基于光谱自编码微球的高通量筛选技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在药物开发、新药筛选和快速诊断中,一般都要求对数量巨大的待测分子进行筛选检测。常规的高通量筛选技术是将所有的待测分子分别置于相互隔离的多孔板和微试管中,或者将其进行形如高密度DNA芯片的特殊定位,再进行多样品平行筛选。该法不能对不同样品进行同步混合筛选,且操作繁琐、技术复杂、设备昂贵。另一种技术是采用微载体如微球,将不同的待测分子定位于不同微球的表面进行筛选,并对微球进行编码。将载有不同待测分子的微球混合在一起进行筛选,只需识别筛选结果中挑出微球的编码,就可以确定与探针作用的待测分子。该技术具有显著的灵活性和优点,甚至可以实现多种不同的探针进行同步的微量混合筛选。目前常见的微球编码方法有化学编码和物理编码两大类,但在应用中仍存在诸如编码稳定性、反应兼容性和成本等方面的问题而受到限制。
    光谱自编码微球的原理是利用苯乙烯的同系物与苯乙烯进行共聚合成,得到与聚苯乙烯树脂在化学和物理性质上相似,并具有可识别的、稳定的光谱特征的编码微球;讨论了苯乙烯悬浮聚合反应中的反应体系、聚合温度、搅拌速率、引发剂和分散剂用量等诸因素对反应结果的影响;并对苯乙烯的乳液聚合、分散聚合和种子聚合等不同聚合方法进行了对比。将悬浮聚合与分散聚合法相结合,采用了双引发剂优化聚合法,反应总收率88.4%,其中过70目标准筛收率为22.8%。将苯乙烯及其6种烃基同系物按不同的排列组合配方进行共聚,合成出了20种具有不同红外特征光谱的编码微球,其稳定可识别的红外光谱特征峰主要出现在1400~1200cm-1和900~500cm-1两个波数区。光谱自编码微球表面的活性氯甲基浓度为2.96×10-4~3.27×10-4 mol/g。
    利用GAUSS软件,在计算机集群服务器上对光谱自编码微球的各种苯乙烯共聚单体进行了分子振动能级模拟计算,并换算成红外吸收峰。与实测的各单体红外光谱进行了对比。在PC机上利用Visual C++ 6.0编程,将20种编码微球的红外光谱编码转化成可视化条形码,并开发出了相应的编码识别软件。
    将组合策略中的定位扫描筛选策略与编码微球相结合,提出了两种新的编码组合策略:定位扫描筛选策略和定位编码解析策略。
    
    比较了紫外吸收和荧光分光法对聚苯乙烯树脂的免疫吸附的测量精度,证实了荧光分光法在精度和可测量范围均优于前者。讨论了微球粒度、包被温度、包被液pH值和浓度等不同条件对聚苯乙烯树脂微球免疫吸附的影响。并以戊二醛表面处理法进行了聚苯乙烯树脂微球与免疫球蛋白共价交联。采用激光扫描荧光成像技术,对基于亚毫米级微球的免疫荧光筛选和荧光成像进行了探索。
    通过酶联免疫交叉矩阵对照实验证实,碱性磷酸酶标显色时,相同条件下光谱自编码微球的检测灵敏度50倍于96孔酶标比色板;而在辣根氧化物酶标显色时,相同条件下光谱自编码微球的检测灵敏度62.5倍于96孔酶标比色板。
    将20种光谱自编码微球与20种不同物种的免疫球蛋白和血清样品一一对映包被,然后将其全部混合在一起,进行多样品混合ELISA筛选。通过软件处理,挑出筛选结果中阳性信号最强微球,进行红外显微分析,识别出其红外特征光谱,从而解读出与探针相作用的阳性样品编号。
    将20种光谱自编码微球一一对映包被20种不同物种的血清样品,分别加入碱性磷酸酶标山羊抗兔免疫球蛋白、辣根氧化物酶标山羊抗人免疫球蛋白和异硫氰酸荧光素标记山羊抗鼠免疫球蛋白三种探针,对其进行同步混合筛选。一次性从中筛出了鼠血清、人血清和兔血清,再通过高效液相色谱分别对其进行了定量检测。成功开发出一种适用于高通量筛选的、基于编码微球的多探针——多样品的同步混合筛选技术。
The discovery, screening and diagnostics of drug generally involve assay making on a great number of molecules. In conventional high throughput screening, each of the molecules is separated in the wells of a microtitre plate or separated by applying at a particular place in an array such as high-density DNA arrays or microchips at the price of expensive facilities and complicated practicing. In the second method, the reactions are carried out on individual microcarriers, for exemple, microbeads — each carrier having a particular molecule bound to its surface. The microbeads can be encoded for mixing the microbeads and subjecting them to assay simultaneously. When a microbead gives a positive reaction, reading the code can identify the substance on its surface. Obeviously this strategy is advantageously more flexibility because multiple discrete assays can be carried out simultaneously in mixing microvolume multi-samples. The present microbead encoding methods include chemical and physical encoding, but both of them are limited in application because of such problems as code stability, reaction compatibility and cost.
    The optical self-encoding microbeads are synthesized with styrene and its derivative co-monomers and they can be stably encoded by unique vibrational fingerprint of their spectra. Their chemical and physical properties are similar to the polystyrene resin. The reaction system, temperature, stirring speed, amounts of initiator and disperser are discussed in suspension polymerizing reaction of polystyrene. The latex polymerizing, disperse polymerizing and seeds polymerizing methods are compared with suspension polymerizing of polystyrene too. A novel dual initiators optimizing polymerizing way based on suspension and disperse polymerizing method is adopted. Twenty different self-encoding microbeads have been synthesized with styrene, and its six derivative co-monomers in combinatorial way. The identifiable and steady fingerprint of IR spectrum appears in 1400~1200cm-1 and 900~500cm-1.
    With GAUSS software in computer cluster server, the molecular vibration of styrene and its derivative co-monomers are simulated. The IR spectra of optical self-encoding
    
