氮肥施用对大棚内土壤氮素转化及主要气态污染物释放的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大棚是个接近封闭的生态系统,其施用氮肥量大,氮肥的利用率低,与敞开体系相比挥发氮素不易扩散,各种环境问题易发生。为了提高氮肥使用效率,进行了各种尝试,如利用尿素包膜,或添加脲酶抑制剂、硝化抑制剂、聚合物、元素硫。通过实验室模拟和田间试验,在蔬菜大棚中单独施入尿素,或包膜,或加入硝化抑制剂双氰胺(DCD),分析了尿素在土壤中的氮素转化、测定了氨气、二氧化氮和臭氧等气体。研究了大棚内挥发性碳氢化合物的释放特征,获得了以下主要研究成果:
     1、通过室内模拟,不同尿素水平施入土壤一周后,随着施肥水平的的增大,pH值明显上升,NH4+-N浓度上升较大,N03--N浓度上升缓慢,土壤中有效态A1、Mn、Cu、Zn、Ca随着施肥水平的增大而下降。动态试验表明,土壤中五种元素(Al、Mn、Cu、Zn、Ca)随着pH升高,有效态含量逐渐降低,然后随pH降低而升高,其中Al受pH影响最大,当pH上升7.00以上时,有效态A1就很少了,试验发现Ca受pH影响最小。用二次方程Y=ax2+bx+c模拟这些元素含量与pH的关系,在pH4-8范围内,五种元素含量与pH呈负相关。
     2、通过室内模拟,研究了4个尿素品种(普通尿素、保水型控释尿素、德国缓释尿素、矿物改性保膜尿素)施入土壤后pH变化和氨气释放情况的差异。结果表明,德国缓释尿素pH下降速度最慢,而氨气挥发量最多,五周内在冲积性菜园土、红壤性菜园土、茶园土和北京菜园土中挥发NH3-N分别占总施N量的25.6%、16.7%、3.0%和34.4%。矿物改性包膜尿素pH下降最快,氨气挥发量最少,五周内在冲积性菜园土、红壤性菜园土、茶园土和北京菜园土中挥发NH3-N分别占总施N量的8.07%、5.19%、0.85%和13.0%。这是由于德国缓释尿素含硝化抑制剂双氰胺(DCD);抑制硝化反应,pH下降缓慢,氨气挥发量大,矿物改性包膜尿素外面一层磷矿粉,能缓解尿素的溶解,降低氮的释放,减少氨气挥发,优于其它尿素品种。
     3、采用实验室人工气候箱培养的方法,研究了双氰胺在不同温度下对两种不同土壤(碱性菜园土和酸性菜园土)中氨挥发的影响,以及对尿素氮转化和)H值变化的影响。结果表明,在两种土壤中,随着温度的升高pH值和氨的挥发量都升高。碱性土壤氨的挥发量远远大于酸性土壤,在硝化抑制剂双氰胺的处理中,15℃时氨挥发总量增加了353.18%,25℃时增加了618.33%,35℃时增加了1080.46%。总体上土壤硝态氮的量随着温度的升高有下降的趋势。铵态氮的量是先增大后减小,随着温度的升高铵氮含量出现峰值的时间提前,约为一周。
     4、在长沙大棚田间试验四个不同氮肥处理:不施氮肥(T1)、施普通尿素(T2)、施矿物改性包膜尿素(T3)、硝化抑制剂双氰胺(DCD)+普通尿素(T4)中,利用被动采样器,进行了一个半月对NH3、N02和03的采样,氨气、二氧化氮和臭氧平均浓度从高到低的顺序分别是(μg/m3):T4(31.66)>T2(25.93)>T3(23.52)>T1(7.96),T2(10.99)>T3(8.16)>T4(7.48)>T1(5.20),T2(75.05)>T364.20)>T4(63.85)>T1(49.02)。塑料大棚中施入氮肥后,发生了光化学反应,并且产生了有害气体的积累。双氰胺抑制铵根离子向硝酸盐的转化,增加了氨挥发和减少二氧化氮的生成。矿物改性包膜尿素减少了氨挥发和二氧化氮的生成,增加了氮素利用效率。极显著正相关(p<0.01)在大气温度与氨气和二氧化氮水平之间、土壤pH值与氨气和二氧化氮水平之间被证实。高纬度大棚中,银川其臭氧浓度是低纬度长沙的两倍。银川郊区臭氧日浓度在168.03到214.83μ g/m3之间变化,超过了160μ g/m3(国家一级标准),最大值214.83μ g/m3超过了200μ g/m3(国家三级标准)。
     5、用气相色谱并使用质谱检测器对非甲烷碳氢化合物进行分析,检测限在0.1μ g/m3以下。长沙市郊区温室大棚内外非甲烷碳氢化合物的平均浓度,大棚内的NMHC的浓度远远高于大棚外,棚内NMHC总浓度是132.53ppb,是棚外的4.44倍。棚内植物释放了大量异戊二烯,棚内大气中VOCs化学活性强于棚外,更易发生光化学反应。大棚内莴苣叶片中POD活性棚外大于棚内,说明了大棚施肥明显地抑制了POD活性,而棚外较高的POD抑制植株的生长,因此棚外莴苣生长矮小。特别是棚内施氮肥处理第二次测定中,POD活性异常低,受到严重抑制,此时棚内施氮肥处理第二次测定中MDA含量异常升高,远远高于同次测定的其它处理,表明此时莴苣已经受到了明显的环境胁迫作用,在塑料大这个特殊的环境中,施入氮肥后,发生了光化学反应,产生有害气体的积累,造成了对植物的伤害。
Greenhouses almost were closed environment. In greenhouses environmental problems began to emerge as much use of nitrogen fertilizer and the low utilization rate of fertilizer and volatilization N not easy to go out. To optimize fertilizer N efficiency, various attempts have been made to coat or treat N fertilizers with urease inhibitors, nitrification inhibitors, polymers, and elemental S. we designed and conducted laboratory and field experiments to measure air concentrations of NH3, NO2and O3at vegetable fields with the application of urea alone or with coating or with nitrification inhibitor (dicyandiamide, DCD), to study about transformation of N. We studied release of the hydrocarbon in greenhouse.
     1. With simulation test, the results showed that soil pH and concentration of NH4+-N increased quickly, concentration of NO3--N increased slow by fertilizing different level of fertilization in soil, while soil available Al, Mn, Cu, Zn and Ca decreased sharply with the increasing level of fertilization after one week. The dynamic experiment revealed that the concentrations of5elements of Al, Mn, Cu, Zn and Ca by fertilizing urea in soil were more and more lower with the pH raising, and then they were more and more higher with the pH dropping. The influence on Al was the most important, when pH raising to over7.00, the concentration of exchangeable Al was much lower. The pH influence on Ca was not so considerable. In pH4-8, by formula Y=ax2+bx+c simulating the relationship of concentrations of these pH values and elements, concentrations of these elements were negatively correlated with pH values.
