三维编织复合材料细观结构平均刚度及其压缩性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以三维编织复合材料的细观结构,平均刚度及其压缩力学性能为主要研究对象。分析了三维四步编织过程中纱线的运动路径及交织方式,以三维实体纱线和单胞的几何模型为基础,对三维编织预制件的内部结构进行了细观结构分析并建立了相关结构参数的模型。对复合固化后的三维编织复合材料的内部单胞、表面单胞和角单胞进行了结构分析并建立了模型。采用局部剖切法建立了编织预制件和编织复合材料的模型,该模型能较好地表现内部结构的复杂性,可以较好地反映纱线的走向,单元体中的纱线计算长度可以较精确地算出。解决了表面单胞和角单胞中的纱线不能与内部单胞中纱线有效连接的问题;
     与预制件相比,复合材料内部的纱线结构发生了变化,这种变化也体现在纤维体积分数以及其它结构参数上。提出了不同的主体纱排数m和列数n组合的三维编织预制件可以作出不同的单胞体划分结构,建议通过作图法进行单胞分布的设计。推导出了纤维体积分数公式,提出了对编织复合材料工艺和结构参数进行优化设计的思路。
     在紧密结构状态下,1×1编织预型件正模型的纱线体积分数和45°模型的内部单胞的纱线体积分相同,但与表面单胞和角单胞的纱线体积分数不同。内部单胞的紧密度最大,角单胞的紧密度最小,表面单胞紧密度介于以上两值之间。在最大编织角γ=54.7°时,1×1四向编织预制件正单胞模型和45°模型内部单胞的最大纱线体积分数相等,都是:V_(ymax)=67.96%。对45°模型,编织复合材料内部、表面和角单胞的纱线体积分数不同,分别为:V_(ymax)~i=67.96%;V_(ymax)~s=58.23%;V_(ymax)~c=37.31%。内部、表面和角单胞区域的紧度呈逐渐递减的趋势。提出了经压模后编织复合材料中纱线编织角发生变化的概念,并将这一变化应用到了所建模型及刚度计算当中。另外还给出了编织预制件到编织复合材料变形前后单胞模型的单胞尺寸算式。
     运用所建立的代表性体积单元(RVE)模型对整体编织复合材料(四向)的平均刚度进行了预测。预测出的三维编织复合材料的有效弹性性能结果和实验结果吻合较好。将三维编织复合材料看成是由纤维束组成的倾斜纤维束空间结构,采用三单胞力学模型,用体积平均法和单胞刚度加权法,对编织复合材料整体弹性刚度进行的预测,结果能够较准确地预测出三维编织复合材料的弹性性能。另外,进行了拉伸和压缩性能试验,从拉伸和压缩试验结果来看,编织复合材料的弹性模量主要受编织角和纤维体积分数的影响。
     本文提出了差别纤维体积分数的假设,各个纤维束的纤维体积分数与单胞的纤维体积分数并不相等,需要分别进行计算,并分别给出了各纤维束的纤维体积分数计算式;还提出了三单胞弹性模量按比例叠加的思想,并给出了比例计算式,计算出了结果。结果与试验数据以及与其它文献数据吻合的较好。
     对三维编织复合材料压缩破坏进行了试验研究,从应力-应变响应图中观察到几个明显的缓冲区的存在,并认为这是由于内部交错单层板的逐“层”失效引起的。三维编织复合材料纵向压缩的破坏有三种典型的宏观破坏模式:整体松散型破坏、45°角破坏和鼓凸状破坏。通过压缩破坏试验,发现破坏层面出现纤维束之间的树脂粉碎性破坏,而纤维束基本上保持着圆柱状,认为纤维束之间的基体存在着较大的变形,三维编织复合材料内部的应变场在细观上表现为非均匀性。
This paper describe research concerning the microstructure ,mean stiffness and compression properties of three -dimentionally braided composite materials, the braided process and yarn path in 4-step 3-D(lxl) rectangular braided composites are analysed, based on 3-D solid yarn and unit cell geometric model, microstructure inside 3-D braided preforms is analysed and some geometric models are set up. The paper also presents an analytic description of interior, surface and corner unit of 3-D braided composites and establishes several mathematic models.
