基于视觉显著性的网络丢包图像和视频的客观质量评估方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着网络视频在娱乐、教育、商业等方面越来越广泛的应用,高品质的视频压缩技术不断推陈出新,用户对高质量视频的需求也随之不断提高。然而,以网络为载体的视频数据除了会遭受有损压缩带来的量化编码失真,还会在传输过程中遭遇信道传输的拥塞或延迟而造成的数据包丢失。由于视频的压缩和解码中广泛采用了空间-时间运动估计技术,因此,视频数据包的丢失会严重影响解码后终端视频的观看质量。受网络丢包损伤的图像和视频具有独特的视觉特征,而目前的客观质量评估研究还主要集中在对压缩编码失真的评估。因此,对受丢包影响的图像和视频进行有效地评估,特别是建立一种符合人眼视觉感知特性的客观质量评估方法,对于网络服务的设计和监控具有重要的意义。
     本研究主要面向受网络丢包损伤的图像和视频,从研究丢包失真图像和视频的视觉特征出发,结合人眼视觉的选择性注意特性,提出了基于视觉显著性的全参考客观质量评估模型。本文的主要研究内容及贡献如下:
     在对网络丢包失真图像和视频的空间-时间视觉特征进行分析的基础上,本文提出结合人眼视觉系统的显著性视觉注意特性来评估网络丢包失真图像和视频的感知质量。图像和视频的视觉显著注意信息通过采用Itti的自底向上显著区域检测模型得到。对于动态视频的应用,本文将运动作为另一种显著特征,通过结合生物启发式HR运动感知检测模型,在Itti的显著区域检测模型中实现了基于生物相关的HR多尺度显著运动感知模型。
     本文分别针对网络丢包图像和视频构建了两个数据库。原始视频采用17个来自美国某视频研究所的标准视频序列,并模拟网络丢包事件构造了受丢包损伤的重建图像和视频序列。为了排除长视频序列中由于丢包所在位置、长度、以及宽恕效应等因素的影响,使得视觉显著性信息能够充分反映网络丢包视频的视觉特性,每个测试视频为只含有单个丢包事件的短视频序列。对于每一个数据库,本文都按照ITU-R BT500-11标准严格实施了单激励主观质量评价实验,其结果为论文的客观质量方法提供了评价标准。
     通过探索人眼视觉系统自底向上以图像数据为驱动的预注意机制原理,根据网络丢包损伤图像/视频的空间视觉特征提出假设:丢包引入的失真在视觉显著注意区域比出现在背景等非视觉注意区域更影响图像/视频质量。借鉴HVS对失真信息进行加权的质量评价思想,论文首次将视觉显著注意信息应用到受网络丢包损伤的图像/视频,提出一组基于视觉显著失真的全参考客观质量评估方法。
     通过探索人眼自顶向下以先验认知为指导的高级视觉注意机制原理,根据网络丢包损伤图像/视频的空间-时间视觉特征提出假设:人眼总是容易被一些突然引入的异常事件,或者局部异常的区域所吸引;这是由于这些事件或区域与人眼在先验感知指导下的期望注意区域产生了差异,而因此导致了注意视线的改变。通过考察网络丢包失真图像/视频与参考图像/视频相比在空间上引起的视觉注意变化,以及在视频时间域上引起的不同幅度的视觉注意变化,并根据这些变化相应的视觉显著性在空间上的差异和在时间上的变化幅度,本文创新地提出基于视觉空间-时间显著性变化的全参考客观质量评估方法。
     在对以上提出的两类视觉显著性质量评估方法进行综合比较后,论文对所有的质量评估方法进行了最佳单调映射变换,并将其作为构建统一评估模型的评价因子。通过应用逐步线性回归分析以及交叉验证方法,本文分别针对网络丢包单个图像以及视频序列构建了基于视觉显著信息的线性评估模型。通过与传统的没有考虑视觉显著信息的客观质量评估模型以及标准的视频评估模型对比,实验结果表明,本文提出的基于视觉显著性的客观质量评估模型能够有效地评价网络丢包损伤图像和视频的感知质量,视觉显著性信息是构建面向网络丢包损伤图像和视频客观质量评估方法的有效且重要的视觉信息。
     本论文为基于视觉选择性注意的图像和视频质量评价研究的发展开辟了新的思路,为人类视觉感知信息的探索和应用提供了一些有意义的参考。
The growing popularity of network video with applications as abroad as entertainment, education and business, advances the rapid development of high definition video compression technology, and further increases the demand of end users for higher quality videos. However, in many networked video applications, the videos may be not only distorted by the quantization in the compression process, but also be corrupted during transmission due to either physical channel bit errors, or congestion and delay, etc. Ultimately, various types of channel impairments all lead to losses of video packets. Because of the use the spatial-temporal motion compensation in video coding and decoding, received videos affected by packet loss may suffer from severe quality distortion. Packet-loss-impaired image or video has its own visual feature, but most of the quality metrics developed so far are concerned with the artifacts induced by lossy image/video coders. Hence, being able to quantify the quality of packet-loss-impaired image and video, especially building an objective assessment method agreed with human perceptual quality, is very important for network service design and provision.