     2. With simulation test, we studied about change of pH and volatilization of ammonia by fertilizing four different types of urea (general urea, keep water controlled-release urea, Germany slow-release urea, mineral coated urea). The results showed that the fallen rate of pH by Germany slow-release urea was the slowest while the amount of ammonia volatilization was the biggest, in the five weeks the amount was25.6%in alluvial vegetable garden soil,16.7%in red vegetable garden soil,3.0% in tea garden soil,34.4%in Beijing vegetable garden soil. The fallen rate of pH by fertilizing mineral coated urea was the fastest while the amount of ammonia volatilization was the smallest, in the five weeks the amount was8.07%in alluvial vegetable garden soil,5.19%in red vegetable garden soil,0.85%in tea garden soil,13.0%in Beijing vegetable garden soil. Because there was inhibitor (DCD) in Germany slow-release urea, which controlled nitroreaction and the fallen velocity of pH was slow, the amount of ammonia volatilization was great. The mineral coated urea was coated ground phosphate rock and reduced nitrogen release, decreased ammonia volatilization and better than other urea.
     3. Incubation studies on the effect of dicyandiamide on ammonia volatilization in two different soils such as alkaline soil and acid soil, and on urea-nitrogen transformation and pH value's change in two different soils show that in these two different soils, pH and ammonia content increased with the elevated temperature, and were higher in treatments with nitrification dicyandiamide than in no-NI control. The amount of ammonia volatilization in alkaline soil was much more than in acid soil, approximately353.18%,618.33%and1080.46%at the temperature of15,25and35℃in the dicyandiamide treatments, respectively. During the whole experiment, the amount of nitrifying nitrogen in soils was declined with the rising tempetature. The amout of ammoniacal nitrogen in soils was increased initially and then reduced, and the time of peak revealed earlier followed with the increased temperature, about one week.
     4.. With passive sampler techniques NH3, NO2and O3were measured from plastic greenhouse in Changsha suburban, China, over a one and a half month period. By four treatments (T) types (no N fertilizer T1, common urea T2, coated urea T3and common urea with nitrification inhibitor dicyandiamide (DCD) T4, the average concentrations (μg/m3) of NH3, NO2and O3emitted from high to low in order was: T4(31.66)> T2(25.93)> T3(23.52)> T1(7.96), T2(10.99)> T3(8.16)> T4(7.48)> T1(5.20), T2(75.05)> T364.20)> T4(63.85)> T1(49.02), respectively. This implied that photochemical reaction took place and there were accumulated harmful gases after applied N fertilizer in plastic greenhouse. DCD inhibit the conversion of ammonium to nitrate, and increase NH3volatilization and decrease NO2levels. The coated urea decreased the levels of NH3and NO2, and increased nitrogen use efficiency. Significant positive correlations (p<0.01) between temperature and NH3, NO2levels, between soil pH and NH3, NO2levels were found. The O3average concentration in higher latitude of Yinchuan suburban, China, was two times greater than that in Changsha suburban, China. The O3daily concentrations in Yinchuan suburban exceeded160μg/m3(i.e., China's Grade Ⅰ standard), and the maximal value214.83μg/m3exceeded200μg/m3(i.e., China's Grade Ⅲ standard).
