999;103:1231-6.
    [7]Luttun A, Carmeliet P. De novo vasculogenesis in the heart. Cardiovasc Res.2003;58:378-89.
    [8]Asahara T, Masuda H, Takahashi T, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res.1999:85:221-8.
    [9]Abo-Auda, Benza RL. Therapeutic angiogenesis:review of current concepts and future directions. J Heart Lung Transplant.2003:22:370-82.
    [10]Risau W. Mechanisms of angiogenesis. Nature.1997;386:671-4.
    [11]Asahara T, Masuda H, Takahashi T. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res.1999;85:221-8.
    [12]Grant MB, May WS, Caballero S, et al. Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nat Med.2002;8:607-12.
    [13]Urbich C, Dimmeler S. Endothelial progenitor cells:Functional characterization. Trends Cardiovasc Med.2004;14:318-22.
    [14]Yoder MC, Mead LE, Prater D, et al. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood.2007;109:1801-9.
    [15]Bosch-Marce M, Okuyama H, Wesley JB, et al. Effects of aging and hypoxia-inducible factor-1 activity on angiogenic cell mobilization and recovery of perfusion after limb ischemia. Circ Res.2007;101:1310-8.
    [16]Semenza GL. Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology.2009;24:97-106.
    [17]Patel NS, Muneer A, Blick C, et al. Targeting vascular endothelial growth factor in renal cell carcinoma. Tumour Biol.2009;30:292-9.
    [18]Patten DA, Lafleur VN, Robitaille GA. Hypoxia-inducible factor-1 activation in nonhypoxic conditions:the essential role of mitochondrial-derived reactive oxygen species. Mol Biol Cell. 2010:21:3247-57.
    [19]Lu J, Zhang K, Chen S, et al. Grape seed extract inhibits VEGF expression via reducing HIF-1 alpha protein expression. Carcinogenesis.2009; 30:636-44.
    [20]Okuyama H, Krishnamachary B, Zhou YF, et al. Expression of vascular endothelial growth factor receptor 1 in bone marrow-derived mesenchymal cells is dependent on hypoxia-inducible factor 1. J Biol Chem. 2006:281:15554-62.
    [21]Edelman ER, Mathiowitz E, Langer R, et al. Controlled and modulated release of basic fibroblast growth factor. Biomaterials.1991:12:619-26.
    [22]Laham RJ, Sellke FW, Edelman ER, et al. Local perivascular delivery of basic fibroblast growth factor in patients undergoing coronary bypass surgery:results of a phase I randomized, double-blind, placebo-controlled trial. Circulation.1999;100:1865-71.
    [23]Sullivan GW, Sarembock IJ, Linden L. The role of inflammation in vascular diseases. J Leukocyte Biology.2000; 67:591-602.
    [24]de Muinckand ED, Simons M. Re-evaluating therapeutic neovascularization. J Molecular Cellular Cardiology.2004:36:25-32.
    [25]Arras M, Ito D, Scholz D, et al. Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. J Clinical Investigation.1998; 101:40-50.
    [26]Couffinhal T, Silver M, Kearney M, et al. Impaired collateral vessel development associated with reduced expression of vascular endothelial growth factor in ApoE(-/-) mice. Circulation.1999;99:3188-98.
    [27]Sunderkotter C, Steinbrink K, Goebeler M, et al. Macrophages and Angiogenesis. J Leukocyte Biology.1994; 55:410-22.
    [28]Hsieh MY, Chen WY, Jiang MJ, et al. Interleukin-20 promotes angiogenesis in a direct and indirect manner. Genes Immunity.2006;7:234-42.
    [29]Tritsaris K, Myren M, Ditlev SB, et al. IL-20 is anarteriogenic cytokine that remodels collateral networks and improves functions of ischemic hind limbs. Proceed National Academy Sci United States America. 2007;104:15364-9.
    [30]Shing Y, Folkman J, Sullivan R, et al. Heparin affinity-purification of a tumor-derived capillary endothelial cell-growth factor. Science. 1984;223:1296-9.
    [31]Hamano K, Li TS, Kobayashi T, et al. The induction of angiogenesis by the implantation of autologous bone marrow cells:a novel and simple therapeutic method. Surgery.2001:130:44-54.
    [32]Cohen MV, Vernon J, Yaghdjian V, et al. Longitudinal changes in myocardial basic fibroblast growth factor(FGF-2) activity following coronary artery ligation in the dog. Mol Cell Cardiol.1994:26:683-90.
    [33]Bernotat-Danielowski S, Sharma HS, Schott RJ, et al. Generation and localisation of monoclonal antibodies against fibroblast growth factors in ischemic collateralised porcine myocardium. Cardiovasc Res. 1993;27:1220-8.
    [34]柳国胜,邱锐琴,杨慧,等.aFGF对新生大鼠缺氧缺血后VEGF的表达及脑血管新生的作用.小儿急救医学.2005;12:174-6.