     This thesis aims at objectively evaluating the perceptual quality of packet-loss-impaired image and video. Based on the visual feature of image and video affected by packet loss, we explore the selective visual attention of human vision system and the application of visual saliency information in quality assessment. We finally propose a saliency based full-reference objective quality assessment model. The major contributions of this thesis are:
     Based on the analysis of spatial-temporal visual feature of packet-loss-impaired image and video, we propose to use saliency based visual attention of human vision system to evaluate the perceptual quality of packet-loss-impaired image and video. Visual saliency is determined by Itti’s bottom-up based saliency detection model. For the application of dynamic video, we extend the saliency estimation by integrating motion information as a salient feature, and a multi-scale biology inspired HR motion detector is implemented in Itti’s saliency detection model.
     We construct two databases for packet-loss-impaired images and videos repectively. 17 original videos are selected from the standard video database of a video research institute in the USA. A simulation procedure is conducted on each original video to get the packet-loss-impaired image and video. In order to better investigate the fundamental visual saliency information for loss affected videos, we conduct sequences that only contain single packet loss event. We have recognized that its final impact on the quality of a longer video depends on the error location (forgiveness effect), length, and severity. Ground truth for evaluating the performance of objective quality metric is obtained by carrying out subjective test for each database following the ITU-R BT500-11 recommendation.
     We first investigate the principle of bottom-up based image-driven pre-attentive stage of human vision system, and based on the hypothesis that a packet loss induced error that appears in a saliency region is much more annoying than a distortion happening in an inconspicuous area, a category of saliency weighted pixel-error full-reference objective quality metrics are proposed. Although the general idea of saliency weighted quality assessment is similar with some prior works, we are the first to demonstrate the merit of saliency information on evaluating the perceived quality of packet-loss-impaired image/video.
     We then explore the top-down knowledge-driven high level visual attentive stage of human vision system, and find that human eyes tend to be attracted by some unexpected events or local abnormal regions. This is because these regions are different from the knowledge guided attention regions, and attention scanpaths would change correspondingly. Since packet loss induced artifacts have the similar visual feature, we explore the spatial changes in the saliency values between the original and distorted image and video, and the temporal variation of the saliency map of the distorted video, and finally propose a novel category of saliency sptial-temporal variation based quality metrics.
     We make general comparison of the two categories of saliency based qulity metric by evaluating their correlation with subjective ratings. Each metric is then transformed with an appropriate non-linear mapping to be an evaluation factor. Our final proposed saliency-based video quality model (S-VQM) linearly combines a subset of all considered evaluation factors (including non-saliency factors and saliency related factors). The factors included and the weights for the chosen factors are determined using a stepwise linear regression process. Comparison results of the traditional non-saliency based quality model and the standard video quality model demonstrate that S-VQM provides significant improvement in correlation with subjective data and prediction accuracy. Our work shows that considering saliency information can provide substantial improvement in assessing the perceptual quality of packet-loss-impaired image and video.
     This thesis brings us a new prospect of visual selective attention based objective quality assessment for image and video. It also provides some meaningful reference in methodology for investigation and application of human visual percetual information.
引文
[1]宋向东,美国IPTV市场现状和发展[N], 2007.
    [2]陈凯,美国IPTV稳步发展五大经验供借鉴[N], 2010.
    [3]中国互联网络信息中心, 2010年中国网民网络视频应用研究报告[R], 2010年3月2010.
    [4] ITU-R WP6Q Group. Available: http://www.itu.int/md/R03-WP6Q-C/en
    [5] ITU-R BT.500-11,Methodology for the subjective assessment of the quality of television pictures[S], 2002.