     5. Reliable sampling and analysis methods were selected and optimized to meet the requirements of atmospheric nonmethane hydrocarbons measurement using gas chromatography equipped with a mass spectrometry. Method detection limits (MDLs) were found below0.1μg/m3nonethane hydrocarbons. The concentration of NMHC in greenhouse in Changsha suburb was132.53ppb, which were4.44times greater than that of outside. The plant releases much isoprene, and the strong chemical activity of VOCs in greenhouse was more prone to photochemical reaction. The activity of POD outside was greater than that in greenhouse, and fertilization in greenhouse significantly inhibits POD activity in lettuce leaves. Higher POD activity inhibits the growth of plant, so lettuce growth outside is smaller. Especially in second determination, POD activity in greenhouse nitrogen treatment is abnormally low and severely inhibited, while the content of MDA abnormally elevated, far higher than that in other treatments, and lettuce has been obvious environmental stresses, which implied there were accumulated harmful gases and photochemical reaction took place after N fertilizer application in special plastic greenhouse conditions.
引文
[1]Kissel D E, Cabrera M L, Ferguson R B. Reaction of ammonia and urea hydrolysis products with soil [J]. Soil Science Society America Journal,1988,52: 1973-1976.
    [2]陈德明,王亭杰,雨山江,等.缓释和控释尿素的研究与开发综述[J].化工进展,2002,21(7):455-461.
    [3]叶世超,林忠成,戴其根,等.施氮量对稻季氨挥发特点与氮素利用的影响[J].中国水稻科学,2011,25(1):71-78.
    [4]Cabrera M L, Kissel D E, Craig J R, et al. Relative humidity and water content of forest floor control ammonia loss form urea applied to loblolly pine[J]. Soil Science Society America Journal,2010,74:543-549.
    [5]Viek P L G, Stumpe J M. Effect of Solution Chemistry and Enironmental Conditions an Ammouia Volatilization Losses from Aqneous Systems [J]. Soil Science Society America Journal,1978,42:416-421.
    [6]Merigout P, Gaudon V, Quillere I, et al. Urea use efficiency of hydroponically grown maize and wheat[J]. Journal of Plant Nutrition,2008,31(3):427-443.
    [7]Zeng Q R, Liao B H, Zhang L T, et al. Short-term alleviation of aluminum phytotoxicity by urea application in acid soils from south China [J].Chemosphere, 2006(63):860-868.
    [8]鲁如坤,时正元,赖庆旺.红壤养分退化研究(Ⅱ)-尿素和碳铵在红壤中的转化[J].土壤通报,1995,2(6):241-243.
    [9]金婷婷,刘鹏,徐根娣,等.外源有机酸对铝毒胁迫下大豆根系形态的影响[J].中国油料作物学报,2606,28(3):302-308.
    [10]Peter P B, Igor M. Impact of low pH and aluminium on nitrogen uptake and metabolism in roots of Lotus japonicus[J]. Biologia,2007,62(6):715-719.
    [11]Niinemets U, Monson R K, Kesselmeier J, et al. The leaf-level emission factor of volatile isoprenoids:caveats, model algorithms, response shapes and scaling[J]. Biogeosciences,2010,7:1809-1832.
    [12]Faubert P, Tiiva P, Nakam T A, et al. Non-methane biogenic volatile organic compound emissions from boreal peatland microcosms under warming and water table drawdown[J]. Biogeochemistry,2011,106(3):503-516.
    [13]Guenther A, Hewitt C N, Erickson D A. Global-model of natural volatile organic compound emissions [J]. Journal of Geophysical Research-Atmospheres, 1995(100):8873-8892.
    [14]Piccot S D, Watson J J, Jones J W. A global inventory of volatile organic compound emissions from anthropogenic sources [J]. Journal of Geophysical Research-Atmospheres,1992(97):9897-9912.
    [15]王雪松,李金龙.人为源排放VOCs对北京地区臭氧生成的贡献[J].中国环境科学,2002(22):501-505.
    [16]Liu J, Zhao J, Li T. Establishment of Chinese anthropogenic source volatile organic compounds emission inventory [J]. Journal of Environmental Sciences, 2008(28):496-500.
