三维编织复合材料细观结构与力学性能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三维编织结构复合材料作为一种新型高级的复合材料,在国外得到迅速的发展,而国内对于这种结构复合材料的研究相对较少。本文采用控制体积单元法与试验观察相结合的方法研究了三维编织复合材料的细观结构,并采用数值计算方法分析了三维编织复合材料的弹性性能,具有一定的理论价值和实际工程意义。
     三维编织结构复合材料是完全整体、连续、多向的纺线(纤维束)的网络,充填以延性材料,这类新材料已失去通常复合材料的层合板概念,由此,层合板复合材料层间脆弱的致命弱点在编织结构复合材料中得到克服,所以编织结构复合材料具有高的强度和刚度(包括在厚度方向),接近实际形状的制造,高的冲击韧性、高的损伤阻抗,和按实际设计要求的特定的航空航天方面的使用功能,因而广泛地受到工业界和学术界的关注。文中从三维编织物的编织工艺入手,得到编织复合材料的几何结构,建立了织物纱线构造模型(FAM-Fabric Architecture Model),进而分析其力学性能;另外,通过试验研究了这种复合材料的力学性能。主要的研究内容包括以下几个方面:
     系统地研究了采用四步法1×1方型编织工艺编织的预成形件及其增强的复合材料的细观结构。提出了纱线椭圆形横截面假设,考虑了编织纱线的细度和编织纱线填充因子的影响。根据编织过程中携纱器的运动轨迹特点,将预成形件划分为三个不同的区域,分别定义了不同的控制体积单元,识别了预成形件的两种局部单胞模型,分析了预成形件的纱线构造,并导出了编织结构参数之间的关系,同时给出三维编织复合材料的设计方法。主要的编织结构参数包括试件的外形尺寸、主体纱行数和列数,三个区域各自所占的体积百分比、编织纱线的细度、纱线填充因子、纤维体积含量、编织角以及编织花节长度。
     以精确的复合材料单胞模型为基础,从最小的可重复的单胞入手,对单胞的结构进行简化分析,认为纤维是平直的,将单胞中的四个不同方向的纤维束看成是空间四个不同方向的单向复合材料,纤维束的性能可以等价于单向复合材料的宏观性能。采用复合材料中的细观力学分析方法,计算单向复合材料的弹性常数。认为每一纤维束的纤维体积含量与整个单胞的纤维体积含量相等。采用三维应力—应变分析,在单胞的长度方向积分和平均,在给定的应变边界条件下,采用刚度体积平均的方法,预测三维编织结构复合材料的有效弹性模量;在空间多向应力的基础上,通过对三维编织结构复合材料破坏机理的探讨,
    
    摘要
    提出了适用于三维编织复合材料细观强度失效准则,预测三维编织结构复合材
    料的强度性能。在有限元分析中,提出了处理材料不均匀性问题的“等效有限
    申,元”方法,解决了像三维编织复合材料这类具有复杂细观结构的复合材料的
    有限单.元离散化问题。同时探讨了编织工艺参数,如内部编织角、表面编织角
    纱线填充因一子、纤维体积含量等对力学性能的影响。结果发现编织角、纤维体
    积含量明显地影响其拉压模量和强度,随着编织角的增大、轴向纤维体积含量
    的减小,拉伸模量和强度降低,而在编织角相同时,随着纤维体积含量的增大,
    拉伸弹性模一录、拉仲强度、弯曲弹性模量、弯曲强度均增大,而泊松比随着纤
    约体积含量的增大而减小。与试验结果进行了对比,表明该力学模型能较理想
    地须报拭维编织结构复合材料的刚度和强度性能。
     二维编织结构复合材料的发展历史不是很长,还有不少理论和试验工作要
    去做,本文为这种结构复合材料的进一步研究提供了基础。
In recent years, structural textile composites have established themselves as the advanced material system of choice in many load-bearing applications including aerospace components, automobile components, and biomedical implants. The yarn architecture of three-dimensional (3-D) braided composites produced by the four-step 1×1 braiding technique and their effective elastic properties were studied in this dissertation with experimental investigation and a numerical method, respectively.