    Models of braided performs and composites have been established with local-cut method. They can easily describe the complexity of braided structure and show the direction of yarns in braided performs and composites, and can accurately calculate the length of yarns. A problem that yarns between inner cell , surface cell and coner cell cannot be connected effectly has been solved in this paper.
    The final yarn structures in composites have changed comparing with those in the preforms after which are impregnated with matrix and consolidated into the final shape. This paper proposed that each different combination of row m and column n of main body yarns can scheme two type of section plot of perform and the section of perform can be designed . The expressions of fiber volume fraction are deduced. An optimization design proposal is give to the process of braided composites and structure parameters.
    When all yarns of preform in jamming condition, The biggest yarn volume fraction of right face model is equal to that of inner cell of 45° model, but not equal to that of surface cell and coner cell. when we employed the biggest braiding angel r=54.7° ,The biggest yarn volume fraction of inner cell ,surface cell and corner cell of 1x1 braided performs in 45°
    model are follows: Vymax = 67.96% , Vsymax= 58.23% and Vcymax = 37.31%. compactness of
     Vyaa
    inner , surface and the corner area are decrease grudaully. This paper proposed a concept of changed braiding angle in the process from braided preforms to final composites .meanwhile the changed braiding angle has been used in model established and the process of calculation of mean stiffness. Calculations of dimensions of representative unit cell have been given when performs changed to composite materials.
    Application of the model established to predict mean stiffness of 3-D braided compoites was conducted in this paper, including four direction and five direction braided composites.
    
    
    
    
    The experimental results show that the RVE mechanical model can reasonably predict the effective elastic constants of 3-D braided composite materials and the results show close agreement with theoretical predictions. We see yarn in braided composites as rod of inclined structures and use the structural model of three cell to predict monolithic stiffness of 3-D braided composites with method of volume average and method of weighted average of three cell's stiffness. In addition, the mechanical experiments of braided composite materials were carried out, such as tensile, compression and experiments. The braiding angle and fiber volume fraction have notable effect on module of elasticity.
    In this paper we proposed a hypothesis of difference fiber volume fraction and presented expressions respectively. The fiber volume fraction of unit cell is not equal to that of each lamina ,which need calculate eachly.The paper also advanced conception of weighted average of three cell's stiffness. The results of calculation agree with my experimental data and other documents.
    Based upon compression failure experiments of braided composites, some mitigating areas can be seen from the response curve of stress and stain. The phenomenon indicates that it is the failure of fiber bundles(lamina) bring on. three typically macroscopic failure modes of compression of 3-D braided composites have found, they are wholly unfasten failure, 45 degree breaking section failure and drum-like breaking failure. Through the compression experiments of braided
引文
[1] 吴德隆,沈怀荣.纺织结构复合材料的力学性能.长沙:国防科技大学出版社,1998.12.
    [2] Y. M. Tarnopolskii, A. V. Roze &. G. G. Portnov. Some Negative Characteristics of Fiber Reinforced Materials. Polymer Mechanics, Vol. 5, No. 1, 1969: 115-123.
    [3] N. P. Zhmud, V. Y. Petrov &. V. N. Shalygin. Laminated Rings of Glass-Plastics with Extra Radial Reinforcement in the Form of Steel Pins. Polymer Mechanics, Vol. 18, No. 2, 1978: 180-183.
    [4] T. Ishikawa. Anti-symmetric Elastic Properties of Composite Plates of Satin Weave Cloth. Fiber Science Technology, Vol. 15, 1981, 127.
    [5] T. Ishikawa, T. W. Chou. Elastic Behavior of Woven Hybird Composites. Journal of Composite Materials, Vol. 16, 1982, 2.