    [35]刘勇,黄志军,裘洪,等.人源碱性成纤维缁胞因子基因对缺血也、肌血管新生的影响.中国医学工程.2006;2:1-5.
    [36]Cuevas P, Barrios V, Gimenez-Gallego G, et al. Serum levels of basic fibroblast growth factor in acute myocardial infarction. Eur J Med Res. 1997;2:282-4.
    [37]Lebherz C, yon Degenfeld G, Karl A, et al. Therapeutic angiogenesis/arteriogenesis in the chronic ischemic rabbit hindlimb:effect of venous basic fibroblast growth factor retminfnsion. Endothelium. 2003;10:257-65.
    [38]Yancopoulos GD, Gale NW, Rudge JS, et al. Vascular-specific growth factors and blood vessel formation. Nature.2000;407:242-8.
    [39]Conway EM, Collen D, Carmeliet P. Molecular mechanisms of blood vessel growth. Cardiovas Res.2001;49:507-21.
    [40]Tsigkos S, Koutsilieris M, Papapetropoulos A. Angiopoietins in angiogenesis and beyond. Expert Opin Investigat Drug.2003;12:933-41.
    [41]刘翔,陈亦江,张馥敏,等VEGF165和Ang-1协同改善急性心梗大鼠心功能.中华胸心血管外科杂志.2005;10:295-7.
    [42]Tsurumi Y, Takeahita S, Chen D, et al. Direct intramuscular gene transfer of naked DNA encoding vascular endothelial growth factor augments collateral development and tissue perfusion. Circulation.1996;94:3281-90.
    [43]Yang Y, Min JY, Rana JS, et al. VEGF enhances functional improvement of postinfarcted hearts by transplantation of ESC-differentiated cells. J Appl Physiol.2002;93:140.
    [44]0'Toole G, MacKenzie D, Lindeman R, et al. Vascular endothdial growth factor gene therapy in ischaemic rat skin flaps. Br J Hast Surg. 2002;55:55-8.
    [45]Laguens R, Cabeza MP, Vera JG, et al. Entrance in mitosis of adult cardiomyocytes in ischemic pig hearts after plasmid mediated rhvEGF165 gene transfer. Gene transfer. Genether.2002;9:1676.
    [46]Dulak J, Jozkowicz A. Nitric oxide and angiogenic activity of endothelial cells director VEGF dependent effect. Cardiovases. 2002;56:487-8.
    [47]Dan G, Duda DF, Rakesh KJ. Role of eNOs in neovascularization:NO for endothelial progenitor cells. Trends Mol Med.2004;10:143-5.
    [48]周国伟,张建军.促血管新生治疗的机制与应用国外医学.国外医学:血管疾病分册.2000:27:90-3.
    [49]关勤,刘志勇.分子搭桥技术研究进展.东南大学学报(医学版).2006:25:212-24.
    [50]Sandau KB, Fandrey J, Brune B. Accumulation of HIF-1 aunde the influence of nitric oxide. Blood.2001;97:1009-15.
    [51]Jenkins DC, Charles IG, Thomsen II, et al. Role of nitric oxide in tumor growth. Proc Nat I Acad Sci USA.1995;92:4392-6.
    [52]Fredriksson L, Li H, Eriksson U. The PDGF family:four gene products form five dimeric isoforms. Cytokine & Growth Factor Reviews. 2004;15:97-204.
    [53]Battegay EJ, Rupp J, Iruela-Arispe L, et al. PDGF-BB modulates endothelial proliferation and angiogenesis in vitro via PDGF beta-receptors. J Cell Biology.1994:125:917-28.
    [54]Wang J, Schwendeman SP. Mechanisms of solvent evaporation encapsulation processes:Prediction of solvent evaporation rate. J of Pharmaceut Sci. 1999;88:1090-9.
    [55]Nauck M, Roth M, Tamm M, et al. Induction of vascular endothelial growth factor by platelet-activating factor and platelet-derived growth factor is downregulated by corticosteroids. American J Respiratory Cell Molecular Biology.1997:16:398-406.
    [56]Guo P, Hu B, Gu WS, et al. Platelet-derived growth factor-b enhances glioma angiogenesis by stimulating vascular endothelial growth factor expression in tumor endothelia and by promoting pericyte recruitment. American J Pathology.2003:162:1083-93.
    [57]Post MJ, Laham RJ, Kuntz RE, et al. The effect of intracoronary fibroblast growth factor-2 on restenosis after primary angioplasty or stent placement in a pig model of atherosclerosis. Clinical Cardiology. 2002;25:271-8.
    [58]王药,张军平.从中医络病学说认识血管新生.中国中医基础医学杂志.2005:11:493.
    [59]扬祖福,胡婉英,秦忠强.双龙丸对大鼠实验性心肌梗死血管新生的影响与分子学机制.中国康复理论与实践.2003;9:293-5.