    [6] ITU-R BT.500-12, Methodology for the subjective assessment of the quality of television pictures[S], 2009.
    [7] ITU-T SG9. Available: http://www.itu.int/ITU-T/studygroups/com09/index.asp
    [8] ITU-T Rec. J140, Subjective picture quality assessment for digital cable vision systems[S], 1998.
    [9] ITU-T Rec. J.149,Method for specifying accuracy and cross-calibration of Video Quality Metrics (VQM)[S], 2004.
    [10] ITU-T SG12. Available: http://www.itu.int/ITU-T/studygroups/com12/index.asp
    [11] ITU-T Rec. P.910, Subjective video quality assessment methods for multimedia application[S], 1999.
    [12] ITU-T Rec. P.911, Subjective audiovisual quality assessment methods for multimedia applications[S], 1998.
    [13] ITU-T Rec. P.920, Interactive test methods for audiovisual communications[S], 2000.
    [14] ITU-T Rec. P.930, Principles of a reference impairment system for video[S], 1996.
    [15] ITU-T Rec. P.931, Multimedia communications delay, synchronization and frame rate measurement[S], 1998.
    [16] IEEE Broadcast Technology Society. Available: http://bts.ieee.org/
    [17] M. H. Pinson and S. Wolf. New standardized method for objectively measuring video quality[J]. IEEE Transactions on Broadcasting, 2004, 50 (3): 312-322.
    [18] The Video Quality Expert Group Web Site. Available: http://www.its.bldrdoc.gov/vqeg/
    [19] VQEG, Final report from the video quality experts group on the validatlon of objective models of video quality assessment,Phase I[R], 2000.
    [20] VQEG, Final report from the video quality experts group on the validatlon of objective models of video quality assessment, Phase II[R], 2003.
    [21] ITU-T, Objective perceptual assessment of video quality. Full reference television[S], ITU-TTelecommunication Standardization Bureau (TSB), Switzerland2004.
    [22] Yao Wang, J?rn Ostermann, and Y.-Q. Zhang. Video Processing and Communication[M]. Prentice Hall, 2002.
    [23] B.Girod, "What's wrong with mean-squared error[M]," in Digtal Images and Human Vision, A. B. Watson, Ed. MIT Press,1993.
    [24] Zhou Wang, H. R. Sheikh, and A. C. Bovik, "Objective video quality assessment[M]," in The Handbook of Video Databases: Design and Applications, B. Furht and O. Marqure, Ed. CRC Press,2003.
    [25]用于评估压缩视频数据的客观质量的方法和系统[P], CN1656823.
    [26] Jack L. Kouloheris, Ligang Lu, and Z. Wang, Method and system for objective quality assessment of image and video streams[P], 2007.
    [27] M. Isambart and S. Broom, Video quality assessment[P], 7768937, 2010.
    [28] J. L. Mannos and D. J. Sakrison. Effects of a Visual Fidelity Criterion on Encoding of Images[J]. IEEE Transactions on Information Theory, 1974, 20 (4): 525-536.
    [29] O. D. Faugeras. Digital Color Image-Processing within the Framework of a Human Visual Model[J]. IEEE Transactions on Acoustics Speech and Signal Processing, 1979, 27 (4): 380-393.
    [30] F. X. J. Lukas and Z. L. Budrikis. Picture Quality Prediction Based on a Visual Model[J]. IEEE Transactions on Communications, 1982, 30 (7): 1679-1692.
    [31] A. B. Watson. The Cortex Transform - Rapid Computation of Simulated Neural Images[J]. Computer Vision Graphics and Image Processing, 1987, 39 (3): 311-327.
    [32] A. B. Watson and J. A. Solomon. Model of visual contrast gain control and pattern masking[J]. Journal of the Optical Society of America a-Optics Image Science and Vision, 1997, 14 (9): 2379-2391.
    [33] A. B. Waston. Digital images and human vision[M]. MIT Press.
    [34] N. Graham and A. Sutter. Normalization: Contrast-gain control in simple (Fourier) and complex (Non-Fourier) pathways of pattern vision [J]. Vision Research, 2000, 40 (20): 2737-2761.
    [35] S. Winkler. Vision models and quality metrics for image processing applications[D].PHD Thesis, 2000.