    [6] F. Scardino, F. Ko. Triaxial Woven Fabrics. Textile Research Journal, Vol. 51, No. 2, 1981, 80.
    [7] 李嘉禄.立体多向编织结构对复合材料性能的影响.复合材料学报,1996, 13 (3),71-75.
    [8] 肖丽华,李嘉禄.制作复合材料的三维编织技术.天津纺织工学院学报,1993,12 (3),5-10.
    [9] 钟明辉.编织复合材料.纤维复合材料,1992,(2),42-48,59.
    [10] 周光明,刘文宁.三维编织复合材料编织工艺研究(B).复合材料进展,航空工业出版社,1994,174-176.
    [11] 肖丽华,李嘉禄.三维编织结构复合材料的编织设计.宇航材料工艺,1994,24 (2),22-25.
    [12] 杨桂.编织结构复合材料及其工艺的研究(B).复合材料进展,航空工业出版社,1994,225-229.
    [13] 陈利.三维编织复合材料的细观结构及其弹性性能分析.天津纺织工学院博士研究生论文,1998年9月.
    [14] 肖丽华.异型整体结构复合材料预成型件的编织技术.产业用纺织品,1995,12 (4),25-27.
    [15] 于永禄.RTM法制备三维编织结构复合材料的研究(B).复合材料进展,航空工业出版社,1994,230-232.
    [16] 梁军,陈晓峰等.多向编织复合材料的力学性能研究.力学进展,1999,29 (2):197-210.
    [17] 扬庆生,扬卫.强韧化材料的细观力学设计.力学进展,1997,27 (2):177-184.
    [18] W. J. Hamburger.'A Technology for the Analysis, Design, and Use of Textile Structures as Engineering Materials' (Edgar Marburg Leeture), Amedcan Society for Testing
    
    Materials,Philadephia,PA,U. S.A., 1955.
    [19] J.W.S.Hearle,P.Grosberg,and S.Backer.'Structural Mechanics of Fibers,Yams,and Fabrics,Wiley',New York, 1969.
    [20] C.M.Pastore and F.K.Ko. 'Modelling of Textile Structural Composites,Part Ⅰ: Processing-science Model for Three-dimensional Braiding' [J].Text.Inst,1991,81 No,4 Textile Institute.
    [21] F. K. Ko. Three-Dimensional Fabrics for Composites—An Introduction to the Magnaweave Structure. Proe. ICCM-4, Japan Soc. Composite Materials, Tokyo, Japan, 1982: 1609.
    [22] W. Li. M. Hammad and A. Ell-Shiekh. Structural Analysis of 3-D Braided Preforms for Composites Part Ⅰ The Four-step Proforms. J. Text. Inst. 1990, 81 No. 491-514.
    [23] G. W. Du &. F. K. Ko. Unit Cell Geometry of 3-D Braided Structure. Proc. Of ASC 6~(TH) technical Conference. Albany NY, 1991, Oct.: 6-9.
    [24] Y. Q. Wang and A.S.D. Wang. On the Topological Yam Structure of 3-D Rectangular and Tubular Braided Preforms. Composites Science and Technology 51 (1994)575-586.
    [25] Y. Q. Wang and A.S.D. Wang. Mierostrueture/Property Relationship in Three-Dimensionally Braided Composites. Composites Science and Technology, 53(1995)213-222.
    [26] Y. Q. Wang &. A. S. D. Wang. Geometric Mapping of Yam Structures Due to Shape Change in 3-D Braided Composites. Composites Science and Technology, 54(1995)359-370.
    [27] 王峥.三维五向编织物的细观结构及其增强复合材料的性能.天津纺织工学院硕士研究生毕业论文,1996年1月.
    [28] 韩其睿,李嘉禄和李学明.复合材料三维编织结构的单元体模型.复合材料学报,Vol.13,No.3,1996年:76-79.