    
    microbeads are transformed to visible barcodes by identifying software. Based on optical self-encoding microbeads, two novel encoding combinatorial strategies named EPS(Encoding Position Scan) and PED(Position Encode Deconvolution) are put forward.
    The UV and fluorescence spectrophotometer analysis for measuring immunosorbent on polystyrene resins are compared. The influence of microbeads’ size, coating temperature, content of IgG and pH value of coating buffer solution upon immunosorbent on polystyrene resins are discussed. Applying Ar+-laser fluorescence scan-imaging technology, immunofluorescence screening and fluorescence imaging on sub-millimeter class microbeads are explored successfully.
    The sensitivity of AP enzyme conjugated antibody in ELISA matrix tests on optical self-encoding microbeads proves 50 times higher than on 96-wells ELISA plate. The sensitivity of HRP enzyme conjugated antibody in ELISA matrix tests on optical self-encoding microbeads proves 62.5 times higher than on 96-wells ELISA plate.
    Twenty samples are coated on 20 different optical self-encoding microbeads respectively. All beads were mixed after coating and washing for multi-samples ELISA mix-screening. The sample that has positive reaction with assay is defined by identifying IR spectrum of the bead with the strongest signal.
    Twenty different optical self-encoding microbeads are coated with 20 different kinds of animal serum samples respectively. Three assays are added after mixing all beads for multi-assays & samples ELISA mix-screening. All beads are divided into three groups on average corresponding to three assays. The beads with strongest signal in each group are picked out for analyzing IR spectra. The samples that have positive reaction with different assays are selected and inspected in HPLC for quantitative analysis. The technology of multi-assays & sam
引文
[1] Broach J R, Thorner J. High-throughput screening for drug discovery. Nature, 1996, 384: 14~16
    [2] Burbaum J. Miniaturization technologies in HTS: How fast, how small, how soon ? Drug Discov Today, 1998, 3: 3131~3139
    [3] Ward S J. Impact of genomics in drug discovery. Biotehniques. 2001, 31: 626~630
    [4] Maggio E T, Ramnarayan K. Recent developments in computational proteomics. Drug Discovery Today, 2001, 6: 996~1004
    [5] Lin J H, Lu Y H. Role of pharmacokinetics and metabolism in drug discovery and development. Pharmacol Rev, 1997, 49: 403~449
    [6] Divers M. What is the future of high through screening. J. Biomol. Screening, 1999, 4: 177~183
    [7] Major J. Challenges and opportunities in high throughput screening: implications for new technologies. J. Biomol. Screening, 1998, 3: 13~20
    [8] Steven A. High-throughput and ultra-high-throughput screening: solution – and cell~ based approaches. Curr Opin Biotechnol, 2000, 11: 47~53
    [9] Bosworth N, Tower P. Scintillation proximity assay. Nature, 1989, 341: 167~168
    [10] Styer L. Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem, 1978, 47: 819~846
    [11] Jameson D, Sawyer W. Fluorescence anisotropy applied to biomolecular interactions. Methods Enzymol, 1995, 246: 283~300
    [12] Mathis G. Probing molecular interactions with homogeneous techniques based on rare earth cryptates and fluorescence energy transfer. Clin Chem, 1995, 41: 1391~1397
    [13] Samuel T Hess, Shaohui Huang, Ahmed A. Heikal, et al. Biological and Chemical Applications of fluorescence correlation spectroscopy: a review. Biochemistry, 2002, 41: 697~705
    