    [36] Z. Wang, L. G. Lu, and A. C. Bovik. Video quality assessment based on structural distortion measurement[J]. Signal Processing-Image Communication, 2004, 19 (2): 121-132.
    [37] Z. Wang, A. C. Bovik, H. R. Sheikh, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13 (4): 600-612.
    [38] Z. Wang, E. P. Simoncelli, and A. C. Bovik. Multi-scale structural similarity for image quality assessment[C]. Conference Record of the Thirty-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, 1: 1398-1402.
    [39] Z. Wang and Q. Li. Information Content Weighting for Perceptual Image Quality Assessment[J]. to appear in IEEE Transactions on Image Processing, accepted 2010.
    [40] G. H. Chen, C. L. Yang, L. M. Po, et al. Edge-based structural similarity for image quality assessment[C]. 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, 2006: 2181-2184.
    [41] ITU-T Rec. J.147,Objective picture quality measurement method by use of in-service test signals[S], 2004.
    [42] O. Sugimoto, R. Kawada, and M.Wada. Objective measurement scheme for perceived picture quality degradation caused by MPEG encoding without any reference pictures[C]. Proc. of SPIE: 932-939.
    [43] S. Saviotti, F. Mapelli, and R. Lancini. Video quality analysis using a water marking technique[C]. Proc. of WIAMIS, 2004.
    [44] P. Campisi, M. Carli, G. Giunta, et al. Blind quality assessment system for multimedia communications using tracing watermarking[J]. IEEE Transactions on Signal Processing, 2003, 51 (4): 996-1002.
    [45] M. C. Q. Farias, S. K. Mitra, M. Carli, et al. A comparison between an objective quality measure and the mean annoyance values of watermarked videos[C]. 2002 International Conference on Image Processing, 2002: 469-472.
    [46]李绍华,林克正, and李东勤.基于水印的视频质量评价研究[J].信息技术, 2006, (10): 33-35.
    [47] A. N. S. Institute, ANSI T1.801.03, American National Standard for Telecommunications - Digital transport of one-way video signals Parameters for objective performance assessment[S], 2003.
    [48] R. S. Recommendations of the ITU, Preliminary Draft New Recommendation, Objective perceptual video quality measurement techniques for digital broadcast television in the presence of a full reference[S].
    [49] ITU-T Rec. J144, Objective perceptual video quality measurement techniques for digital cable television in the presence of a full reference[S], 2004.
    [50] F. Meng, X. H. Jiang, H. Sun, et al. Objective perceptual video quality measurement using a foveation-based reduced reference algorithm[C]. 2007 IEEE International Conference on Multimedia and Expo, 2007: 308-311.
    [38] Z. Wang, E. P. Simoncelli, and A. C. Bovik. Multi-scale structural similarity for image quality assessment[C]. Conference Record of the Thirty-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, 1: 1398-1402.
    [39] Z. Wang and Q. Li. Information Content Weighting for Perceptual Image Quality Assessment[J]. to appear in IEEE Transactions on Image Processing, accepted 2010.
    [40] G. H. Chen, C. L. Yang, L. M. Po, et al. Edge-based structural similarity for image quality assessment[C]. 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, 2006: 2181-2184.
    [41] ITU-T Rec. J.147,Objective picture quality measurement method by use of in-service test signals[S], 2004.
    [42] O. Sugimoto, R. Kawada, and M.Wada. Objective measurement scheme for perceived picture quality degradation caused by MPEG encoding without any reference pictures[C]. Proc. of SPIE: 932-939.
    [43] S. Saviotti, F. Mapelli, and R. Lancini. Video quality analysis using a water marking technique[C]. Proc. of WIAMIS, 2004.
    [44] P. Campisi, M. Carli, G. Giunta, et al. Blind quality assessment system for multimedia communications using tracing watermarking[J]. IEEE Transactions on Signal Processing, 2003, 51 (4): 996-1002.
    [45] M. C. Q. Farias, S. K. Mitra, M. Carli, et al. A comparison between an objective quality measure and the mean annoyance values of watermarked videos[C]. 2002 International Conference on Image Processing, 2002: 469-472.
    [46]李绍华,林克正, and李东勤.基于水印的视频质量评价研究[J].信息技术, 2006, (10): 33-35.