    [29] 黄小平,孙良新,徐孝诚.复合材料三维四向矩形编织物角柱结构研究[J].复合材料学报,2001,18(4):11-16.
    [30] Whitney T J, Chou T W. Modeling of 3-D Angle-interlock Textile Structural Composite. J Composite Materials, 1989, 23:890-911.
    [31] Crane R M, Camponeschi E T. Experimental and Analytical Characterization of Multi-dimensionally Braided Graphite/epoxy Composites. Experim Mechanics, 1986,
    
    19:259-266.
    [32] Yang J M, Ma C L, Chou T W. Fiber Inclination Model of Three Dimensional Textile Structural Composite. J Composite Materials, 1986, 20:472-483.
    [33] Ma C L, Yang J M &. Chou T W. Elastic Stiffness of Three-dimensional Textile Structural Composites. ASTM STP893, Composite materials: Testing and Design. American Society for Testing Materials, Philadelphia, 1986, 402-421.
    [34] 杨桂,敖大新,张志勇等编著.编织结构复合材料制作、工艺及工业实践.北京 科学出版社.1999,2.
    [35] Wu D L. Three-cell Model and 5D Braided Structural Composites. Composites Science and Technology, 1996, 56:225-233.
    [36] Mohajerjasbi S. Fiber architecture of three-dimensional braided composites[J]. AIAA Journal, 1998,36(4):613~617
    [37] Walrath D E, Adams D F. Finite Element Micromechanics and Minomechanics Modeling of a Three-dimensional Carbon-Carbon Composite Material. ADA168050, 1985.
    [38] Whyte D W, Pastore C M, Ko F K. A Fabric Geometry Model for 3-D Braid Reinforced FP/AL-Li Composites. In: Inter SAMPE Metals Cont, Competitive Advances in Metals/metal Processing. Cherry Hill, Aug. 1987, 18-21.
    [39] L. Chen, "On the microstructure of three-dimensional braided preforms", Composites Science & Technology, 1999,59(3),391-405.
    [40] 李嘉禄,肖丽华,董孚允.立体多向编织结构对复合材料性能的影响[J].复合材料学报,1996,13(3):71~75
    [41] Sun H Y, Qiao X. Prediction of mechanical properties of three-dimensional braided composites[J].Composites Science and Tecjnology, 1997,57(6):623~629.
    [42] 孙慧玉,吴长春.纺织结构复合材料力学性能的试验研究.试验力学,1997,12(3):335-341
    [43] 韩其睿,钟智丽.三维编织复合材料几何结构分析.第八届全国复合材料学术会议(NCCM-8)文集,1994:1185~1189
    [44] 吴德隆,郝兆平.五向编织复合材料的模型分析.宇航学报,1993(3),14(3):40-51
    [45] Li W, Hammad M, EI-Shiekh A. Structural analysis of 3-D braided performs for
    
    composites. 1990,81 (4):491~514.
    [46] Byun Joon-Hyung and Chou Tsu-Wei, Microstructure and process characteristics of 3-D braided perfors. Iccm/8Proceedings,Vol, 1991:6-1~6-c-9.
    [47] Tsai,S. W., In Composites Dwsign,3~(td) edn.Think Composites,Dayto,OH, 1987,pp. 123-124
    [48] 《玻璃纤维增强塑料拉伸性能试验方法》(GB1447-83)
    [49] 邱冠雄,“现代产业用纺织物的纤维原料开发”,针织工业,1997(5),5-11。
    [50] 韩其睿,“复合材料三维编织工艺底盘运动规律”,天津纺织工学院学报,1994,13(2),1-5。
    [51] Gerald Sutton. Affordable RTM Aerospace Components. SAMPE Journal, Vol. 35, No. 3, May/June 1999:58-63.