    Three-dimensionally braided structural composites have distinct structure that is fully integrated, continuously spatial fiber-network impregnated with ductile material. The new innovative materials have not plies as conventional composites have, and put an end once and all to low interlaminar strength showing in laminate materials. Because of their enhanced stiffness and strength in the thickness direction, near-net-shape design and manufacturing, superior damage tolerance and specified aerospace function, the braided composites are gaining more and more attention of industry and academia. The research in this dissertation began with braiding process of three-dimensional textile perform. A new fabric architecture model (FAM) was set up. The geometric structure of braided composites was recognized and the mechanical properties of the composites were analyzed. The primary research can be listed as follows.
    In this thesis, a control volume method was employed to model the microstructure of 3-D braided performs produced by the four-step 1×1 square braiding process and their reinforced composite materials. According to the movement traces of yarn carriers on the braiding machine bed, a perform was divided into three regions, i.e. interior, surface and corner, and distinct control volumes were defined for each region. Analyzing the control volume of each region, the yarn architecture of perform was described and three kinds of local unit cell were identified. Then the relations between the braiding parameters of the perform were derived. Based on the analysis of the perform, two local unit cells for the 3-D braided composite material were obtained and the relations between the braiding parameters were modified. Finally, the method of designing a 3-D braided composite was given. The braiding parameters include the dimensions of sample, the braiding yarn of main part, the volume proportion of each region to whole structure, the size of the braiding yam, the yarn packing factor, the fiber volume fraction, the braiding angle and the braiding pitch length.
    Furthermore, a methodology based upon the concept of fabric unit cell structure was developed for studying the elastic properties of three-dimensional braided composites. In order to facilitate the analysis of the minimum repeated unit cell, the following geometrical characteristics were assumed: (a) All the yarn segments parallel to a diagonal direction or braiding axis in all unit cells lying in the same
    
    
    
    layer of the perform are treated as forming inclined lamina or horizontal lamina after matrix impregnation, (b) Fibers were considered to be straight and unidirectional. Fiber interlocking and bending due to the interaction at the centers of the unit cell were not taken into account, (c) A unit cell can be further considered as an assemblage of four inclined unidirectional lamina and one horizontal unidirectional lamina. Each inclined unidirectional lamina was characterized with a unique fiber orientation and had the same thickness. Furthermore, the fiber volume fraction of each inclined and horizontal unidirectional "lamina was assumed to be the same as that of the composites. Three-dimensional stress-strain analysis was applied to each unidirectional lamina that was assumed to be transversely isotropical under on-axis coordinate system. Carrying out the integration and averaging of stiffness yielded the effective elastic moduli of 3-D braided structural composites. Based upon failure mechanisms of 3-D braided composites, a kind of micro-structural strength criterion was s
引文
[1] 沃丁柱主编,《复台材料大全》,化学工业出版社,2000年1月第一版。
    [2] 黄故主编,《现代纺织复合材料》,中国纺织出版社,2000年1月第一版。
    [3] 沈真主编,中国航空研究院编著,《复台材料结构设计手册》,航空工业出版社。2001年11月第1版。
    [4] Mouritz,A.P.,Bannister M.K.,P.J.Falzon,K.H.Leong,"Review of applications for advanced three-dimensional fibre textile composites",Composites 30A(1999):1445-1461.
    [5] 杨桂,丛莉珍,尚保如,刘方龙,“复合材料三维整体编织结构技术与特性”,复合材料学报,1992年1月,第9卷,第1期,第85页~第91页。
    [6] 杨卫,“细观力学和细观损伤力学”,力学进展,1992,22(1):1~9。
    [7] 杨庆生,杨卫,“强韧化材料的细观力学设计”,力学进展,1997,27(2):177~184。
    [8] Whitney T.J.,Chou T.W.,"Modelmg of 3-D angle-interlock textlile structural composite",Journal of Composite Material,1989,23(9):890~911.
    [9] Crane R.M.,Camponeschi E.T., "Experimental and analytical characterization of multi-dimensionally braided graphite/epoxy composites",Experiment Mechanics,1986,19:259~266.