    [17]Zhang Q, Streets D G, Carmichael G R. Asian emissions in 2006 for the NASA INTEX-B mission [J]. Atmospheric Chemistry and Physics,2009(9):5131-5153.
    [18]Schauer J J, Fraser M P, Cass G R, et al. Source reconciliation of atmospheric gas-phase and particle-phase pollutants during a severe photochemical smog episode [J]. Envirnmental Science and Technology,2002,36(17):3806-3814.
    [19]Srivastava A, Josepha A E, Patila S. Air toxics in ambient air oof Delhi [J]. Atmospheric Environment,2005,39:59-71.
    [20]Molhave L. Volatile organic compounds, indoor air quality and health, indoor air. 90 proceedins of the 5th international conference on indoor air quality and climate [C]. Ottawa Ontario:Canada Mortgage Housing Corp,1990,5:15-33.
    [21]Xu Z, Liu J F, Zhang Y J, et al. Ambient levels of atmospheric carbonyls in Beijing during the 2008 Olympic Games[J]. Journal of Environmental Sciences, 2010,22(9):1348-C1356.
    [22]Nelson P F, Quigley S M. Non-methane hydrocarbons in the atmosphere of Sydney, Australia [J]. Environmental Science and Technology,1982,16: 650-655
    [23]Gee I K, Sollars C J. Ambient air levels of volatile organic compounds in Latin American and Asian cities [J]. Chemosphere,1998,36(11):2497-2506
    [24]Liu C M, Xu Z L, Du Y G. Analyses of volatile organic compounds concentrations and variation trends in the air of Changchun, the northeast of China [J]. Atmospheric Environment,2000,34:4459-4466.
    [25]Wang P, Zhao W. Assessment of ambient volatile organic compounds (VOCs) near major roads in urban Nanjing, China [J]. Atmospheric Research,2008,89: 289-297.
    [26]Guo H, Lee S C, Louie P K, et al. Characterization of hydrocarbons, halocarbons and carbonyls in the atmosphere of Hongkong [J]. Chemosphere,2004,57: 1363-1372.
    [27]Guo H, So K L, Sinpson I J, et al. C1-C8 volatile organic compounds in the atmosphere of Hong Kong:overview of atmospheric processing and source apportionment [J]. Atmospheric Enviroment,2007,41:1456-1472
    [28]姜洁.博士论文.北京大气中痕量挥发性有机污染物的浓度变化研究[D].中国研究生院大气物理所,2006:68-196.
    [29]Jobson B T, Berkoeitz C M, Kuster W C, et al. Hydrocarbon source signatures in Houston, Texas:influence of the petrochemical industry [J]. Journal of Geophysical Research-Atmosphere,2004,109 (D24), D24305, doi:10.1029/2004JD004887.
    [30]Gros V, Scriare J, Yu T. Air quality measurement in megacities:focus on gaseous organic and particulate pollutants and comparison between two contrasted cities, Paris and Beijing [J]. Comptes Rendus Geosciences,2007,339:764-774.
    -[31] Song Y, Shao M, Liu Y, et al. Source apportionment of ambient volatile organic compounds in Beijing [J]. Environment Science and Technology,-2007,41 (12): 4348-4353.
    [32]Xie X, Shao M, Liu Y, et al. Estimate of initial isoprene contribution to ozone formation potential in Beijing, China [J]. Atmospheric Environment,2008,42: 6000-6010.
    [33]Liu J F, Mu Y J, Zhang Y J, et al. Atmospheric levels of BTEX compounds during the 2008 Olympic Games in the urban area of Beijing [J]. Science of the total Environment,2009,408 (1):109-116.
    [34]郑子成,李廷轩,何淑勤,等.保护地土壤生态问题及其防治措施的研究[J].水土保持研究,2006,13(1):18-20.
    [35]曾礼,郑子成,李廷轩,等.设施土壤水-盐运移的研究进展[J].土壤,2008,40(3):367-371.
    [36]郭红伟,郭世荣,黄保健.大棚辣椒不同连作年限土壤理化性质研究[J].江苏农业科学,2011,39(5):452-455.
    [37]李萍萍.设施园艺中的土壤生态问题分析及清洁生产对策[J].农业工程学报,2011,27:346-351.
    [38]童有为,陈淡飞.温室土壤次生盐渍化的形成和治理途径研究[J].园艺学报,1991,18(2):159-1621.
    [39]孙世中,郭云周,官会林,等.不同管理模式下香石竹设施栽培土壤盐渍化特征及其诱导病害[J].土壤,2010,42(6):972-977.
    [40]郇恒福,周健民,段增强,等.施用菜籽饼对次生盐渍化温室土壤有效养分、盐分及盐分组成的影响[J].土壤,2008,40(4):586-590.