    [52] N.Paetd and L.James Lee, Molding of Formation and Removal in Liquid Composite Molding. Part Ⅰ: Wettability Analysis Polymer Composites, 1996,17(1):96
    [53] N.Paetd and L.James Lee, Molding of Formation and Removal in Liquid Composite Molding. Part Ⅱ :Molding Development and Implementation.Polymer Composites, 1996,17(1):104
    [54] W.B.Young and C.W. Tsong.J.R eif.Plast & Compos[J]. 1994,13(5):467
    [55] N.Paetd and L.James Lee, Effects of Fiber Mat Architecture On Void Formation and Removal in Liquid Composite Molding Polymer Composites, 1995,16(5):386
    [56] 杨桂,敖大新,张志勇等.编织结构复合材料制作、工艺及工业实践[M].北京:科学出版社,1999
    [57] 于永禄.RTM法制备三维编织结构复合材料的研究[C].第八届全国复合材料会议论文集,1994,北京:230~232
    [58] 孔祥言.高等流体力学[M].合肥:中国科学技术出版社,1999
    [59] Andrew Long, Francois Robitaille,Benjamin Souter and Christopger Rudd. Permeability prediction for Sheared,Compacted Textiles during Liquid Composite Moulding[C].13~(th) International Conferenc on Composite Materials.Beijing:June,2001
    [60] T.James Wang, C.H.Wu, and L.James Lee. In-plane Permeability Measurement and Analysys in Liquid Composite Molding[J].Polymer Composites, 1994,Vol. 15, No.4:278~298.
    [61] B.R. Gebart, and Peder Lidstrm. Measurement of In-plane Permeability of Anisotropic Fiber Reinforcements.Polymer Compositses,1996,Vol. 17,No. 1:43~51.
    
    
    [62] Kerdall K N,et al Characterzation of the RTM process[J]. Compsotes Manufacturing, 1992,3 (4):235.
    [63] K.J.Ahn,J.C.Seferis,and J.C.Berg. Polymer Compositses,1991,12(146).
    [64] James Edutin R.S. Product Development and Manufactring Process of Critical Automotive Comonent[J]. Composite Structrure,1994,(27):231.
    [65] Chan A W, Hwang S T. Modeling of the impregnation process during resin transfer modeling[J]. Polymer engineering and science, 1991,31 (15): 1149~1156.
    [66] Adams K L, Russel W B, Rebenfeld L. Radial penetration of a viscous liquid into a planar anisotropic porous medium[J]. Int J Multiphase Flow,1988,14(2):203~215.
    [67] N.Paetd and L.James Lee, Molding of Formation and Removal in Liquid Composite Molding. Part Ⅰ: Wettability Analysis Polymer Composites,1996,17(1):96
    [68] N.Paetd and L.James Lee, Molding of Formation and Removal in Liquid Composite Molding. Part Ⅱ :Molding Development and Implementation.Polymer Composites, 1996,17(1):104
    [69] 黄家康,岳红军,董永祺.复合材料成型技术[M].北京:化学工业出版社,1999
    [70] 美国试验与材料学会(ASTM)的标准“Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials”(D3039/D3039M-95.
    [71] “纤维增强塑料密度和相对密度试验方法”(GB1463-88).纤维增强塑料(玻璃钢)标准汇编.北京:中国标准出版社.1998.
    [72] Uozumi,T. and others,"Integrated braiding", Textile Asia, 1995,26(1),61-62.
    [73] Nayfeh A.H., "Ultrasonic plate waves in three dimensional braided composites", Journal-Acoustical Society of America, 1995,97(4),2056-2062.
    [74] Byun, Joon-Hyung, "Process-microstrueture relationships of 2-step and 4-step,braided composites", Composites Science and Technology,1996,56(3),235-251.
    [75] Tarnopol'skii.Yu.M., "Textile composite rods operating in torsion", Composites Science and Technology, 1996,56(3),339-346.
    [76] 韩其睿,“复合材料三维编织结构的单元体模型”,复合材料学报,1996,13(3),76-80。
    [77] US patent 5 301 596,"Simple braiding machine creates complex shapes", Advanced Composites Bulletin, 1995, (4),6-7.