    [1O] 八田博志,“三次元强化複合材料弹性率热膨胀系数”。日本複合材料学会志,1988,14(2):73-80.
    [11] 梁军,“三维编织复合材料力学性能的细观研究”,哈尔滨工业大学博士学位论文,1996年。
    [12] 梁军,杜善义,韩杰才,“一种含特定微型纹缺缺陷三维编织复合材料弹性常数预报方法”,复合材料学报,1996年。
    [13] Ma,Chang-Long,Jenn-Ming Yang and Tsu-Wei Chou,"Elastic stiffness of three-dimensional braided textile structure composites",ASTIM STP 893,Composite Materials: Testing and Design,Philadelphia,1986,pp404-421.
    [14] Yang,J.M.,C.L.Ma and T.W.Chou,"Fiber Inclinatrion Model of Three Dimensional Textile Structural Composites",Journal of Composite Material,1986,Vol.20,472-484.
    [15] 高野直樹,座古勝,阪田一郎,“均質法織物複合材料三次元构造设计”。日本机械学会论文集(A编)1995,61(2):585-590.
    [16] 吴德隆,郝兆平,“五向编织结构复合材料的分析模型”,宇航学报,1993,14(3):40~51。
    [17] Wu, D.L., "Three-celt model and 5D braided structural composites", Composites Science and Technology, 1996, 56:225-233.
    [18] 梁军,陈晓峰等,“多向编织复合材料的力学性能研究”,力学进展,1999, Vol, 29, No.2, 197-210。
    [19] Chou T. W., "Microstructural Design of Fiber Composites" , Cambridge: Cambridge University Press, 1992.
    [20] Walrath D. E., Adeams D. F., "Finite Element Micromechanics and Minimechanics Modeling of a Three-dimensional Carbon-Carbon Composite Material" , ADA168050,1995.
    [21] 赫晓东,“编织复合材料的细观计算力学研究”,哈尔滨工业大学博士学位论文,1992年。
    [22] Whyte, D. E., Pastore C. M, Ko F.K., "A fabric geometry model for 3-D braid reinforced FP/Al-Li composites " , In: Inter SAMPE Metals Cont, Competitive Advances in Metals/Metal Processing, Cherry Hill, Aug. 1987,18~21.
    
    
    [23] Lei C., Wang A. S., Ko F.K., "A Finite Celt Model for 3D Braided Composites", ASME Winter Annual Meeting, Chicago USA, 1988.
    [24] Whitcomb J.D., "Three-dimensional stress analysis of plain weave composites" , in: 3rd Symposium On Composite Materials: Fatigue and Fracture, ASTM, USA, Oct. 1989.
    [25] 庞宝君,“三维多向编织复合材料力学性能预报与优化设计研究”,哈尔滨工业大学博士学位论文,1997年。
    [26] 陈利,“三维编织复合材料的细观结构及其弹性性能分析”,天津纺织工学院博士学位论文,1998年。
    [27] Bluck, R. M., "High Speed Bias Weaving and Braiding", U. S. Patent 3426804,11, Feb.1969.
    [28] Stover, E. R. et al., "Preparation of an Omniweave Reinforced Carbon-Carton Cylinder as a Candidate for Evaluation in the Advanced Heat ShieId Screening Program",AFML-TR-70-283, March 1971.
    [29] Maistre, M, A., "Construction of a Three Dimensional Structure", German Patent P2301696,8, 1973.
    [30] Florentine, R, A,, "Apparatus For Weaving a Three Dimensional Article", U. S. Patent 4312261, 26. Jan. 1982.
    [31] Ko, F. K., "Three-dimensional Fabrics for Composites--An Introduction to the Magnaweave Structure" , Proc.ICCM-4, Japan Soc. Composite Material, Tokyo, Japan,1982, 1609.
    [32] Li, W,, Hammad, M. and El-Shiekh, A., "Structural Analysis of 3-D Braided Preforms for Composites" , J. Text. Inst., 1990, 81, 491-514.