    [41]陈碧华,杨和连,李亚灵,等.不同种植年限大棚菜田土壤水溶性盐分的变化特征[J].水土保持学报,2012,26(1):241-245.
    [42]程美廷.温室土壤盐分积累、盐害及其防治[J].土壤肥料,1990,(1):1-4.
    [43]吴多三.土壤盐类浓度障害对蔬菜作物生产的影响[J].蔬菜,1987,(3):1-4.
    [44]曾希柏,白玲玉,苏世鸣,等.山东寿光不同种植年限设施土壤的酸化与盐渍化[J].生态学报,2010,30(7):1853-1859.
    [45]王金辉,柳勇,徐润生,等.不同施肥水平对耕层土壤盐分迁移和分布的影响[J].中国土壤与肥料,2009(4):25-30.
    [46]尹红娟,孙文彦.蔬菜硝酸盐累积及其控制措施[J].长江蔬菜,2008,8b:1-4.
    [47]任红,许彦,李劲松.三亚市主要供港澳蔬菜硝酸盐污染评价[J].食品研究与开发,2012,33(10):200-202.
    [48]胡克伟,贾冬艳,王东升.保护地土壤次生盐渍化及调控措施[J].北方园艺,2002,(1):12-13.
    [49]相马晓.农业おぞご园艺[J].1985,60(10):1289-1290.
    [50]Guenther A. The contribution of reactive carbon emissions from vegetation to the carbon balance of terrestrial ecosystems [J]. Chemosphere,2002,49:837-844.
    [51]Hakola H, Tarvainen V, Laurila T, et al. Seasonal variation of VOC concentrations above a boreal coniferous forest [J]. Atmospheric Environment, 2003,37:1623-1634.
    [52]Parra R, Gasso'S, Baldasano J M. Estimating the biogenic emissions of non-methane volatile organic compounds from the North Western Mediterranean vegetation of Catalonia, Spain[J]. Science of the Total Environment,2004,329: 241-259.
    [53]Zhang X, Mu Y, Song W, et al. Seasonal variations of isoprene emissions from deciduous trees [J]. Atmospheric Environment,2000,34:3027-3032.
    [54]Broadgate W J, Malina G, Kupper F C, et al. Isoprene and other non-methane hydrocarbons from seaweeds:a source of reactive hydrocarbons to the atmosphere [J]. Marine Chemistry,2004,88:61-73.
    [55]Baker B, Bai J, Johnson C, et al. Wet and dry season ecosystem level fluxes of isoprene and monoterpenes from a southeast Asian secondary forest and rubber tree plantation [J]. Atmospheric Environment,2005,39:381-390.
    [56]Tsigaridis K, Kanakidou M. Importance of volatile organic compounds photochemistry over a forested area in central Greece [J]. Atmospheric Environment,2002,36,3137-3146.
    [57]Claeysa M, Wang W, Ion A C, et al. Formation of secondary organic aerosols from isoprene and its gas-phase oxidation products through reaction with hydrogen peroxide [J]. Atmospheric Environment,2004,38:4093-4098.
    [58]Strong C, Fuentes J D, Baldocchi D. Reactive hydrocarbon flux footprints during canopy senescence [J]. Agricultural and Forest Meteorology,2004,127:159-173.
    [59]Duane M, Poma B, Rembges D, et al. Isoprene and its degradation products as strong ozone precursors in Insubria, Northern Italy [J]. Atmospheric Environment, 2002,36:3867-3879.
    [60]Zhang D, Lei W, Zhang R. Mechanism of OH formation from ozonolysis of isoprene:kinetics and product yields [J]. Chemical Physics Letters,2002,358: 171-179.
    [61]Kotzias D. Reaction of monoterpenes with ozone, sulfur dioxide and nitrogen dioxide gas-phase oxidation of SO2 and formation of sulfuric acid [J]. Atmospheric Environment,1990,24:2127-2132.
    [62]Lechner M, Moser B, Niederseer D, et al. Gender and age specific differences in exhaled isoprene levels[J]. Respiratory Physiology & Neurobiology, Respiratory Physiology and Neurobiology,2006,154(3):478-483.
    [63]Anderson D. Genetic and reproductive toxicity of butadiene and isoprene [J]. Chemico-Biological Interactions,2001,135-136:65-80.
    [64]Voutsas E, Vavva C, Magoulas K, et al. Estimation of the volatilization of organic compounds from soil surfaces. Chemosphere,2005,58:751-758.
    [65]司徒淑娉,王雪梅,Guenther A,等.典型夏季珠江三角洲地区植被的异戊二烯排放[J].环境科学学报,2009,30(4):2381-2391.
    [66]白建辉,林凤友,万晓伟,等.长白山温带森林挥发性有机物的排放通量[J].环境科学学报,2012,32(3):545-554.