    [60]Wang SS, Li Y, Fan WH, et al. Angiogenmis promoting effect of Shexiang Boxin Pill Oil chieken embryo cherioallantoic membrane and cultured microvascular endolhelial cells. Chindlntegr Tradit Chin West Med. 2003:23:128-31.
    [61]梅爱农,王珏,湛颜强,等.通心络胶囊对脑梗死大鼠脑皮质血管新生和皮层神经元凋亡的影响.实用医学杂志.2006:22:267-70.
    [62]Shyu KG, Tsai SC, Wang BW, et al. Saikosaponin C induces endothelial cells growth migration and capillary tube formafion. Life Sci.2004:76:813-26.
    [63]高冬,林薇,郑良朴,等.血府逐瘀汤动员大鼠骨髓内皮祖细胞的实验研究.中西医结合心脑血管病杂志.2007;5:829-31.
    [64]张喜成,何延政,李跃武,等.补肾生血胶囊动员骨髓内皮祖细胞促进缺血肢体 血管新生的研究.江苏中医药.2006,27:57-8.
    [65]Zhang FR, Chen J, Zhu JH, et al. Effects of puerarin on number and activity of endothelial prgenitor cells from peripheral blood. China Chin Mater Med.2004;29:777-81.
    [66]Wang XX, Shang YP, Chen JZ, et al. Effects of Ginkgo biloba extract on numher and activily of endothelial progenitor cells from peripheral blood. Acta Pharm Sin.2004;39:656-60.
    [67]汪姗姗,李勇,范维虎,等.麝香保心丸对实验性心肌梗死大鼠的促血管生成的作用.中成药.2002;24:446-9.
    [68]杨祖福,胡婉英,秦志强,等.双龙丸对大鼠实验性心肌梗死血管新生的影响与分子学机制.中国康复理论与实践.2003;9:293-5.
    [69]高冬,朱军,胡娟,等.活血化瘀中药对鸡胚绒毛尿囊膜血管生成的影响.中国中西医结合杂志.2005;10:912-5.
    [70]孟华,朱妙章,郭军,等.中药当归、川芎、丹参提取液促血管生成作用的实验研究.中药材.2006;29:574-6.
    [71]张玉英,李剑,范维琥,等.红景天与绛香对心肌梗死大鼠血管抑素和内皮抑素表达的影响.中西医结合心脑血管病杂志.2005;12:1073.
    [72]Harada K, Grossman W, Sellke FW, et al. Basic fibroblast growth factor improves myocardial function in chronically ischemic porcine hearts. Clinical Invest.1994;94:623-30.
    [73]Layman H, Spiga MG, Brooks T, et al. The effect of the controlled release of basic fibroblast growth factor from ionic gelatin-based hydrogels on angiogenesis in a murine critical limb ischemic model. Biomaterials. 2007:28:2646-54.
    [74]Taniyama Y, Morishita R, Aoki M, et al. Therapeutic angiogenesis induced by human hepatocyte growth factor gene in rat and rabbit hindlimb ischemia models:preclinical study for treatment of peripheral arterial disease. Gene Ther.2001;8:181-9.
    [75]Dormandy JA, Loh A. Critical limb ischemia. In:Tooke JE, Lowe GDO, eds. A Textbook of Vascular Medicine. London, United Kingdom:Arnold; 1996:221-36.
    [76]Marston WA, Davies SW, Armstrong B, et al. Natural history of limbs with arterial insufficiency and chronic ulceration treated without revascularization. J Vasc Surg.2006;44:108-14.
    [77]Marui A, Tabata Y, Kojima S, et al. Novel approach to therapeutic angiogenesis for patients with critical limb ischemia by sustained release of basic fibroblast growth factor using biodegradable gelatin hydrogel-an initial report of the phase I-IIa study. Circulation.2007;71:1181-6.
    [78]Lederman RJ, Mendelsohn FO, Anderson RD, et al. Therapeutic angiogenesis with recombinant fibroblast growth factor-2 for intermittent claudication (the TRAFFIC study):a randomised trial. Lancet. 2002;359:2053-58.
    [79]Rajagopalan S, Mohler ER, Lederman RJ, et al. Regional angiogenesis with vascular endothelial growth factor in peripheral arterial disease-A phase II randomized, double-blind, controlled study of adenoviral delivery of vascular endothelial growth factor 121 in patients with disabling intermittent claudication. Circulation.2003;108:1933-8.
    [80]Cao L, Mooney DJ. Spatiotemporal control over growth factor signaling for therapeutic neovascularization. Advanced Drug Delivery Reviews. 2007:59:1340-50.
    [81]Fischbach C, Mooney DJ. Polymers for pro-and anti-angiogenic therapy. Biomaterials.2007;28:2069-76.
    [82]Peirce SM, Skalak TC. Microvascular remodeling:A complex continuum spanning angiogenesis to arteriogenesis. Microcirculation.2003;10: 99-111.