    [33] Kostar. T. D., and Chou. T. W., "Design and Automated Fabrication of 3-D Braided Preforms for Advanced Structural Composites" , Computer Aided Design in Composite Material Technology Ⅲ, Elsevier Science, 1992, 63-78.
    [34] Du, G W. and Ko. F.K., "Unit Cell Geometry of 3-D Braided Structure", J. of Reinforced Plastics and Composites. 1993.12, 752-768.
    [35] Wang, Y.Q. and Wang, A.S.D., "On the Topological Yarn Structure of 3-D Rectangular and Tubular Braided Preforms", Composites Science and Technology, 1994,51. 575-586.
    [36] 韩其睿,李嘉禄和李学明,“复合材料三维编织结构的单元体模型”,复合材料学报,Vol.13, No.3, 1996,76-79.
    [37] Joon-Hyung Byun and Tsu-Wei Chou, "Process-Microstructure Relationships of 2-Step and 4-Step Braided Composites", Composites Science and Technology, 56 (1996), 235-251.
    [38] Soheil Mohajerjasbi, "Modeling and analysis of 4-step 3-D Cartesian braided composites including axial yarns", Proceedings of the 36th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics, and Materials Conference and AIAA/ASME Adaptive Structures Forum. Part 1 (of 5) Apt 10-13 1995 vl 1995 New Orleans, LA, USA, AIAA New York NY USA p 8-16.
    [39] Jian Li, Pusheng Chen and Aly El-Shiekh, "Construction and Geometry of 6-Step Braided Preforms for Composites", 39th International SAMPE Symposium, April 1994, 826-833.
    [40] Pandey, R.and H.T. Hahn, "CAD for 4-step Braided Fabric Composites", Proceedings of the American Society for Composites 9th Technical Conference, Composite Materials,Mechanics and Processing, 1994,719-726.
    [41] Pandey, R. and H. T. Hahn, "Visualization of Representative Volume Elements for Three-dimensional Four-step Braided Composites", Composites Science and Technology,56, 1996,161-170.
    [42] Hiroyuki Hamada, Asami Nakai, Akihiro Fukita and Zenichiro Maekawa, "CAE Integrated Braided Composite", Scicnce and Engineering of Composite Materials, Vol.4, 1995, 109-120.
    [43] 長井謙宏,横山敦土,前川善一郎,濱田泰以等。“三次元强化纖維複合材料解析手法研究(第1報)”。日本机械学会论文集(A编)1992,58(11):2099-2013.
    [44] 長井谦宏,横山敦土,前川善一郎,濱田泰以等。“三次元强化纖維複合材料解析手法研究(第2報)”。日本機械學會論文集(A編)1994,60(2):514-519.
    
    
    [45] Delneste L., Perez B., "An inelastic finite element model of 4D carbon-carbon composite", AIAA Journal, 1983, 21(8):1143~1149.
    [46] Delneste L., "Improvement in Mechanical Analysis of Multi-Directional Sepcarb Carbon-Carbon Composites" , AIAA-84-1308.
    [47] Lei C., Ko F., "Fracture Behavior of 3-D Braided Hybrid SiC/A1 Composites", In: Fibcr Tex'90, Sc USA: NASA Publication, 1990,"
    [48] Nilanjan M., Sinha P. K.," Three-dimensional thermo-structurat analysis of multi-directional fibrous composite plates" , Composite Structures, 1994, 28:333~346.
    [49] Howard A. Hardee, Keith Black, Rona Reid and Aly El-Shiekh, "Flexural Properties of 2-D and 3-D Braided Carbon Epoxy Composites", 40th International.SAMPE Symposium, May 1995, 824-830.
    [50] Charles S. C. Lei, M. A. El-Sherif and Frank K. Ko, "Analysis of Stresses Around Embedded Optical Fibers in 3-D Braided Composites", The Second International Symposium on Composite Materials and Structures, 1992, 992-927.
    [51] A. Abusafieh, S. R. Kalidindi and E. Franco, "An Experimental and Numerical Study of Response of 3-D Braided Structural Textile Composites", Proceedings of the American Society for Composites Ninth Technical Conference: Composite Materials, Mechanics and Processing, 1994, 1118-1125.