    [47] A. N. S. Institute, ANSI T1.801.03, American National Standard for Telecommunications - Digital transport of one-way video signals Parameters for objective performance assessment[S], 2003.
    [48] R. S. Recommendations of the ITU, Preliminary Draft New Recommendation, Objective perceptual video quality measurement techniques for digital broadcast television in the presence of a full reference[S].
    [49] ITU-T Rec. J144, Objective perceptual video quality measurement techniques for digital cable television in the presence of a full reference[S], 2004.
    [50] F. Meng, X. H. Jiang, H. Sun, et al. Objective perceptual video quality measurement using a foveation-based reduced reference algorithm[C]. 2007 IEEE International Conference on Multimedia and Expo, 2007: 308-311.
    [64] H. T. Luo. A training-based no-reference image quality assessment algorithm[C]. 2004 International Conference on Image Processing, 2004: 2973-2976.
    [65] P. Gastaldo, S. Rovetta, and R. Zunino. Objective quality assessment of MPEG-2 video streams by using CBP neural networks[J]. IEEE Transactions on Neural Networks, 2002, 13 (4): 939-947.
    [66] P. Gastaldo, R. Zunino, and S. Rovetta. Objective assessment of MPEG-2 video quality[J]. Journal of Electronic Imaging, 2002, 11 (3): 365-374.
    [67] S. Mohamed, G. Rubino, H. Afifi, et al. Real-time video quality assessment in packet networks: A neural network model[C]. Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications, 2001: 2035-2041.
    [68] X. H. Jiang, F. Meng, J. B. Xu, et al. No-Reference Perceptual Video Quality Measurement for High Definition Videos Based on an Artificial Neural Network[C]. Proceedings of the 2008 International Conference on Computer and Electrical Engineering, 2008: 424-427.
    [69] D. Culibrk, D. Kukolj, P. Vasiljevic, et al. Feature Selection for Neural-Network Based No-Reference Video Quality Assessment[C]. Artificial Neural Networks - Icann 2009, 2009, 5769: 633-642.
    [70] ITU-T Rec. E.800,Terms and definitions related to the quality of telecommunication services[S], 2008.
    [71] S. Wolf and M. Pinson, NTIA-Report 02-392:Video Quality Measurement Techniques[R], NITA, 2002.
    [72]卢刘明and陆肖元.基于网络丢包的网络视频质量评估[J].中国图象图形学报, 2009, (01): 52-58.
    [73]卢刘明and陆肖元.分组网络中的视频质量评估[J].计算机应用研究, 2008, (09): 2583-2585+2622.
    [74] I. Bouazizi. Estimation of packet loss effects on video quality[C]. 2004 First International Symposium on Control, Communications and Signal Processing, 2004: 91-94.
    [75] ITU-T Rec. P.10 / G.100 Amendment I, New Appendix I Definition of Quality of Experience (QoE)[S], 2007.
    [76] O. Nemethova, M. Ries, M. Zavodsky, et al. PSNR-Based Estimation of Subjective Time-Variant Video Quality for Mobiles[J]. Measurement of Speech and Audio Quality in Networks, 2006: 57-61.
    [77] A. R. Reibman, S. Kanumuri, V. Vaishampayan, et al. Visibility of individual packet losses in MPEG-2 video[C]. 2004 International Conference on Image Processing, 2004: 171-174.
    [78] S. Kanumuri, S. G. Subramanian, P. C. Cosman, et al. Predicting H.264 packet loss visibilityusing a generalized linear model[C]. 2006 IEEE International Conference on Image Processing, 2006: 2245-2248.
    [79] S. Kanumuri, P. C. Cosman, A. R. Reibman, et al. Modeling packet-loss visibility in MPEG-2 video[J]. IEEE Transactions on Multimedia, 2006, 8 (2): 341-355.
    [80] A. R. Reibman and D. Poole. Characterizing packet-loss impairments in compressed video[C]. 2007 IEEE International Conference on Image Processing, 2007: 2329-2332.
    [81] T. L. Lin, S. Kanumuri, Y. Zhi, et al. A Versatile Model for Packet Loss Visibility and its Application to Packet Prioritization[J]. IEEE Transactions on Image Processing, 2010, 19 (3): 722-735.
    [82] T. Liu, X. Feng, A. Reibman, et al. Saliency Inspired Modeling of Packet-loss Visibility in Decoded Videos[C]. Fourth International Workshop on Video Processing and Quality Metrics for Consumer Electronics, VPQM 09’, 2009.