    [83]Whitelock JM, Murdoch AD, Iozzo RV, et al. The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J Biological Chemistry.1996;271:10079-86.
    [84]Zisch AH, Lutolf MP, Hubbell JA. Biopolymeric delivery matrices for angiogenic growth factors. Cardiovascular Pathology.2003;12:295-310.
    [85]Sottile J. Regulation of angiogenesis by extracellular matrix. Biochimica Biophysica Acta-Reviews on Cancer.2004;1654:13-22.
    [86]Ianer JM, InvestigatorP, Walsh K, et al. Arterial gene therapy for therapeutic angiogenesis in patients with peripheral arterial artery disease. Circulation.1995:91:2687-92.
    [87]Palmer-Kazen U, Wariaro D, Luo F, et al. Vascular endothelial cell growth factor and fihroblast growth factor expression in patients with critical limb ischemia. J Vase Surg.2004:39:621-8.
    [88]Boumgartner I, Pieczek A, MaDor 0, et al. Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia. Circulation. 1998;97:1114-23.
    [89]Mai Hard L, Peyeher P, Fichaux 0, et al. Gene therapy with VEGF. Presse Med.2001;30:73-5.
    [90]Powell RJ, Simons M, Mendelsohn FO, et al. Results of a double-blind, placebo-controlled study to assess the safety of intramuscular injection of hepatocyte growth factor plasmid to improve limb perfusion in patients with critical limb ischemia. Circulation.2008:118:58-65.
    [91]Gehling UM, Ergun S, Schumacher U, et al. In vitro diferentiation of endothelial cells from AC133-positive progenitor cels. Blood. 2000:95:3106-12.
    [92]Kalka C, Masuda H, Takahashi T, et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Prec Nail Acad Sci USA.2000;97:3422-7.
    [93]Sottile J. Regulation of angiogenesis by extracellular matrix. Biochimica Biophysica Acta-Reviews on Cancer.2004:1654:13-22.
    [94]Zisch AH, Lutolf MP, Hubbell JA. Biopolymeric delivery matrices for angiogenic growth factors. Cardiovascular Pathology.2003:12:295-310.
    [95]Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci.2007;32:762-98.
    [96]Nguyen QD, Shah SM, Haf iz G, et al. A phase I trial of an IV-administered vascular endothelial growth factor trap for treatment in patients with choroidal neovascularization due to age-related macular degeneration. Ophthalmology.2006;113:1522-32.
    [97]Watanabe E, Smith DM, Sun J, et al. Effect of basic fibroblast growth factor on angiogenesis in the infarcted porcine heart. Basic Res Cardiol. 1998;93:30-7.
    [98]Pike DB, Cai SS, Pomraning KR, et al. Heparin-regulated release of growth factors in vitro and angiogenic response in vivo to implanted hyaluronan hydrogels containing VEGF and bFGF. Biomaterials. 2006:27:5242-51.
    [99]Black AF, Hudon V, Damour 0, et al. A novel approach for studying angiogenesis:A human skin equivalent with a capillary-like network. Cell Biology Toxicology.1999;15:81-90.
    [100]Sahni A, Sporn LA, Francis CW. Potentiation of endothelial cell proliferation by fibrin(ogen)-bound fibroblast growth factor-2. J Biological Chemistry.1999;274:14936-41.
    [101]Hubbell JA, Zisch AP, Ehrbar M, et al. Incorporation of engineered vEGF variants in fibrin cell ingrowth matrices. Faseb Journal.2003;17:A553-A553.
    [102]Thompson JA, Anderson KD, Dipietro JM, et al. Site-directed neovessel formation in vivo. Science.1988;241:1349-52.
    [103]Montesano R, Vassalli JD, Baird A, et al. Basic fibroblast growth factor induces angiogenesis in vitro. Proc Natl Acad Sci USA. 1983;83:7297-9301.
    [104]Mazue G, Bertoleto F, Jacob C, et al. Preclinical and clinical studies with recombinant human basic fibroblast growth factor. Annal Acad Sci. 1991:638:329-40.
    [105]Putney SD, Burke PA. Improving protein therapeutics with sustained release formulations. Nat Biotechnol.1998;16:153-7.
    [106]Yoon JJ, Chung HJ, Lee HJ, et al. Heparin-immobilized biodegradable scaffolds for local and sustained release of angiogenic growth factor. J Biomed Mater Res A.2006;79:934-42.
    [107]Peter MC, Polverini PJ, Mooney DJ. Engineering vascular networks in porous polymer matrices. J Biomed Mater Res.2002;60:668-78.
    [108]Richardson TP, Peters MC, Ennett AB, et al. Polymeric system for dual growth factor delivery. Nat Biotechnol.2001;19:1029-34.