    [14] 胡娟娟, 杜冠华. 药物筛选模型研究进展. 基础医学与临床, 2001, 21: 302~305
    [15] Negri A, Lewellyn L. Compartive analyses by HPLC and the sodium channel and saxiphilin H~saxitox in receptor assay for paralytic shellfish toxins in crustaceans and molluses from tropical north west Australia. Toxicon, 1998, 36: 283~298
    [16] Young K, Lin S, Sun L, et al. Identification of a calcium channel modulator using a hing throughput yeast two-hybrid screen. Nat. Biotechnol, 1998, 16: 946~950
    [17] Robert P H, Andrew J P. High-throughput screening: new technology for the 21 century. Current opinion in chemical biology, 2000, 4: 445~451
    [18] Fodor, S. P. A. Light-directed, spatially addressable parallel chemical synthesis. Science, 1991, 251: 767~773
    [19] Schena M, Shalon D, Davis RW, et al. Quantitative monitoring of gene-expression patterns with a complementary-DNA microarray. Science, 1995, 270: 467~470
    [20] Harrison D J. Micromachining a miniaturized capillary electrophoresisbased chemical analysis system on a chip. Science, 1993, 261: 895~897
    [21] Ramsey, J. M., Jacobson, S. C, Knapp, M. R. Microfabricated chemical measurement systems. Nat. Med, 1995, 1: 1093~1096
    [22] Woolley, A. T. & Mathies, R. A. Ultra-high-speed DNA fragment separations using microfabricated capillary array electrophoresis chips. Proc. Natl. Acad. Sci. USA, 1994, 91: 11348~11352
    [23] Merrifield R B. Solid Phase Peptide Synthesis. I: The Synthesis of a Tetrapeptide. J. Am. Chem. Soc, 1963, 85: 2149~2154
    [24] Geysen H M, Meloen R H, Barteling S. Use of Peptide Synthesis to Probe Viral Antigens for Epitopes to a Resolution of a Single Amino Acid. Proc. Natl. Acad. Sci. USA, 1984, 81: 3998~4002
    [25] Houghten R A. General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen–antibody interaction at the level of individual amino acids. Proc. Natl Acad. Sci. USA, 1985, 82: 5131~5135
    [26] Furka A, Sebestyen F, Asgedom M, et al. General method for rapid synthesis of multicomponent peptide mixtures. Int. J. Pept. Protein Res, 1991, 37: 487~493
    
    [27] Kit S. Lam, Sydney E. Salmon, Evan M. Hersh, et al. A new type of synthetic peptide library for identifying ligand-binding activity. Nature, 1991, 354: 82~84
    [28] Richard A. Houghten, Clemencia Pinillia, Sylvie E. Blondelle, et al. Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery. Nature, 1991, 354: 84~86
    [29] Moran E J, Sarshar S, Cargill J F, et al. Radio Frequency Tag Encoded Combinatorial Library Method for the Discovery of Tripeptide substituted Cinnamic Acid Inhibitors of the Protein Tyrosine Phosphatase PTPIB. J Am Chem Soc, 1995, 117: 10787~10788
    [30] Fodor S P A, Read J L, Pirrung M C, et al. Light directed, Spatially Addressable Parallel Chemical Synthesis. Science, 1991, 251: 767~773
    [31] Peter W D, Dooley C T, Houghten R A. The Use of Positional Scanning Synthetic Peptide Combinatorial Libraries for the Rapid Identifiction of Opioid Receptor Ligands. Life Sci, 1993, 52: 1509~1517
    [32] Deprez B, Willliard X, Bourel L, et al. Orthogonal Combinational Chemical Libraries. J Am Chem Soc, 1995, 117: 5405~5406
    [33] Pei Y, Moos W H. Post-modification of peptoid side chains: [3+2] Cycloaddition of nitrile oxides with alkenes and alkynes on the solid-phase. Tetrahedron Lett, 1994, 35: 5825~5828
    [34] Carell T, Wintner E A, Sutherland A J, et al. New promise in combinatorial chemistry: synthesis, characterization, and screening of small-molecule libraries in solution. Chemistry & Biology, 1995, 2: 171~183
    [35] Stoll D. Protein microarray technology. Front. Biosci, 2002, 7: 13~32
    [36] Brenner S, Lerner R A. Encoded combinatorial chemistry. Proc. Natl. Acad. Sci. USA, 1992, 89: 5381~5383
    [37] Needels M C, Jones D C, Tate E H, et al. Generation and screening of an oligonucleotide encoded synthetic peptide library. Proc. Natl. Acad. Sci. USA, 1993, 90: 10700~107004
    [38] Nestler H P, Bartlett P A, Still W C. A general method for molecular tagging of
    