    [67]谢昱,王体健,江飞,等.NOx和VOC自然源排放及其对中国地区对流层光化学特性影响的数值模拟研究[J].环境科学,2007,28(1):32-40.
    [68]黄爱葵,李楠,Guenther A,等深圳市显著排放VOCs的园林植物调查与分析[J].环境科学,2012,32(12):3555-3559.
    [69]贾凌云,冯汉青,孙坤,等.温度变化下银白杨叶片中线粒体呼吸对光合作用和异戊二烯释放的影响[J].植物生理学报,2012,48(10):465-670.
    [70]张光亚,陈美慈,闵航.设施栽培土壤N20释放及硝化、反硝化细菌数量的研究[J].植物营养与肥料学报,2002,8(2):239-243.
    [71]Gioacchini P, Nastri A, Marzadori C, et al. Influence of urease and nitrification inhibitors on N losses from soils fertilized with urea [J]. Biology and Fertility of Soils,2002,36:129-135.
    [72]Han H Y, Zhao L G. Farmers'Character and Behavior of Fertilizer Application-Evidence from a Survey of Xinxiang County, Henan Province, China[J]. Agricultural Sciences in China,2009,8(10):1238-1245.
    [73]Han H Y, Zhao L G. Farmers' character and behavior of fertilizer application-evidence from a survey of Xinxiang county, Henan province, China [J]. Agricultural Science in China,2009,8(10):1238-1245.
    [74]Ye L M, Ranst E V. Production scenarios and the effect of soil degradation on long-term food security in China[J]. Global Environmental Change,2009,19(4): 464-481.
    [75]Welch R M, Graham R D. Breeding for micronutrients in staple food crops from a human nutrition perspective [J]. Journal of Experimental Botany,2004,55: 353-364.
    [76]Tang J, Zou C, He Z, et al. Mineral element distributions in milling fractions of Chinese wheats [J]. Journal of Cereal Science,2008,48:821-828.
    [77]Singh M V. Micronutrient deficiencies in crops and soils in India. Micronutrient deficiencies in global crop production. Springer, Berlin:2007,93-125.
    [78]Singh M V. Micronutrients in Indian soils and plants. Progress report of AICRP micro and secondary nutrients and pollutant elements in soils and plants,1998,28: 1-122.
    [79]赵荣芳,陈新平,张福锁.华北地区冬小麦-夏玉米轮作体系的氮素循环与平衡[J].土壤学报,2009,46(4):684-697.
    [80]贺发云,尹斌,金雪霞,等.南京两种菜地土壤氨挥发的研究[J].土壤学报,2005,42(2):253-259.
    [81]鲁如坤.土壤化学分析方法[M].北京:中国农业科技出版社,2000.
    [82]Van Grinsven H J M, Van Riemsdijk W H, Otjes R, et al. Rates of aluminum dissolution in acid sandy soils observed in column experiments [J]. Journal of Environmental Quality,1992,21:429-437.
    [83]于君宝,,刘景双,,王金达,等.,典型黑土pH值变化对营养元素有效态含量的影响研究[J].土壤通报,2003,34(5):404-408.
    [84]成杰民,潘根兴,郑金伟.太湖地区水稻土pH及重金属元素有效态含量变化影响因素初探[J].农业环境科学学报,2001,20(3):141-144.
    [85]Sommer S G, Schjoerring J K, Denmead O T.Ammonia emission from mineral fertilizers and fertilized crops[J]. Advances in Agronomy,2004,82:557-622.
    [86]Ladha J K, Pathak H, Krupnik T J, et al. Efficiency of Fertilizer Nitrogen in Cereal Production:Retrospects and Prospects[J]. Advances in Agronomy,2005, 87:85-156.
    [87]Plaza C, Hemandez D, Garcia-Gil J C, et al. Microbial activity in pig slurry-amended soils under semiarid conditions[J]. Soil Biology and Biochemistry,2004,36(10):1577-1585.
    [88]Chen D, Suter H, Islam A, et al. Prospects of improving efficiency of fertiliser nitrogen in Australian agriculture:a review of enhanced efficiency fertilisers[J]. Soil Research,2008,46(4):289-301.
    [89]Morgan K T, Cushman K E, Sato S. Release mechanisms for slow-and controlled-release fertilizers and strategies for their use in vegetable production[J]. HortTechnology,2009,19 (1):10-12.
    [90]杜建军,毋永龙,田吉林,等.控/缓释肥料减少氨挥发和氮淋溶的效果研究[J].水土保持学报,2007,21(2):49-52.
    [91]Amberger A. Research on dicyandiamide as a nitrification inhibitor and future outlook [J]. Communications in Soil Science and Plant Analysis,1989,20: 1933-1955.