    
    
    [78]Pandey, Ramesh, "Designing with 4-step braided fabric composites", Composites Science and Technology, 1996, 56(6), 623-634.
    [79]Sun,Hui Yu, "Prediction of the mechanical properties of three-dimensionally braided composites", Composites Science and Technology, 1997,57(6),623-629.
    [80]Surya R. and others, "Longitudinal and transverse moduli and strengths of low angle 3-D braided composites", Journal of Composite Materials,1996,30(8),885-905.
    [81]杨桂,“复合材料三维整体编织结构技术与特性”,复合材料学报,1992,9(2),85-92。
    [82]S.Mohajerjasbi, "Structure and properties of three-dimensional braided composites including axial yams", AIAA Journal, 1996,34(1),209-211.
    [83]吴哓青,李嘉禄等,“三维整体编织复合材料管的设计与制造”,玻璃钢/复合材料,1998,(4),21-23。
    [84]焦亚男,李嘉禄等,“三维整体纺织结构复合材料的纤维体积含量分析“,纤维复合材料,1998,15(2),24-29。
    [85]NASA,USA,"Weaving better three-dimensional braids for reinforcements", Advanced Composites Bulletin, 1998,(10),6-7.
    [86]J.Stephen,etc, "Microstructure analysis of composite tubes made from braided pref, orm and resin transfer molding", Journal of Composite Materials,1998,32(9),829-850.
    [87]L.Chen, "On the microstructure of three-dimensional braided preforms", Composites Science & Technology, 1999,59(3),391-405.
    [88]王耀先编著,复合材料结构设计.化学工业出版社.北京.2001,9.p20.
    [89]郑锡涛,“湿热/温载谱作用下复合材料结构耐久性试验验证(B)”,复合材料进展,航空工业出版社,1994,1167-1170.
    [90]S.F.M.Abd-el naby and L.Hollaway, "The experimental behavior of bolted joints in pultruded glass", Composites, 1993,24(7), 531-538.
    [91]S.F.M.Abd-el-naby and L.Hollaway, "The experimental behavior of bolted joints in pultruded glass", Composites, 1993,24(7), 539-546.
    [92]C.Barney, C.J.Beevefs and P.Bowen, "Fatigue crack propagation in SiC continuous fibre-reinforced, Composites", 1993, 24(3), 229-234.
    [93]L.J.Hartsmith, "The key to designing durable adhesively bonded joints", Composites, 1994,
    
    25(10),895-898.
    [94]L.J.HartSmith,”The key to designing efficient bolted composite joints",Composites,1994,25(8),835-837,设计效率螺栓连接.
    [95]Dongwei Shu,“Effrct of stitching on interlaminar delamination extension in com", Composites science technology,1993,49(2),165-171,纤维增强 层压 缝合 脱层 连接 弯曲弹性基础。
    [96]Kurt C. Schulz and Paul F.Packman, "A tension-mode fracture model for bolted joints in laminated", Journal composite materials, 1995,29(1),37-58.
    [97]Fahrer, A. and Gibson, A.G., "A study of the failure behavior of key-lock joints in glass", Composites Part A: applied science and manufacturing, 1996,27A(6) 429-435.
    [98]Theotokoglou, Efstathios E., "Experimental and numerical study of composite T-joints", Journal of Composite Materials, 1996, 3092), 190-209.
    [99]Robert A.Grimm, "Joining of Composites", Composites In Manufacturing, 1996, 12(4), 1-6.
    [100]Claudio Scarponi, "The importance of the temperature and lateral pressure on the CFR", Journal of Reinforced Plastics and Composites, 1997, 16(9),825-847.
    [101]M.W.Sonius, "Parametric design optimization of an entrapped fiber connection", Composite Structures, 1996, 35(3), 283-293.
    [102]Jin Ho Choi, "Torque capacity of co-cured tubular lap joints", Journal of Composite Materials, 1997, 31(14), 1381-1396.