    
    encoding combinatorial chemistry libraries. J. org. Chem, 1994, 59: 4723~4724
    [39] Nikolaiev V, Stierandova A, Krchnak V, et al. Peptide~encoding for structure determination of nonsequenceable polymers with libraries synthesized and tested on solid phase supports. Pept. Res, 1993, 6: 161~170
    [40] Tan D S, Burbaum J J. Ligand discovery using encoded combinatorial libraries. Curr. Opin. Drug Disc. Devel, 2000, 3: 439~453
    [41] Ohlmeyer M H J, Swanson R N, Dillard L W, et al. Complex synthetic chemical libraries indexed with moleculer tags. Proc. Natl. Acad. Sci. USA. 1993, 90: 10922~10926
    [42] Ni Z J, Maclean D, Holmes C P, et al. Versatile approach to encoding combinatorial organic syntheses using chemically robust secondary amine tags. J. Med. Chem, 1996, 39: 1601~1608
    [43] Liu X. Capillary electrochromatography~laserinduced fluorescence method for separation and detection of dansylated dialkylamine tags in encoded combinatorial libraries. J. Chromatogr, 2001, 924: 323~329
    [44] Fitch W L. Improved methods for encoding and decoding dialkylamine-encoded combinatorial libraries. J. Comb. Chem, 1999, 1: 188~194
    [45] Czarnik A W. Encoding methods for combinatorial chemistry. Curr. Opin. Chem. Biol, 1997, 1: 60~66
    [46] Brummel C L, Lee I N W, Zhou Y, et al. A mass spectrometric solution to the address problem of combinatorial libraries. Science, 1994, 264: 399~402
    [47] Zambias R A, Boulton D A, Griffin P R. Microchemical structural determination of a peptoid covalently bound to a polymeric bead by matrix~assisted laser desorption ionization time-of-flight mass spectroscopy. Tetrahedron Lett, 1994, 35: 4283~4286
    [48] Youngquist R S, Fuentes G R, Lacey M P, et al. Generation and screening of combinatorial peptide libraries designed for rapid sequencing by mass spectrometry. J. Am. Chem. Soc, 1995, 117: 3900~3906
    [49] Brummel C L. Evaluation of mass spectrometric methods applicable to the direct
    
    
    analysis of non~peptide bead-bound combinatorial libraries. Anal. Chem, 1996, 68: 237~242
    [50] Egner B J, Cardno M, Bradley M. Linkers for combinatorial chemistry and reaction analysis using solid phase in situ mass spectrometry. J. Chem. Soc. Chem. Commun, 1995, 21: 2163~2164
    [51] Geysen, H. M. Isotope or mass encoding of combinatorial libraries. Chem. Biol, 1996, 3: 679~688
    [52] Shchepinov M S, Chalk R, Southern E M. Trityl tags for encoding in combinatorial synthesis. Tetrahedron. 2000, 56: 2713~2724
    [53] Look G C, Holmes C P, Chinn J P, et al. Methods for combinatorial organic synthesis: the use of fast 13C NMR analysis for gel phase reaction monitoring. J. Org. Chem, 1994, 59: 7588~7590
    [54] Hochlowski J E, Whittern D N, Sowin T J. Encoding of combinatorial chemistry libraries by fluorine-19 NMR. J. Comb. Chem, 1999, 1: 291~293
    [55] Egner B J, Langley G J, Bradley M. Solid phase chemistry: direct monitoring by matrix-assisted laser desorption/ionization time of flight mass spectrometry. A tool for combinatorial chemistry. J. Org. Chem, 1995, 60: 2652~2653
    [56] Neilly J P, Hochlowski J E. Elemental analysis of individual combinatorial chemistry library members by energy-dispersive X-ray spectroscopy. Appl. Spectrosc, 1999, 53: 74~81
    [57] Rahman S S, Busby D J, Lee D C. Infrared and Raman spectra of a single resin bead for analysis of solidphase reactions and use in encoding combinatorial libraries. J. Org. Chem, 1998, 63: 6196~6199
    [58] McHugh T M, Miner R C, Logan L H, et, al. Simultaneous detection of antibodies to cytomegalo-virus and herpes-simplex virus by using flow-cytometry and amicrosphere-based fluorescence immunoassay. J. Clin. Microbiol, 1988, 26: 1957~1961
    [59] Scillian J J. Early detection of antibodies against rDNA-produced HIV proteins with a flow cytometric assay. Blood, 1989, 73: 2041~2048
    