    [92]Zaman M, Saggar S, Blenerhassett J D, et al. Effect of urease and nitrification inhibitors on N transformation, gaseous emissions of ammonia and nitrous oxide, pasture yield and N uptake in grazed pasture system[J]. Soil Biology and Biochemistry,2009,41(6):1270-1280.
    [93]Zaman M, Nguven M L, Blenerhassett J D, et al. Reducing NH3, N2O and NO3VN losses from a pasture soil with urease or nitrification inhibitors and elemental S-amended nitrogenous fertilizers [J]. Biology and Fertility of Soil, 2008,44(5):693-705.
    [94]Ferguson R B, Lark R M, Slater G P. Approaches to Management Zone Definition for Use of Nitrification Inhibitors[J]. Soil Science Society America Journal,2003,67(3):937-947.
    [95]Khalil M, Gutser R, Schmidhalter U. Effects of urease and nitrification inhibitors added to urea on nitrous oxide emissions from a loess soil[J]. Journal of Plant Nutrition and Soil Science,2009,172,651-660.
    [96]Li H, Liang X Q, Chen Y X, et al. Effect of nitrification inhibitor DMPP on nitrogen leaching, nitrifying organisms, and enzyme activities in a rice-oilseed rape cropping system[J]. Journal of Environmental Sciences,2008,20(2): 149-155.
    [97]孙克君,毛小云,卢其明,等.几种控释氮肥减少氨挥发的效果及影响因素研究[J].应用生态学报,2004,15:2347-2350.
    [98]沈玉君,李国学,任丽梅,等.不同通风速率对堆肥腐熟度和含氮气体排放的影响[J].农业环境科学学报,2010,29(9):1814-1819.
    [99]王肖娟,危常州,张君,等.灌溉方式和施氮量对棉田氮肥利用率及损失的影响[J].应用生态学报,2012,23(10):2751-2758.
    [100]蒋朝晖,曾清如,周细红,等.不同温度下施入尿素后土壤短期内pH的变化和氨气释放特性[J].土壤通报,2004,35(3):299-302.
    [101]尚来贵,马琼.尿素肥料转化速度研究[J].甘肃农业科,1994,(11):27-28.
    [102]Sherlock R R, Goh K M. Dynamics of ammonia volatilization from simulated urine patches and aqueous urea applied to pasture.IH.Field verification of a simplified model [J]. Fertilizer Research,1995,6:23-36.
    [103]陈乐恬,佟玉芹,张宝珠,等.二氧化硫被动采样器的研制和应用[J].环境化学,1992,11(5):68-69.
    [104]周细红,曾清如,蒋朝晖,等.尿素施用对土壤pH值和模拟温室箱内NH3和N02浓度的影响[J].土壤通报,2004,35(4):374-376.
    [105]周细红,曾清如,毛小云,等.尿素和包膜尿素对大棚内有害气体浓度变化的影响[J].应用生态学报,2006,17(9):1604-1608.
    [106]曾清如,沈杰,周细红,等.施用尿素对温室内N02和NH3气体积累的影响[J].农业环境科学学报,2004,23(5):857-860.
    [107]陈乐恬,佟玉芹,方精云,等.高纬度和北极地区空气中SO2、NO2和NH3浓度的观测[J].环境科学学报,1997,17(2):248-249.
    [108]陈乐恬,佟玉芹,宋文质,等.大气臭氧扩散采样方法的初步研究[J].环境化学,1999,18(4):333-335.
    [109]汤灿,曾清如,蒋朝晖,等.被动采样-UV法测定环境空气中的臭氧浓度[J].安全与环境学报,2004,4(4),13-16.
    [110]Jiang Z H, Zeng Q R, Liao, B H, et al. Ammonia volatilization and availability of Cu, Zn induced by applications of urea with and without coating in soils [J]. Journal of Environmental Sciences,2012,24:177-181.
    [111]皮荷杰,曾清如,蒋朝晖,等.硝化抑制剂对不同土壤尿素态氮转化的影响.水土保持学报[J],2009,23(1):68-72.
    [112]Singh J, Saggar S, Bolan N S, et al. Influence of urease and nitrification inhibitors on ammonia and nitrous oxide emissions under field conditions. In: Currie LD, Hanly JA (eds) Proceedings of the workshop Implementing,2006.
    [113]Das P, Kim K H, Sa J H. Emissions of ammonia and nitric oxide from an agricultural site following application of different synthetic fertilizers and manures [J]. Geosciences Journal,2008,12:177-190.
    [114]Sommer S G, Schjoerring J K, Denmead, O T. Ammonia emission from mineral fertilizers and fertilized crops [J]. Advances in Agronomy,2004,82:558-622.
    [115]Roelle P A, Aneja V P. Characterization of ammonia emissions from soils in the upper coastal plain, North Carolina [J]. Atmospheric Environment,2002a,36: 1087-1097.