    [109]Chung HJ, Kim HK, Yoon JJ, et al. Heparin immobilized porous PLGA microspheres for angiogenic growth factor delivery. Pharmaceut Res. 2006;23:1835-41.
    [110]Elcin AE, Elcin YM. Localized angiogenesis induced by human vascular endothelial growth factor-activated PLGA sponge. Tissue Eng. 2006;12:959-68.
    [111]Zhong Y, Zhang L, Ding AG, et al. Rescue of SCID murine ischemic hindlimbs with pH-modified rhbFGF/Poly(DL-lactic-co-glycolic acid) implants. J Control Release.2007;122:331-7.
    [112]Kaushiva A, Turzhitsky VM, Backman V, et al. A biodegradable vascularizing membrane:a feasibility study. Acta Biomat.2007;3:631-42.
    [113]Mundargi RC, Babu VR, Rangaswamy V, et al. Nano/micro technologies for delivering macromolecular therapeutics using poly(D, L-lactide-co-glycolide) and its derivatives. J Control Release. 2008:125:193-209.
    [114]Lai MC, Topp EM. Solid-state chemical stability of proteins and peptides. J Pharmceut Sci.1999;88:489-500.
    [115]Manning MC, Patel K, Borchardt RT. Stability of protein Pharmaceuticals. Pharmceut Res.1989:6:903-18.
    [116]Chi EY, Kirshnan S, Randolph TW, et al. Physical stability of proteins in aqueous solution:mechanism and driving forces in nonnative protein aggregation. Pharmaceut Res.2003;20:1325-36.
    [117]White SH. Membrane protein folding and stability:physical principles. Annu Rev Biophys Biomol Struct.1999;28:319-65.
    [118]Chung HJ, Kim HK, Yoon JJ, et al. Heparin immobilized porous PLGA microspheres for angiogenic growth factor delivery. Pharm Res. 2006;23:1835-41.
    [119]Elcin AE, Elcin YM. Localized angiogenesis induced by human vascular endothelial growth factor-activated PLGA sponge. Tissue engineering. 2006;12:959-68.
    [120]Jeon 0, Kang SW, Lim HW, et al. Long-term and zero-order release of basic fibroblast growth factor from heparin-conjugated poly(L-lactide-co-glycolide) nanospheres and fibrin gel. Biomaterials. 2006;27:1598-607.
    [121]Richardson TP, Peters MC, Ennett AB, et al. Polymeric system for dual growth factor delivery. Nat Biotechnol.2001;19:1029-34.
    [122]Maa YF, Hsu CC. Effect of high shear on proteins. Biotechnology and bioengineering.1996;51:458-65.
    [123]Bilati U, Allemannand E, Doelker E. Strategic approaches for overcoming peptide and protein instability within biodegradable nano-and microparticles. Eur J Pharm Biopharm.2005;59:375-88.
    [124]Giteau A, Venier-Julienne MC, Aubert-Pouessel A, et al. How to achieve sustained and complete protein release from PLGA-based microparticles? Int J Pharm.2008:350:14-26.
    [125]Ghassemi AH, van Steenbergen MJ, Talsma H, et al. Preparation and characterization of protein loaded microspheres based on a hydroxylated aliphatic polyester, poly(lactic-co-hydroxymethyl glycolic acid). J Control Release.2009;138:57-63.
    [126]Sah H. Stabilization of proteins against methylene chloride water interface-induced denaturation and aggregation. J Controll Release. 1999;58:143-51.
    [127]Shing Y, Folkman J, Sullivan R, et al. Heparin affinity-purification of a tumor derived capillary endothelial cell growth factor. Science. 1984;223:1296-9.
    [128]Jeon 0, Kang SW, Lim HW, et al. Long-term and zero-order release of basic fibroblast growth factor from heparin-conjugated poly(D, L-lactide-co-glycolide) nanospheres and fibrin gel. Biomaterials. 2006,27:1598-607.
    [129]Boury F, Marchairs H, Proust JE, et al. Bovine serum albumin release from poly(α-hydroxy acid) microspheres:effects of polymer molecular weight and surface properties. J Control Release.1997:45:75-86.
    [130]Wang XT, Venkatraman SS, Boey FY, et al. Controlled release of sirolimus from a multilayered PLGA stent matrix. Biomaterials. 2006,27:5588-95.
    [131]Kim TK, Burgess DJ. Pharmacokinetic characterization 14C-vascular endothelial growth factor controlled release microspheres using a rat model. J pharm and pharmacol,2002,54:897-905.
    [132]Chung HJ, Kim HK, Yoon JJ, et al. Heparin immobilized porous PLGA microspheres for angiogenic growth factor delivery. Pharmaceut Res. 2006;23:1835-41.
    [133]Elcin AE, Elcin YM. Localized angiogenesis induced by human vascular endothelial growth factor-activated PLGA sponge. Tissue Eng. 2006;12:959-68.
    [134]陈振华.镁合金.北京化学工业出版社.2004:386.