    [60] Geysen M. Encoding scheme for solid phase chemical libraries. WO Patent 00/61281, 2000
    [61] Wang M S, Li L. Rapid screening assay methods and devices. US Patent 5, 922, 617, 1999
    [62] Trau M, Battersby B J. Novel colloidal materials for high-throughput screening applications in drug discovery and genomics. Adv. Mater, 2001, 13: 975~979
    [63] Battersby B J, Lawrie G A, Trau M. Optical encoding of microbeads for gene screening: alternatives to microarrays. Drug Discov. Today, 2001, 6: 19~26
    [64] Sebestyen F. Coloured peptides: synthesis, properties and use in preparation of peptide sub~library kits. J. Pept. Sci, 1998, 4: 294~299
    [65] Egner B J. Tagging in combinatorial chemistry: the use of coloured and fluorescent beads. Chem. Commun, 1997, 8: 735~736
    [66] Scott R H and Balasubramaninan S. Properties of fluorophores on solid phase resins; implications for screening, encoding and reaction monitoring. Bioorg. Med. Chem. Lett, 1997, 7: 1567~1572
    [67] Battersby B J. Toward larger chemical libraries: encoding with fluorescent colloids in combinatorial chemistry. J. Am. Chem. Soc, 2000, 122: 2138~2139
    [68] Prabhakar U, Eirikis E, Davis H M. Simultaneous quantification of proinflammatory cytokines in human plasma using the LabMAP (TM) assay. J. Immunol. Methods, 2002, 260: 207~218
    [69] Martins T B. Development of internal controls for the Luminex instrument as part of a multiplex seven~analyte viral respiratory antibody profile. Clin. Diagn. Lab. Immun, 2002, 9: 41~45
    [70] Fulton R J. Advanced multiplexed analysis with the FlowMetrixTM system. Clin. Chem, 1997, 43: 1749~1756
    [71] Ye F. Fluorescent microsphere~based readout technology for multiplexed human single nucleotide polymorphism analysis and bacterial identification. Hum. Mutat, 2001, 17: 305~316
    [72] Taylor J D. Flow cytometric platform for high-throughput single nucleotide
    
    
    polymorphism analysis. Biotechniques, 2001, 30: 661~675
    [73] Yang L, Tran D K, Wang X. BADGE, BeadsArray for the detection of gene expression, a high-throughput diagnostic bioassay. Genome Res, 2001, 11: 1888~1898
    [74] Dunbar S A, Jacobson J W. Application of the Luminex LabMAP in rapid screening for mutations in the cystic fibrosis transmembrane conductance regulator gene: a pilot study. Clin. Chem, 2000, 46: 1498~1500
    [75] Vignali D A A. Multiplexed particle-based flow cytometric assays. J. Immunol. Methods, 2000, 243: 243~255
    [76] Carson R T, Vignali D A A. Simultaneous quantitation of 15 cytokines using a multiplexed flow cytometric assay. J. Immunol. Methods, 1999, 227: 41~52
    [77] Gordon R F, McDade R L. Multiplexed quantification of human IgG, IgA, and IgM with the FlowMetrix(TM) system. Clin. Chem, 1997, 43: 1799~1801
    [78] WalkerPeach C R, Smith P L, DuBois D B, et al. A novel rapid multiplexed assay for herpes simplex virus DNA using the FlowMetrix(TM) cytometric microsphere technology. Clin. Chem, 1997, 43: 21~22
    [79] Smith P L, WalkerPeach C R, Fulton R J, et al. A rapid, sensitive, multiplexed assay for detection of viral nucleic acids using the FlowMetrix system. Clin. Chem, 1998, 44: 2054~2056
    [80] Oliver K G, Kettman J, Fulton R J. Multiplexed analysis of human cytokines by use of the FlowMetrix system. Clin. Chem, 1998, 44: 2057~2060
    [81] Bellisario R, Colinas R J, Pass K A. Simultaneous measurement of thyroxine and thyrotropin from newborn dried blood~spot specimens using a multiplexed fluorescent microsphere immunoassay. Clin. Chem, 2000, 46: 1422~1424
    [82] Kettman J R, Davies T, Chandler D, et al. Classification and properties of 64 multiplexed microsphere sets. Cytometry, 1998, 33: 234~243
    [83] Bruchez M, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels. Science, 1998, 281: 2013~2016
    [84] Michalet X, Pinaud F, Lacoste TD, et al. Properties of fluorescent semiconductor
    