    [103]Lee, Seung Woo, "Static and dynamic torque characteristics of composite cocured", Journal of Composite Materials, 1997, 31(21), 2188-2201.
    [104]P.P.Camanho, "Failure mechanisms in bolted CFRP", Journal of Reinforced Plastics and Composites, 1998, 17(3), 205-233.
    [105]L.Tong, "Failure of transversely stitched RTM lap joints", Composites Science & Technology, 1998, 58(2), 221-227.
    [107]Dahsin Liu, Basavaraju B., "Thickness effects on pinned joins for composites", Journal of Composite Materials, 1999, 33(1), 2-21.
    [108]H.J.Phillips, "Damage tolerance of laminated tee joints in FRP structures", Composites Part A: applied science and manufacturing, 1998, 29A(4), 465-478.
    
    
    [109]王兴业,肖加余等编著,复合材料力学分析与设计,长沙:国防科技大学出版社,1999,11.p146-156.
    [110]Hui-Yu Sun&Xin Qiao,Prediction of the mechanical property of three-dimentionally braided composites, Composites Science and Technology 57 (1997)623-629
    [111]孙慧玉,吴长春,卞恩荣,三维编织复合材料面内刚度和强度性能研究,复合材料学报,1998,10.p103-106
    [112]陈绍杰主编.复合材料设计手册.北京:航空工业出版社,1990
    [113]周履 范赋群.复合材料力学.高等教育出版社.1991,4.p78-79.
    [114]王善元,张汝光编著.纤维增强复合材料.上海:中国纺织大学出版社.1998,11.
    [115]李顺林主编.复合材料进展.北京:航空工业出版社.1994.p174-176,221-224,225-229,806-810,926-930
    [116]Edited by Miravete 3-D. Txtile reinforcements in composite materials, Cambridge England. 1999.
    [117]A. E Bogdanovich and C. M. Pastore. Mechanics of Textile and Laminated composites, Chaoman&Hall London, 1996.
    [118]徐孝诚,孙德海.三维编织复合材料细观结构的几何学分析.强度与环境.1999,2.p37-43
    [119]杨朝坤,李嘉禄,董孚允.FRP弯曲刚都的参数与结构设计.天津工业大学学报.2001,5.p35-41.
    [120]庞宝君,杜善义,韩杰才.三维四向复合材料试验研究.复合材料学报1999,4.p136-141
    [121]全国纤维增强塑料标准化技术委员会秘书处编,纤维增强塑料(玻璃钢)标准汇编.北京:中国标准出版社.1998.
    [122]杜善义,沃丁柱,章怡宁等.复合材料及其结构的力学、设计、应用和评价.哈尔滨工业大学出版社。2000,6
    [123]道德琨,吴以心,李兴国编著.立体织物与复合材料.上海:中国纺织大学出版社.1998.
    [124]Guang-Wu Du and Frank K. Ko,Unit cell Geometry of 3-D Braided Structures, Journal of reinforced plastic and composites,Vol. 12-july,1993. p752-768
    [125]Li, W, H. Hammad and A. E1-Shiekh. "Structoral Analysis of 3-DBraided Preforms fpr composites, Part Ⅰ:The Four-step Preforms, "J. Textile institute,81:491-514
    [126]沃丁柱主编,李顺林,王兴业等副主编,复合材料大全.北京,化学工业出版社,2001,1.
    
    
    [127]Thomas J. Whitney and Tsu-Wei Chou, Modeling of 3-D angle-interlock textile structural composites. Journal of composite materials,vol.23-september, 1989.p890-906.
    [128]乔生儒主编.复合材料细观力学性能.西安,西北工业大学出版社.1997,1
    [129]H.J.巴茨著,数学公式手册.科学出版社.北京.1987 p154.
    [130]《数学手册》编写组,数学手册.人民教育出版社 北京 1977,12.p84.
    [131]陈守光编著,空间解析几何.天津大学出版社,天津 1995,8.p

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700