    [135]Rukshin V, Shah PK, Cercek B, et al. Comparative antithrombotic effects of magnesium sulfate and platelet glycoprotein Ⅱb/Ⅲa inhibitors tirofiban and eptifibatide in a canine model of stent thrombosis. Circulation.2002;105:1970-5.
    [136]Marion M. Bradford. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry.1976;72:248-54.
    [137]Oyane A, Kim H, Furuya T, et al. Preparation and assessment of revised simulated body fluids. J Biomedical Mater Res A.2003;65:188-95.
    [138]Li Z, Gu X, Lou S, et al. The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials.2008;29:1329-44.
    [139]Cheng ZJ, Zhang YT. Fluorometric investigation on the interaction of oleanolic acid with bovine serum albumin. Science Direct.2008;879:81-7.
    [140]Heublein B, Rohde R, Kaese V, et al. Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology? Heart.2003;89:651-6.
    [141]Erbel R, Di Mario C, Bartunek J, et al. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents:a prospective, non-randomised multicentre trial. Lancet.2007;369:1869-75.
    [142]Peeters P, Bosiers M, Verbist J, et al. Preliminary results after application of absorbable metal stents in patients with critical limb ischemia. Endovasc Ther.2005;12:1-5.
    [143]Yang S, Leong KF, Du Z, et al. The design of scaffolds for use in tissue engineering. part I. traditional factors. Tissue engineering. 2001;7:679-89.
    [144]Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol.2005;23:47-55.
    [145]梁光波,张国平,金惠铭,等.体外定量测定细胞迁移方法的建立及应用.中国病理生理杂志.2004;20:175-9.
    [146]Van Nieuw Amerongen GP, Koolwijk P, Versteilen A, et al. Involvement of RhoA/Rho kinase signaling in VEGF-induced endothelial cell migration and angiogenesis in vitro. Arterioscler Thromb Vase Biol.2003;23:211-7.
    [147]Kang YY, Wang FC, Feng J, et al. Knockdown of CD146 reduces the migration and proliferation of human endothelial cells. Cell Res. 2006;16:313-8.
    [148]Harmand MF. In vitro study of biodegradation of a Co-Cr alloy using a human cell culture model. J Biomater Sci Polym Ed.1995;6:809-14.
    [149]Heublein B, Rohde R, Kaese V, et al. Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology? Heart (British Cardiac Society).2003;89:651.
    [150]高家诚,李龙川,王勇.纯镁的细胞毒性和溶血率试验研究.功能材料.2004:35:2265.
    [151]Vormann J. Magnesium:nutrition and metabolism. Mol Aspects Med. 2003:24:27-37.
    [152]Yang C, Yuan G, Zhang J, et al. Effects of magnesium alloys extracts on adult human bone marrow-derived stromal cell viability and osteogenic differentiation. Biomed Mater.2010;5:45-50.
    [153]Zhang SX, Zhang XN, Zhao CL, et al. Research on an Mg-Zn alloy as a degradable biomaterial. Acta Biomaterialia.2010;6:626-40.
    [154]Sun QH, Chen RR, Shen YC, et al. Sustained vascular endothelial growth factor delivery enhances angiogenesis and perfusion in ischemic hind limb. Pharm Res.2005;22:1110-6.
    [155]Schott RJ, Morrow LA. Growth factors and angiogensis. Cardiovasc Res. 1993;27:1155-61.
    [156]Rehman J, Li JL, Orschell CM, et al. Peripheral blood "endothelial progenitor cells" are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation.2003;107:1164-9.
    [157]Murohara T, Asahara T, Silver M, et al. Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J Clin Invest. 1998;101:2567-78.
    [158]李树岩,回学军,纪磊,等bFGF重组腺病毒转染骨髓间充质干细胞促进VEGF的表达.中国老年学杂志.2007;27:2171-3.
    [159]Estvold SK, Mordini F, Zhou YF, et al. Does laser type impact myocardial function following transmyocardial laser revascularizations? Laser Surg Med. 2010;42:746-51.
    [160]Yamamoto N, Kohmoto T, Roethy W, et al. Histologic evidence that basic fibroblast growth factor enhances the angiogenic effects of transmyocardial laser revascularization. Basic Res Cardiol.2000:95:55-63.
    [161]Xu XH, Zhao TQ. Effects of puerarin on D-galactose-induced memory deficits in mice. Acta Pharmacol Sin.2002:23:587-90.
    [162]Zhu JH, Wang XX, Shang YP, et al. Effects of puerarin on number and activity of endothelial progenitor cells from peripheral blood. Acta Pharmacol Sin.2004;25:1045-51.
    [163]Hsu FL, Liu IM, Chen DH, et al. Antihyperglycemic effect of puerarin in streptozotocin-induced diabetic rats. J Nat Prod.2003:66:788-92.