    
    nanocrystals and their application to biogical labeling. Single Mol. 2001, 2: 261276~84
    [85] Han M, Gao X H, Su J Z, et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nature Biotechnol, 2001, 19: 631~635
    [86] Alivisatos A P. Less is more in medicine — sophisticated forms of nanotechnology will find some of their first real~world applications in biomedical research, disease diagnosis and, possibly, therapy. Sci. Am., 2001, 285: 66~73
    [87] Pantano P, Walt D R. Ordered nanowell arrays. Chem. Mater. 1996, 8: 2832~2835
    [88] Walt D R. Bead~based fiber-optic arrays. Science, 2000, 287: 451~452
    [89] Michael K L. The use of optical-imaging fibers for the fabrication of array sensors. Polymers in Sensors. 1998, 690: 273~289
    [90] Michael K L, Taylor L C, Schultz S L, et al. Randomly ordered addressable high-density optical sensor arrays. Anal. Chem., 1998, 70: 1242~1248
    [91] Steemers F J, Ferguson J A, Walt D R. Screening unlabeled DNA targets with randomly ordered fiber-optic gene arrays. Nature Biotechnol, 2000, 18: 91~94
    [92] Ferguson J A, Steemers F J, Walt D R. High-density fiber-optic DNA random microsphere array. Anal. Chem, 2000, 72, 5618~5624
    [93] Ferguson J A, Boles T C, Adams C P, et al. A fiber-optic DNA biosensor microarray for the analysis of gene expression. Nature Biotechnol, 1996, 14: 1681~1684
    [94] Healey B G, Matson R S, Walt D R. Fiberoptic DNA sensor array capable of detecting point mutations. Anal. Biochem, 1997, 251: 270~279
    [95] Szurdoki F, Michael K L, Walt D R. A duplexed microsphere-based fluorescent immunoassay. Anal. Biochem, 2001, 291: 219~228
    [96] Moran E J. Radio frequency tag encoded combinatorial library method for the discovery of tripeptide-substituted cinnamic acid inhibitors of the protein tyrosine phosphatase PTP1B. J. Am. Chem. Soc, 1995, 117: 10787~10788
    [97] Nicolaou K C, Xiao X Y, Parandoosh Z, et al. Radiofrequency encoded combinatorial chemistry. Angew. Chem. Int. Ed. Engl, 1995, 34: 2289~2291
    
    [98] Service R F. Radio tags speed compound synthesis. Science, 1995, 270: 577~578
    [99] Czarnik T, Nova M. No static at all. Chem. Brit, 1997, 33: 39~41
    [100] Shi S, Xiao X, Czarnik A W. A combinatorial synthesis of tyrphostins via the ‘directed sorting’ method. Biotechnol. Bioeng, 1998, 61: 7~12
    [101] Xiao X. Solid-phase combinatorial synthesis using MicroCan reactors, rf tagging and directed sorting. Biotechnol. Bioeng, 2000, 71: 44~50
    [102] Miller K. Downsizing DNA assays. Scientist. 2002, 16: 52~52
    [103] Mandecki W. Multiplex assay for nucleic acids employing transponders. US Patent 6, 051, 377, 2000
    [104] Xiao X Y, Zhao C, Potash H, et al. Combinatorial chemistry laser optical encoding. Angew. Chem. Int. Ed. Engl, 1997, 36: 780~782
    [105] Dames A, England J, Colby E. Bio-assay technique. WO Patent 00/16893, 2000
    [106] Zhou H H, Roy S, Schulman H, et al. Solution and chips arrays in protein profiling. Trends Biotechnol, 2001, 19: 34~39
    [107] Martin B R. Orthogonal self-assembly on colloidal gold–platinum nanorods. Adv. Matter, 1999, 11: 1021~1025
    [108] Nicewarner-Pena S R. Submicrometer metallic barcodes. Science. 2001, 294: 137~141
    [109] Braeckmans K, Stefaan C. Smedt D, et al. A new generation of encoded microcarriers. Drug Discovery Technology, 2001, 8: 12~17
    [110] Braeckmans K, Stefaan C. Smedt D, et al. Encoding microcarriers by spatial selective photobleaching. Nature Materials, 2003, 2: 169~173
    [111] Fenniri H, Ding L H. Barcoded Merrifield Resin Beads. Polymeric Material: Science & Engineering, 2001, 85, 572~573
    [112] Fenniri H, Mathivanan P, Vidale K L, et al. Barcoded Resins: A New Concept for Polymer-Supported Combinatorial Library Self-Deconvolution. J. Am. Chem. Soc, 2001, 123: 3854~3855
    [113] Fenniri H, Hedderich H G, Haber K. S, et al. Towards the DRED of Resin Supprorted Combinatorial libraries: A Non-Invasive Methodlogy Based on Bead
    
    
    Self- Encoding and Multispectral Imaging. Angew. Chem. Int. Ed, 2000, 39: 4483~4485
    [114] 潘祖仁, 翁志学, 曹志明著. 高分子化学丛书-悬浮聚合. 北京: 化学工业出版社, 1997, 4~46
    [115] Anthony J P. Dispersion polymerization of styrene in polar solvents. J. Polym Sci, 1990, 28: 2485~2500
    [116] 彭洪修, 朱以华, 古宏晨等. 无皂乳液聚合法合成均一聚苯乙烯微球. 华东理工大学学报, 2002, 28: 260~262
    [117] Ugelstsd J, Mfutakamba H R. Swelling polymerization of oligomer-polymer particles. J Polym Sci, 1985, 72: 225~240
    [118] 由英才, 祁东风, 张保龙等. 种子聚合法制备单分散交联聚苯乙烯微球的研究. 高分子材料科学与工程, 1994, 6: 13~17
    [119] Terrett N K (著), 许家喜, 麻远 (译). 组合化学, 北京: 北京大学出版社, 1999. 11~12
    [120] Bing Y. Single-bead analysis in combinatorial chemistry. Curr Opin Chem Bio, 2002, 6: 328~332
    [121] 张凯, 雷毅, 王宇光等. 单分散聚苯乙烯微球的制备及影响因素. 功能高分子学报, 2002, 15: 189~193
    [122] 罗河胜编. 实用聚苯乙烯. 广州: 广东科技出版社, 1991
    [123] Granadino-Roldan J M, Fernandez-Gomez M, Navarro A. The vibrational analysis of styrene, revisited. Chemical Physics Letters, 2003, 372: 255~262
    [124] 张叔良编著. 红外光谱分析与新技术. 北京: 中国医药科技出版社, 1993
    [125] Hertzberg R P, Pope A J. High-throughput screening: new technology for the 21st century, Curr. Opin. Chem. Biol, 2000, 4: 445~451
    [126] Geysen H M, Rodda S J, Mason T J. A priori delineation of a peptide which mimics a discontinuous antigenic determinant. Mol Immunol, 1986, 23: 709~715
    [127] Pinilla C, Appel J R, Blanc P, et al. Rapid identification of high affinity peptide ligands using positional scanning synthetic peptide combinatorial libraries. Biotechniques, 1992, 13: 901~905
    