    [116]Ormeci B, Sanin S L, Peirce J J. Laboratory study of NO flux from agricultural soil:effects of soil moisture, pH, and temperature [J]. Journal of Geophysical research,1999,104:1612-1629.
    [117]Carmichael G R, Ferm M, Thongboonchoo N. Measurements of sulfur dioxide, ozone and ammonia concentrations in Asia, Africa, and South America using passive samplers [J]. Atmospheric Environment,2003,37:1293-1308.
    [118]马超,李树钢,薛志文,等.VOCs排放、污染以及控制对策[J].环境工程技术学报,2012,2(2):103-109.
    [119]吕子峰,郝吉明,邓青春,等.北京市夏季二次有机气溶胶生成潜势的估算 [J].环境科学,2009,30(4):969-975.
    [120]刘雅婷,彭跃,白志鹏,等.沈阳市大气挥发性有机物(VOCs)污染特征[J].环境科学,2011,32(9):2777-2785.
    [121]刘小刚,张富仓,杨启良,等.调亏灌溉和施氮对玉米叶片保护系统的影响[J].中国生态农业学报,2009,7(6):1080-1085.
    [122]刘亚云,孙红斌,陈桂珠.多氯联苯对桐花树幼苗生长及膜保护酶系统的影响[J].应用生态学报,2007,18(1):123-128.
    [123]刘俊,廖柏寒,周航,等.镉胁迫下大豆生长发育的生理生态特征[J].生态学报,2010,30(2):333-340.
    [124]原牡丹,侯智霞,翟明普,等.IAA分解代谢相关酶(IAAO、POD)的研究进展[J].中国农学通报,2008,24(8):88-92.
    [125]原牡丹,苏艳,侯智霞,等.草莓果实发育过程中IAA及其代谢相关酶的变化特性[J].北京林业大学学报,2009,31(6):169-175.
    [126]李朝苏,刘鹏,蔡妙珍,等.荞麦对酸铝胁迫生理响应的研究[J].水土保持学报,2005,19(3):105-109.
    [127]杨途熙,王佳,魏安智,等.杏的开花生理研究[J].西南大学学报(自然科学版),2012,32(2):25-31.
    [128]陈红,王永清.茄子/番茄嫁接体发育过程中的蛋白质含量,POD, CAT和SOD活性及其同工酶研究[J].四川农业大学学报,2006,16(2):41-43.
    [129]张立新,李生秀.氮、钾、甜菜碱对水分胁迫下夏玉米叶片膜脂过氧化和保护酶活性的影响[J].作物学报,2007,33(3):482-490.
    [130]彭艳,李洋,杨广笑,等.铝胁迫对不同小麦SOD, CAT, POD活性和MDA含量的影响[J].生物技术,2006,16(3):38-42.
    [131]朱晓军,梁永超,杨劲松,等.钙对盐胁迫下水稻幼苗抗氧化酶活性和膜脂过氧化作用的影响[J].土壤学报,2005,42(3):453-458.
    [132]李文庆,张民,李海峰,等.大棚土壤硝酸盐状况研究[J].土壤学报,2002,39(2):283-287.
    [133]赵莉,罗建新,黄海龙,等.保护地土壤次生盐渍化的成因及防治措施[J].作物研究,2007,21(5):547-550.
    [134]Na K, Kim Y P, Moon K C. Diurnal characteristics of volatile organic compounds in the Seoul atmosphere[J]. Atmospheric Environment,2003,37:733-742.
    [135]Goldan P D, Kuster W C, Williams E, et al. Non-methane hydrocarbon and oxy-hydrocarbon measurements during the 2002 New England air quality study[J]. Journal of Geophysical Research,2004,109:D21309, doi: 10.1029/2003 JD004455.
    [136]Martien P T, Harley R A, Milford J B. Evaluation of incremental reactivity and its uncertainty in southern California[J]. Environment Science and Technology, 2003,37:1598-1608.
    [137]Atkinson R. Gas-phase tropospheric chemistry of organic compounds:A review[J]. Atmospheric Environment,1990,24A,1-41.
    [138]Heiden A C, Kobel K, Komenda M, et al. Toluene emissions from plants [J]. Geophysical Research Letters,1999,26:1283-1286.
    [139]白建辉,Baker B.草地异戊二烯排放通量影响因子的研究[J].大气科学,2004,28(5):783-794.
    [140]邵敏,付琳琳,刘莹,等.北京市大气挥发性有机物的关键活性组分及其来源[J].中国科学D辑地球科学,2005,35(增刊Ⅰ):123-130.
    [141]Chameides W L, Lindsay R W, Richardson J L, et al. The role of biogenic hydrocarbons in urban photochemical smog:Atlanta as a case study [J]. Science, 1988,241:1473-1475.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700