    [164]Sieveking DP, Woo KS, Fung KP, et al. Chinese herbs Danshen and Gegen modulate key early atherogenic events in vitro. Int J Cardiol. 2005;105:40-5.
    [165]Wu L, Li Y, Li L. Protective roles of puerarin and Danshensu on acute ischemic myocardial injury in rats. Phytomedicine.2007;14:652-8.
    [166]Zhang S, Chen G, Wei P, et al. The effect of puerarin on serum nitric oxide concentration and myocardial eNOS expression in rats with myocardial infarction. J Asian Nat Prod Res.2008:10:323-8.
    [167]Zhang S, Chen Sh, Shen Y. Puerarin induces angiogenesis in myocardium of rat with myocardial infarction. Biol Pharm Bull.2006;29:945-50.
    [168]张三印,沈映君,陈士林,等.葛根素诱导血管新生作用的实验研究.陕西中医杂志,2007,28:10.
    [169]Bernas GC. Angiotherapeutics from natural products:from bench to clinics? Clin Hemorheol Micro.2003:29:199-203.
    [170]Wang S, Weng Y, Zhang D, et al. Angiogenesis and anti-angiogenesis activity of Chinese medicinal herbal extracts. Life Sci.2004:74:2467-78.
    [171]Ji XY, Zhu YC, Linz W, et al. Comparison of cardioprotective effects using ramipril and DanShen for the treatment of acute myocardial infarction in rats. Life Sci.2003:73:1413-26.
    [172]Shyu KG, Tsai SC, Wang BW, et al. Saikosaponin C induces endothelial cells growth, migration and capillary tube formation. Life Sci. 2004:76:813-26.
    [173]Li Y, Fan YC. Traditional Chinese Medicine Pharmacy.2004;2:448-9.
    [174]Ding JJ, Zhang TH, Sheng Q, et al. Protective effect of puerarin on cultured human aortic endothelial cells injury caused by lipid peroxide. Acad J Sec Milit Med Univ.1999;20:240-2.
    [175]Shi RL, Zhang JJ. Protective effect of puerarin on vascular endothelial cell apoptosis induced by chemical hypoxia in vitro. Acta Pharm Sin. 2003;38:103-7.
    [176]Xiao ZZ, Luo W, Su H, et al. The influence of puerarin on the secretion of NO and ACE of endothelial cells cultured with hydroxyl-free radicals conditions. Acta Acad Med Jiangxi.2002;142:39-41.
    [177]Xu ME, Xiao SZ, Sun YH. The study of anti-metabolic syndrome effect of puerarin in vitro. Life Sci.2005:77:3183-96.
    [178]Zhu JH, Wang XX, Chen JZ. Effects of puerarin on number and activity of endothelial progenitor cells from peripheral blood. Acta Pharmacol Sin. 2004;25:1045-51.
    [179]Singer AJ, Clark RF. Cutaneous wound healing. The New England J medicine.1999;341:738-46.
    [180]张凤春,陈云峰,苏彦珍,等.地龙促进大白兔背部创伤伤口收缩的实验研究.中国中药杂志.1998;23:560-1.
    [181]唐甜,杨静.大黄素对家兔实验性皮肤创伤的促愈合作用及其机制.中国药理学与毒理学杂志.2006;20:112-8.
    [182]陈朝晖,谭强,谢利,等.复方紫归膏促进大鼠创面愈合的实验研究.中国美容医学.2009:18:1778-80.
    [183]黄惠勇,李路丹.九华膏(粉)的初步实验研究.中国肛肠病杂志.1994;2:5-6.
    [1]Zadina JE, Hackler L, Ge LJ, et al. A potent and selective endogenous agonist for the mu-opiate receptor. Nature.1997;386:499-502.
    [2]Begley DJ, Brightman MW. Structural and functional aspects of the blood-brain barrier. Prog Drug Res.2003;61:39-78.
    [3]Dallasta LM, Pisarov LA, Esplen JE, et al. Blood-brain barrier tight junction disruption in human immunodeficiency virus-1 encephalitis. Am J Pathol.1999:155:1915-27.
    [4]Wolburg H, Lippoldt A. Tight junctions of the blood-brain barrier: development, composition and regulation. Vase Pharmacol.2002;38:323-37.
    [5]Abbott NJ. Prediction of blood-brain barrier permeation in drug discovery from in vivo, in vitro and in silico models. Drug Discov Today: Technol.2004;1:407-16.
    [6]Teichberg Ⅵ. From the liver to the brain across the blood-brain barrier. Proc Natl Acad Sci USA.2007;104:7315-6.
    [7]Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev.2001;47:65-81.
    [8]Pardridge WM. Drug and gene delivery to the brain:the vascular route. Neuron.2002;36:555-8.
    [9]Cucullo L, Mcallister MS, Kight K, et al. A new dynamic in vitro model for the multidimensional study of astrocyte-endothelial cell interactions at the blood-brain barrier. Brain research.2002;951:243-54.