    [128] Furka, A, Campian, E, Peterson M L, et al. Applicability of peptide omission libraries in screening. In P. T. P. Kaumaya & R. S. Hodges (Eds. ), Peptides: Chemistry, Structure and Biology, Proc. 14. APS. Kingswinford: Mayflower Scientific Ltd, 1998, 317~318
    [129] Campian E, Peterson M L, Saneii H H, et al. Deconvolution by omission libraries. Bioorg. Med. Chem. Lett, 1998, 8: 2357~2362
    [130] Deprez B, Williard X, Bourel L, et al. Orthogonal combinatorial chemical librares. J. Am. Chem. Soc, 1995, 117: 5405~5406
    [131] Berk S C, Chapman K T. Spatially arrayed mixture (SpAM) technology: synthesis of two dimentionally indexed orthoganol combinatorial libraries. Bioorg. Med. Chem. Lett, 1997, 7: 837~842
    [132] Yan B, Sun Q, Wareing J R, et al. 1996 Real-time monitoring of the catalytic of alcohols to aldehydes and ketones on resin support by single-bead fourier transform infrared microspectroscopy. J. Org. Chem, 61: 8765~8770
    [133] Kevin B. Combinatorial Technologies involving reiterative division-compling- recombination statistical considerations. J. Med. Chem, 1996, 37: 2985~2987
    [134] Tonnes J, Stierli B, Cerletti C, et al. Regional distribution and developmental changes of GluR1-Flop protein revealed by monoclonal antibody in rat brain. Journal of Neurochemistry, 1999, 73: 2195~2205
    [135] Dolle. R. E Comprehensive survey of combinatorial library synthesis. J. Comb. Chem, 2001, 3: 1~41.
    [136] 夏锦尧. 实用荧光分析法. 北京: 中国人民公安大学出版社, 1992
    [137] 周光炎. 免疫学原理. 上海: 科学技术文献出版社, 2000
    [138] Koltermann A, Ketting U, Bieschke J, et al. Rapid assay processing by integration of dual-color fluorescence cross correlation spectroscopy. Proc. Natl. Acad. Sci. USA, 1998, 95: 1421~1426
    [139] Springer M L, Ip T K, Blau H M. Angiogenesis Monitored by Perfusion with a Space-Filling Microbead Suspension. Molecular Therapy, 2000, 1: 82~87
    [140] Lu W, Ji Z Q, Pfeiffer L, et al. Real-time detection of electron tunnelling in a
    
    
    Quantum dot. Nature, 2003, 423: 422~425
    [141] Medintz I L, Clapp A R, Mattoussi H, et al. Self-assembled nanoscale biosensors based on Quantum dot FRET donors. Nature Materials, 2003, 2: 630~638
    [142] Karrai K, Warburton R J, Schulhauser C, et al. Hybridization of electronic states in Quantum dots through photon emission. Nature, 2004, 427: 135~138
    [143] Lidke D S, Nagy P, Heintzmann R, et al. Quantum dot ligands provide new insights into erbB/HER receptor–mediated signal transduction. Nature Biotechnology, 2004, 22: 198~203
    [144] Polzik E. Quantum information: Flight of the qubit. Nature, 2004, 428: 129~130
    [145] Ball P. Quantum gravity: Back to the future. Nature, 2004, 427: 482~484
    [146] Diane S, Nagy P, Heintzmann R, et al. Quantum dot ligands provide new insights into erbB/HER receptor–mediated signal transduction Lidke. Nat Biotechnol, 2004, 22: 198~203
    [147] Ilani S, Martin J, Teitelbaum E, et al. The microscopic nature of localization in the Quantum Hall effect. Nature, 2004, 427: 328~332
    [148] Karrai K, Warburton R J, Schulhauser C, et al. Hybridization of electronic states in Quantum dots through photon emission. Nature, 2004, 427: 135~138
    [149] Kim S, Lim Y T, Soltesz E G, et al. Near-infrared fluorescent type II Quantum dots for sentinel lymph node mapping. Nat Biotechnol, 2004, 22: 93~97
    [150] Vynios D H, Vamvacas S S, Kalpaxis D L, et al. Aggrecan Immobilization onto Polystyrene Plates through Electrostatic Interactions with Spermine. Ann. Biochem, 1998, 260: 64~70
    [151] 邱永兴, 孙永红, 俞小洁等. 血浆蛋白质在聚苯乙烯-g-(十八烷聚氧乙烯)表面吸附的研究. 中国生物医学工程学报, 1997, 16: 193~205
    [152] Bulter J E, Nessler L N, Joshi K S, et al. The physical and functional behavior of antiobodies adsorbed on polystyrene. Immunol Meth, 1992, 150: 77~90
    [153] Cantarero L A, Butler J E, Osborne J W. The adsorptive characteristics of proteins for polystyrene and their significance in solid-phase immunoassay. Anal Biochem, 1980, 105: 375~382.
    