    [83] X. Feng, T. Liu, D. Yang, et al. Saliency Inspired Full-Reference Quality Metrics for Packet-Loss-Impaired Video[J]. IEEE Transactions on Broadcasting, 2011, 57 (1): 81-88.
    [84] T. Liu, Y. Wang, J. M. Boyce, et al. A Novel Video Quality Metric for Low Bit-Rate Video Considering Both Coding and Packet-Loss Artifacts[J]. IEEE Journal of selected topics in signal processing, 2009, 3 (2): 280-293.
    [85] LIVE Video Quality Database. Available: http://live.ece.utexas.edu/research/quality/live_video.html
    [86] K. Seshadrinathan, R. Soundararajan, A. C. Bovik, et al. A Subjective Study to Evaluate Video Quality Assessment Algorithms[C]. Proc. SPIE - Human Vision and Electronic Imaging, 2010.
    [87] K. Seshadrinathan, R. Soundararajan, A. C. Bovik, et al. Study of Subjective and Objective Quality Assessment of Video[J]. IEEE Transactions on Image Processing, 2010, 19 (6): 1427-1441.
    [88] J. Y. You, J. Korhonen, and A. Perkis. Spatial and Temporal Pooling of Image Quality Metrics for Perceptual Video Quality Assessment on Packet Loss Streams[C]. 2010 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2010: 1002-1005.
    [89] J. Y. You, J. Korhonen, and A. Perkis. Attention Modeling for Video Quality Assessment: Balancing Global Quality and Local Quality[C]. 2010 IEEE International Conference on Multimedia and Expo (Icme 2010), 2010: 914-919.
    [90] K. Grill-Spector and R. Malach. The human visual cortex[J]. Annual Review Neuroscience, 2004, 27: 649-677.
    [91] L. Itti and C. Koch. Computational modeling of visual attention[J]. Nature ReviewsNeuroscience, 2001, 2 (3): 194-203.
    [92] N. Kanwisher and E. Wojciulik. Visual attention:insights from brain imaging[J]. Nature Neuroscience, 2000, 1: 91-100.
    [93] L. Itti. Models of bottom-up and tup-down visual attention[D].Ph.D, California Institute of Technology, 2000.
    [94] W. Osberger, A. J. Maeder, and D. Mclean. A computational model of the human visual system for image quality assessment,[C]. Proc. of Digital Image Computing: Techniques and Applications, 1997: 337-342.
    [95] W. Osberger, N. Bergmann, and A. J. Maeder. An automatic image quality assessment technique incorporating high level perceptual factors[C]. IEEE International Conference Image Processing, 1998: 414-418.
    [96] W. Osberger, A. J. Maeder, and N. W. Bergmann. A technique for image quality assessment based on a human visual system model[C]. Proc. of European Signal Processing Conference, 1998.
    [97] Z. K. Lu, W. S. Lin, and E. Ong. Perceptual-quality significance map and its application on video quality distortion metrics[C]. Proc. IEEE International Conference Acoustics,Speech, and Signal Processing, 2003, 3: 617-620.
    [98] A. Ninassi and O. L. Meur. Does where you gase on an image affect your perception of quality?Applying visual attention to image quality metric[C]. Proc. IEEE International Processing. Image Processing, 2007, 2: 169-172.
    [99] I. P. C. Oprea, C. Paleologu and M. Udrea. Perceptual Video Quality Assessment Based on Salient Region Detection[C]. Fifth Advanced International Conference on Telecommunications, 2009: 232-236.
    [100] A. K. Moorthy and A. C. Bovik. Visual Importance Pooling for Image Quality Assessment[J]. IEEE Journal of selected topics in signal processing, 2009, 3 (2): 193-201.
    [101] W. Osberger and A. J. Maeder. Automatic identification of perceptually important regions in an image using a model of the human visual system[C]. International Conference on Pattern Recognition, 1998, 1: 701-704.
    [102] U. Rajashekar, I. van der Linde, A. C. Bovik, et al. GAFFE: A gaze-attentive fixation finding engine[J]. Ieee Transactions on Image Processing, 2008, 17 (4): 564-573.
    [103]卢国庆,李均利,陈刚, et al.基于视觉感兴趣区的视频质量评价方法[J].计算机工程, 2009, (10): 217-219.