    [10]Prokai-Tatrai K, Prokai L, Bodor N. Brain-targeted delivery of a leucine-enkephalin analogue by retrometabolic design. J Med Chem. 1996;39:4775-82.
    [11]Yoshikawa T, Sakaeda T, Sugawara T, et al. A novel chemical delivery system for brain targeting. Adv Drug Deliv Rev.1999;36:255-75.
    [12]Scott E. McNeil. Nanotechnology for the biologist. J Leukoc Biol. 2005:78:585-94.
    [13]Zhu Y, Shi J, Shen W, et al. Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure. Angew Chem Int Ed Engl.2005;44:5083-7.
    [14]Zhao W, Gu J, Zhang L, et al. Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure. J Am Chem Soc.2005;127:8916-7.
    [15]Betancourt T, Shah K, Brannon-Peppas L. Rhodamine-loaded poly(lactic-co-glycolic acid) nanoparticles for investigation of in vitro interactions with breast cancer cells. J Mater Sci:Mater Med. 2009;20:387-95.
    [16]Yang H, Li K, Liu YY, et al. Poly (D, L-lactide-co-glycolide) nanoparticles encapsulated fluorescent isothiocyanate and paclitaxol: preparation, release kinetics and anticancer effect. J Nanosci Nanotechnol. 2009;9:282-7.
    [17]Costantino L, Gandolfi F, Bossy-Nobs L, et al. Nanoparticulate drug carriers based on hybrid poly(d, 1-lactide-co-glycolide)-dendron structures. Biomaterials.2006;27:4635-45.
    [18]Sunder A, Frey H, Mulhaupt R. Hyperbranched polyglycerols by ring-opening multibranching polymerization. Macromol Symp. 2000;153:187-96.
    [19]Kumar KR, Brooks DE. Comparison of Hyperbranched and Linear Polyglycidol Unimolecular Reverse Micelles as Nanoreactors and Nanocapsules. Macromol Rapid Commun.2005:26:155-159
    [20]Sunder A, Kramer M, Hanselmann R, et al. Molecular nanocapsules based on amphiphilic hyperbranched polyglycerols. Angew Chem Int Edit. 1999;38:3552-5.
    [21]Kainthan RK, Brooks DE. Comparison of hyperbranched and linear polyglycidol unimolecular reverse micelles as nanoreactors and nanocapsules. Macromol Rapid Comm.2005:26:155-9.
    [22]Wilms D, Stiriba SE, Frey H. Hyperbranched polyglycerols:from the controlled synthesis of biocompatible polyether polyols to multipurpose applications. Accounts Chem Res.2010:43:129-41.
    [23]Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci.2006;7:41-53.
    [24]Sunder A, Hanselmann R, Frey H, et al. Controlled synthesis of hyperbranched polyglycerols by ring-opening multibranching polymerization. Macromolecules.1999;32:4240-6.
    [25]Tomboly C, Peter A, Toth G. In vitro quantitative study of the degradation of endomorphins. Peptides.2002;23:1573-80.
    [26]Dehouck MP, Jolliet-Riant P, Bree F, et al. Drug transfer across the blood-brain barrier:correlation between in vitro and in vivo models. J Neurochem.1992;58:1790-7.
    [27]Meresse S, Dehouck MP, Delorme P, et al. Bovine brain endothelial cells express tight junctions and monoamine oxidase activity in long-term culture. J Neurochem.1989;53:1363-71.
    [28]Bennett GJ, Xie YK. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain.1988;33:87-107.
    [29]Holter D, Burgath A, Frey H. Degree of branching in hyperbranched polymers. Acta Polym.1997;48:30-5.
    [30]Scholes PD, Coombes AGA, Illum L, et al. Detection and determination of surface levels of poloxamer and PVA surfactant on biodegradable nanospheres using SSIMS and XPS. J Control Release.1999:59:261-78.
    [31]Quellec P, Gref R, Dellacherie E, et al. Protein encapsulation within poly(ethylene glycol)-coated nanospheres. Ⅱ. Controlled release properties. J Biomed Mater Res.1999:47:388-95.
    [32]Discher BM, Won YY, Ege DS, et al. Polymersomes:tough vesicles made from diblock copolymers. Science.1999;284:1143-6.
    [33]Thole M, Nobmann S, Huwyler J, et al. Uptake of cationized albumin coupled liposomes by cultured porcine brain microvessel endothelial cells and intact brain capillaries. J Drug Target.2002;10:337-44.
    [34]Beduneau A, Hindre F, Clavreul A, et al. Brain targeting using novel lipid nanovectors. J Control Release.2008;126:44-9.
    [35]Juillerat-Jeanneret L. The targeted delivery of cancer drugs across the blood-brain barrier:chemical modifications of drugs or drug-nanoparticles? Drug Discov Today.2008;13:1099-106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700