    [52] Pusheng Chen, Rona Reid, Keith Black and Aly Etshiekh, "Compressive and Flexural Properties of Carbon/Epoxy Composites", 39th International SAMPE Symposium, April 1994, 834-843.
    [53] Charles S.C. Lei and Frank K. Ko, "A Strength Theory for Failure of 3-D Braided Composites", 41st International SAMPE Symposium, March, 1996, 443-449.
    [54] Hui-Yu Sun and Xin Qiao, "Prediction of The Mechanical Properties of Three Dimensionally Braided Composites", Composites Science and Technology, 57(1997),623-629.
    [55] Yasser A. Gowayed, Christopher M. Pastore and Carl S, Howarth, "An. Integrated Approach to The Geometrical and Mechanical Modeling of Textile Reinforced Composites", 39th International SAMPE Symposium, April, 1994, 2841-2855.
    [56] Hamada, H., A Fujita and Z. Maekawa, "Unified Approach for Predicting Mechanical Behaviors of Textile Composites", Proceedings of the American Society for Composites Ninth Technical Conference: Composite Materials, Mechanics and Processing, 1994, 377-385.
    [57] Tsu-Wei Chou and Frank, K. Ko, 《Textile Structural Composites》, Elsevier Science Publishers, 1989, 129-171.
    [58] 黄小平、孙良新、徐孝诚,“四向矩形编织复合材料单胞的新划分方法”,纤维复合材料,2001年9月。15-17页。
    [59] D. W. Whyte, Ph. D. Thesis, Drexel University. June 1986.
    [60] Wang, You-Qi and A. S. D. Wang, "Microstructure/Property Relationships in Three-Dimensionally Braided Fiber Composites", Composites Science and Technology, 53 (1995), 213-222.
    [61] Surya R. Kalidindi and Abdel Abusafieh, "Longitudinal and Transverse Moduli and Strengths of Low Angle 3-D Braided Composites", Journal of Composite Materials, Vol. 30. No.8 (t996), 885-905
    [62] 吴德隆,沈怀荣,《纺织结构复合材料的力学性能》,国防科技大学出版社,1998年12月第一版。
    [63] L. Chen, X. M. Too and C. L. Choy, "A Study on the Microstructure of Three-dimensional Braiders", Eleventh International Conference on Composite Materials, Australia, July,1997,317-327.
    [64] Charles Lei, Yun-Jia Cai and Frank Ko, "Finite Element Analysis of 3-D Braided Composites", Advances in Engineering Software, Science Pnblishers, 1992, 14, 187-194.
    [65] 道德锟、吴以心、李兴国编著,《立体织物与复合材料》,中国纺织大学出版社,1998年8月第一版。
    [66] 李嘉禄,刘谦,“三维编织复合材料中纤维束横截面形状的研究”,复合材料学报,第
    
    18卷,第2期、2001年,第9页~第13页。
    [67] R.M.Jones,《Mechanics of Composite Materials)),Scripta Book Company:Washington,D.C.,1975.
    [68] 郑锡涛、陈利、李家禄、李学明,“三维编织复合材料中纱线的运动规律及细观模型”,机械科学与技术,2001年9月(第20卷增刊),第57页~第61页。
    [69] 陈利、李家禄、李学明,“三维编织中纱线的运动规律分析”,复合材料学报,2002年4月(第19卷,第2期),第71页~第74页。
    [70] Brian, N. C. and Gerry, F., "'Handbook of Analytical Methods for Textile Composites",NASA CR 4750, March 1997.