    [104]凌云,夏军,屠彦, et al.视觉感兴趣区的提取及其在视频图像质量评估中的应用[J].东南大学学报(自然科学版), 2009, (04): 753-757.
    [105] R. W. Rodieck. The primate retina[J]. Comparative Primate Biology, 1986, 4: 203-278.
    [106] G. Westheimer, "The eye as an optical instrument[M]," in Handbook of Human Perception and Performance. vol. 1, K. R. Boff, et al., Ed., New York Wiley-Interscience,1986.
    [107] D. H. Hubel and T. N. Weisel. Receptive fields,binocular interaction and functional architecture in the cat's visual cortex[J]. Journal of Physiology, 1962, 160: 106-154.
    [108] R. W. Rodieck. Quantitative analysis of cat retinal ganglion cell response to visual stimuli[J]. Vision Research, 1965, 5: 583-601.
    [109] J. B. Troy, "Modeling the receptive fields of mammalian retinal ganglion cells[M]," in Contrast Sensitivity, R.Shapley and D.M.K.Lam, Ed., Cambridge MIT Press,1993.
    [110] C. Francis. The Astonishing Hypothesis:The Scientific Search for the Soul[M]. New York: Scribner reprint edition, 1995.
    [111] L. G. Ungerleider and M. Mishkin, "Two cortical visual systems[M]," in Analysis of Visual Behavior, D. J. Ingel, et al., Ed., Cambridge The MIT Press,1982.
    [112] J. Martin. Saliency maps and attention selection in scale and spatial coordinates:an information theoretic approach[C]. 15th International Conference on Computer Vision, 1995: 195-202.
    [113] L. Itti, C. Koch, and E. Niebur. A model of saliency-base visual attention for rapid scene analysis[J]. IEEE Trans.Pattern Analysis and Machine Intelligence, 1998, 20 (11).
    [114] A. Garcia-Diaz, X. R. Fdez-Vidal, R. Dosil, et al. A novel model of bottom-up visual attention using local energy[J]. Computational Vision and Medical Imaging Processing, 2008: 255-260.
    [115] S. J. Park, J. K. Shin, and M. Lee. Biologically inspired saliency map model for bottom-up visual attention[C]. Proceedings of Biologically Motivated Computer Vision, 2002, 2525: 418-426.
    [116] P. Le Callet, O. Le Meur, D. Barba, et al. Bottom-up visual attention modeling: Quantitative comparison of predicted salience maps with observers eye-tracking data[J]. Perception, 2004, 33: 120-121.
    [117] L. Wei. A bottom-up computational model of visual attention for rapid pathologic slice image analysis[J]. International Journal of Psychology, 2004, 39 (5-6): 68-68.
    [118] A. Oliva, A. Torralba, M. S. Castelhano, et al. Top-down control of visual attention in object detection.[C]. 2003 International Conference on Image Processing, 2003: 253-256.
    [119] X. Sun, T. Zhuravleva, E. C. Tarbi, et al. Measuring Top-Down Control Activity Associated with Selective Visual Attention[J]. Neurology, 2011, 76 (9): A236-A236.
    [120] J. Theeuwes. Top-down and bottom-up control of visual selection[J]. Acta Psychologica, 2010, 135 (2): 77-99.
    [121] D. Heinke, G. W. Humphreys, and C. L. Tweed. Top-down guidance of visual search: A computational account[J]. Visual Cognition, 2006, 14 (4-8): 985-1005.
    [122] S. W. Ban, B. Kim, and M. Lee. Top-down Visual Selective Attention Model Combined with Bottom-up Saliency Map for Incremental Object Perception[C]. 2010 International Joint Conference on Neural Networks, 2010.
    [123] Y. Wang and Q. F. Zhu. Error control and concealment for video communication: A review[J]. Proceedings of the IEEE, 1998, 86 (5): 974-997.
    [124] S. J. Liu, Y. Chen, Y. K. Wang, et al. Frame loss error concealment for multiview video coding[C]. Proceedings of 2008 IEEE International Symposium on Circuits and Systems, 2008: 3470-3473.
    [125] Y. Liu, J. J. Bu, C. Chen, et al. Multiframe error concealment for whole-frame loss in H.264/AVC[C]. 2007IEEE International Conference on Image Processing, 2007: 1977-1980.