    [154] Kricka L J. Chemiluminescent and bioluminescent techniques. Clin Chem, 1991, 37: 1472~1481
    [155] Jones J B, Somodi G C, Scott J W. Increased ELISA sensitivity using a modified extraction buffer for detection of Xanthomonas campestris pv. vesicatoria in leaf tissue. J Appl Microbiol, 1997, 83: 397~401
    [156] De Wildt R M T, Mundy C R, Gorick B D, et al. Antibody arrays for high throughput screening of antibody–antigen interactions. Nat Biotechnol, 2000, 18: 989~994
    [157] Gite S, Lim M, Carlson R, et al. A high~throughput nonisotopic protein truncation test. Nat Biotechnol, 2003, 21: 194~197
    [158] Yu J, Langridge W H R. A plant-based multicomponent vaccine protects mice from enteric diseases. Nat Biotechnol, 2001, 19: 548~552
    [159] Krüger C, Yanzhong H, Qiang P. In situ delivery of passive immunity by lactobacilli producing single~chain antibodies. Nat Biotechnol, 2002, 20: 702~706
    [160] Hansel T T, Pound J, Pilling D, et al. Puri?cation of human blood eosinophils by negative selection using immunomagnetic beads. J. Immunol. Methods, 1989, 122: 97~103
    [161] McConnell S J, Dinh T, Le M H, et al. Biopanning phage display libraries using magnetic beads vs. polystyrene tubes. Biotechniques, 1999, 26: 208~210
    [162] Tsai~Wu J J, Su H T, Fang W H, et al. Preparation of heteroduplex DNA containing a mismatch base pair with magnetic beads, Ann. Biochem, 1999, 1: 127~129
    [163] Engvall E. Enzyme immunoassay ELISA and EMIT. Methods Enzymol, 1980, 70: 419~439
    [164] Osten W, Christophersen A C. An ELISA-method using magnetic beads as solid phase for rapid quantitation of mouse and human immunoglobulins. Hybridoma, 1991, 10: 641~645
    [165] Kourilov V, Steinitz M. Magnetic-bead enzyme-linked immunosorbent assay verifies adsorption of ligand and epitope accessibility. Ann Biochem, 2002, 311:
    
    
    166~170
    [166] Kala M, Bajaj K, Sinha S. Magnetic Bead Enzyme-Linked Immunosorbent Assay (ELISA) Detects Antigen-Specific Binding by Phage-Displayed scFv Antibodies That Are Not Detected with Conventional ELISA. Ann Biochem, 1997, 254: 263~266
    [167] Yamamoto A, Nakayama M, Tashiro M, et al. Hydroxyapatite-coated nylon beads as a new reagent to develop a particle agglutination assay system for detecting Japanese encephalitis virus-specific human antibodies. Journal of Clinical Virology, 2000, 19: 195~204
    [168] Robert W, Charles C, Alistair H. Paramagnetic bead based enzyme electrochemilu- -minescence immunoassay for TNT. Journal of Electroanalytical Chemistry, 2003, 557: 109~118
    [169] Joseph D, Juliet L, Hanh B. A comparison of ELISA and flow microsphere~based assays for quantification of immunoglobulins. Journal of Immunological Methods, 2002, 263: 23~33
    [170] Piette A L, Binder W, Burlingame R W. Multiplexed tests for autoantibodies to extractable nuclear antigens using the Luminex100? flow cytometer. Clinical and Applied Immunology Reviews, 2002, 3: 6~7
    [171] Bulter J E, Ni L, Nessler R, et al. The physical and functional behavior of capture antibodies adsorbed on polystyrene. J Immunol Meth, 1992, 150: 77~90

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700