    [71] 沈观林,《复合材料力学》,清华大学出版社,1996年2月第一版。
    [72] 李顺林编,《复合材料力学引论》,上海交通大学出版社,1986年1月第一版。
    [73] Stephen W.Tsai,《复合材料设计》,航空工业部第六零一研究所编译,1988年。
    [74] 周光明,“三维编织复合材料力学性能与成型研究”,南京航空航天大学博士学位论文,1994年。
    [75] 张锦,张乃恭编著,《新型复合材料力学机理及其应用》,北京航空航天大学出版社,1993年3月第一版。
    [76] 李建友,三维编织复合材料弹性性能分析及其结构设计,硕士学位论文,中航总第六一一研究所,1997年。
    [77] 叶天麒,周天孝主编,《航空结构有限元分析指南》,航空工业出版社,1996年。
    [78] 姜晋庆,张铎编著,《结构弹塑性有限元分析法》,宇航出版社,1990年3月第1版。
    [79] 成传贤,燕瑛,“美国宇航局(NASA)的先进复合材料技术(ACT)的研究计划及纺织复合材料的发展”,第十届全国复合材料学术会议论文集,1998年。
    [80] Poe,C.C.,Dexter,H.B.and Raju,I.S.,“A Review of the NASA Textile Composites Research",AIAA 97-1321,Apr.1997.
    [81] 沈真,陈普会,“航空复合材料技术发展的回顾与展望”,复合材料的现状与发展(第十一届全国复合材料学术会议论文集),2000年10月。
    [82] 郑锡涛,杨胜春,叶天麒,“美国纺织复合材料在航空结构上的应用研究(一)”,《航空制造与维修》(双月刊),2001年第5期(总第203期),第13~14页。
    [83] 郑锡涛,杨胜春,叶天麒,“美国纺织复合材料在航空结构上的应用研究(二)”,《航空制造与维修》(双月刊),2001年第6期(总第204期),第40~42页。
    [84] 卢子兴,冯志海,寇长河,刘振国,陆萌,麦汉超,唐国翌,“编织复合材料拉伸力学性能的研究”,《复合材料学报》,第16卷,第4期,第136-141页,1999年10月。
    [85] 唐国翌。阎允杰,陈锡花,卢子兴,“多向编织碳纤维复合材料的断裂及微观形貌”,《清华大学学报》(自然科学版),第39卷,第10期,第4-7页,1999年10月。
    [86] 孙慧玉,吴长春,“纺织结构复合材料力学性能的实验研究”,《实验力学》,1997,12(3):335-341。
    [87] 孙慧玉,“编织结构复台材料的力学性能预报与成型工艺研究”,南京航空航天大学博士学位论文,1996年。
    [88] 黎观生,李建友,徐新,“三维编织复合材料拉伸性能试验研究”,《材料工程》,1997年第6期,第20-21页。
    [89] 庞宝君,杜善义,韩杰才,郝晓东,严勇,“三维四向编织碳/环氧复合材料实验研究”,《复台材科学报》,第16卷,第3期,第129-134页,1999年8月。
    [90] John E. Masters & Marc A. Portanova, "Standard Test Methods for Textile Composites",NASA Contractors Report 4751, Lockheed Martin Engineering & Sciences Company,Hampton, Virginia, Contract NASI-19000, September 1996.
    [91] 航空航天工业部科学技术研究院编,《复合材料设计手册》,航空工业出版社,1990年。
    [92] 王善元,张汝光等编著,《纤维增强复合材料》,中国纺织工业大学出版社,1998年11月笫1版。
    [93] 卢子兴,刘振国,寇长河,麦汉超,唐国翌,冯志海,“三维编织复合材料的弯曲实验及其失效分析”,《复合材料—生命、环境与高技术》,天津大学出版社,第1070页~
    
    第1073页,2002年10月。
    [94] 冼杏娟,李端义,《复合材料破坏分析及微观图谱》,科学出版社,1993年。
    [95] 宋焕成,赵时熙,《聚合物基复合材料》,国防工业出版社,1986年。
    [96] Jones C., "The chemistry of carbon fibre surface and its effect on interfacial phenomena in fibre/epoxy composites", Composites Science and Technology, 1991, 42: 275-298.
    [97] Federico Paris, "A Study of Failure Criteria of Fibrous Composite Materials",NASA/CR-2001-210661, March 2001.
    [98] 中国航空研究院编,《复合材料飞机结构耐久性/损伤容限设计指南》,航空工业出版社,1995年。
    [99] 王震鸣,《复合材料力学和复合材料结构力学》,机械工业出版社,1991年3月。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700