    [126] N. Dhavale and L. Itti. Saliency-based multi-foveated MPEG compression[J]. Seventh International Symposium on Signal Processing and Its Applications, Vol 1, Proceedings, 2003: 229-232.
    [127] T. N. Mundhenk and L. Itti. Computational modeling and exploration of contour integration for visual saliency[J]. Biological Cybernetics, 2005, 93 (3): 188-212.
    [128] L. Itti, M. Yoshida, D. Berg, et al. Saliency-based guidance of eye movements in monkeys with unilateral lesion of primary visual cortex[J]. Neuroscience Research, 2009, 65: S51-S51.
    [129] N. Parikh, L. Itti, and J. Weiland. Saliency-based image processing for retinal prostheses[J]. Journal of Neural Engineering, 2010, 7 (1).
    [130] C. K. Chang, C. Siagian, and L. Itti. Mobile Robot Vision Navigation & Localization Using Gist and Saliency[C]. IEEE 2010 International Conference on Intelligent Robots and Systems, 2010: 4147-4154.
    [131] C.Koch and S.Ullman. Shifts in selective visual attention:towards the underlying neural circultry[J]. Human Neurobiology, 1985, 4: 219-227.
    [132] D. Walther. Interactions of visual attention and object recognition: computational modeling[D].Ph.D, California Institute of Technology, Pasadena, CA, 2006.
    [133] Saliency Toolbox1.0. Available: http://www.saliencytoolbox.net/
    [134] K. Seshadrinathan and A. C. Bovik. Motion-based perceptual quality assessment of video[C]. Proc. SPIE - Human Vision and Electronic Imaging, 2009.
    [135] Q. Li and Z. Wang. Video quality assessment by incorporting a motion perception model[C]. Proc.IEEE International Conference Image Processing, 2007: 16-19.
    [136] B. Hassenstein and W. Reichardt. Systemtheoretische Analyse der Zeit-Reihenfolgen, undVorzeihenauswertung bei der Bewe- gungsperzeption des Ruesselkaefers[J]. Naturforch, 1956, 11b: 513-524.
    [137] E. C. Hildreth and C. Koch. The analysis of visual motion: From computational theory to neronal mechanisms[J]. Annual Review of Neuroscience, 1987, 10: 477-533.
    [138] A. Borst and J. Haag. Neural networks in the cockpit of the ?y[J]. Journal of Comparative Physiology, 2002, 188: 419-437.
    [139] H. Y. Wu, T. G. Zhang, A. Borst, et al. An Explorative Study of Visual Servo Control with Insect-Inspired Reichardt-model[C]. 2009 IEEE International Conference on Robotics and Automation, 2009: 1777-1782.
    [140]李东.基于人眼特性的流媒体无参考视频质量评估模型研究[D].硕士,华南理工大学, 2010.
    [141] JM1.0. Available: http://iphome.hhi.de/suehring/tml/index.htm
    [142] PolyVideoLab. Available: http://vision.poly.edu/index.html/index.php?n=HomePage.PerceptualVideoQualityInPresenceOfPacketLoss
    [143] E. L. Lehmann, D'Abrera, and H. J. M. Nonparametrics: Statistical Methods Based on Ranks[M]. NJ: Prentice-Hall, 1998.
    [144] L. Itti and P. Baldi. A principle approach to detecting surprising events in video[C]. Proc.IEEE Int. Conf. Computer Vision and Pattern Recognition, 2005.
    [145] S. Winkler. Digital Video Quality: Vision Models and Metrics[M]. Wiley, 2005.
    [146] M. Zink, O. Künzel, J. Schmitt, et al. Subjective Impression of Variations in Layer Encoded Videos[J]. Lecture Notes in Computer Science, 2003, 2707: 137-154.
    [147] A. Ninassi, O. L. Meur, P. L. Callet, et al. Considering temporal variations of spatial visual distortions in video quality assessment[J]. IEEE Journal of selected topics in signal processing, 2009, 3 (2): 253-265.
    [148] R Software. Available: http://www.r-project.org/
    [149] P. McCullagh and J. A. Nelder. Generalized Linear Models[M]. London, U.K: Chapman & Hall.
    [150] F. D. Simone, M. Naccari, and M. Taglisacchi. Subjective Assessment of H.264/AVC Video Sequences Transmitted Over A Noise Channel[C]. Proc. of QoMEX' 09, 2009. ?

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700