三维机织热塑复合材料制作微结构力学性能及复合固化过程的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热塑复合材料是以各种热塑树脂为基体,以玻璃纤维、碳纤维等各种增强纤维为增强材料的复合材料的总称。热塑性材料有许多优于热固性材料的优点:较好的韧性、耐破坏性;使用寿命长、制成率高、可循环利用及生产周期短等。与热固性复合材料相比,先进的热塑性复合材料的最重要、最具潜力的优点是生产过程的自动化,能低成本地生产。将来热塑基体复合材料被广泛地、扩大化地应用是在预料之中的,特别是混纤热塑性复合材料在近几年已经得到了较快的发展和广泛的应用。虽然人们已经认识到长纤维增强热塑复合材料的优点和在制作结构件方面的潜力,但是,具有低成本效益的、实用的生产工艺的开发和研究只有十年多的历史。目前应用较成熟的加工工艺主要有拉挤成型、缠绕成型、二维织物或单向带的叠层模压成型等。
     三维机织物作为纺织结构复合材料的预制件,具有良好的整体性,是理想的结构复合材料。其抗层间剪切强度、抗冲击性、损伤容限、断裂韧性、可靠性等综合力学性能皆优于传统的层合复合材料。三维结构的纺织预型件加工技术的研究已有20年的历史,虽然取得了重要进展,但是三维织造的运动配合复杂、纱线之间的交织摩擦大,特别是玻璃纤维、碳纤维等高性能纤维的脆性较大,在加工过程中,极易被损伤。而且由于开口不清,为织造加工带来了极大的困难,大大限制了织造效率的发挥。
     本课题设计了一种高效低成本三维机织热塑复合材料的制作工艺,以微编纱做为中介媒体,使其同时满足热塑树脂的快速均匀浸润、苛刻的三维立体织造条件的要求,为三维织造和热塑复合材料地制作开辟一条新的途径。建立了纤维-树脂受力模型,在此基础上建立了树脂径向有限渗透模型、树脂轴向渗透模型。由两相流体动力学理论建立树脂-气体在纤维介质中的渗流模型。这些模型能对已有的实验结果做出很好的解释,并为本课题的实验所证实。通过试验和理论分析,建立了连续纤维增强的三维机织热塑复合材料工艺条件-微观结构-力学性能之间
    
    摘要
    的关系,为确定合理的加工工艺和提高复合质量提供了理论依据。
     微编纱的包缠纤维对芯纱的包缠紧密、牢固,纱线表面毛羽少,在无上浆条
    件下有良好的织造性能。增强纤维(芯纱)的直径越小,复合质量越好,但当芯
    纱的直径较小时,纺纱效率低。三维织物结构的几何模型表明:影响接结经取向
    角的因素主要包括纬纱压扁系数、接结经的接结方式、接结经短径以及纬密。几
    何模型计算织物的纤维体积密度与实测密度相符。
     复合工艺参数主要包括温度、压力和时间。提高浸渍温度可以降低树脂的粘
    度,提高树脂的渗透性能。PP树脂的温度在160一200℃范围内,温度对粘度的影
    响较大,超过200℃后,粘度变化较小。实验表明:温度大于180℃时,树脂易外
    溢,而且表层树脂颜色变暗,树脂被氧化分解。压力的大小影响纤维束之间的紧
    密结合、树脂在纤维束中的渗透、树脂在材料中的溢出,要根据织物的结构,树
    脂的温度等因素确定。最大压力以能够达到试样完全渗透时的厚度为限。由于树
    脂受力的衰减和纤维束孔隙率的减小,树脂在纤维束中的渗透是一个有限过程,
    延长浸渍时间不能保证树脂在纤维束中的完全渗透。因此,纱线中增强纤维的直
    径大小是决定树脂能否完全渗透的最重要的因素,减小微编纱中增强纤维的直径
    是保证良好的复合质量的最关键措施。
     模压成型使试样的厚度减小,经纱由原来的平面曲线变为扭曲的空间曲线,
    扭曲程度和形状与接结经的取向角、试样压缩的程度、接结经的密度有关。复合
    固化后,纬纱仍然保持直线状态,但纬纱的压扁系数增加。接结经的截面接近圆
    形,其压扁程度小于纬纱。
     接结经的形态对材料的力学性能有重要的影响,结接经弯曲变形大,材料的
    拉伸模量和弯曲模量小,伸长大,材料表现出较好的柔性。经预拉伸后的试样,
    接结经的取向角小,弯曲变形小,材料表现出低伸、高强、高模量的特点。实验
    表明:经10%的预拉伸后,材料的断裂伸长减小65肠,断裂强度提高92%,模量
    提高3.6倍。弯曲强度提高28%,弯曲刚度提高5倍。复合质量对材料的拉伸强度、
    拉伸模量、弯曲强度、弯曲模量有明显的影响。
Thermoplastic composite is the general term of composite based on thermoplastic resin and reinforced by all kinds of reinforcing fibers, such as glass fiber, carbon fiber. Thermoplastic composites have a number of important advantages over thermosetting composites for instance, better toughness/damage tolerance, longer service life, recyclable, and shorter processing period. The most important and potential advantage of thermoplastic composite is the automatization of processing, which can reduce the costs of the final products. Therefore, it is predictable that thermoplastic composites will come into use in a rapid and wide way in the future. Especially thermoplastic composites with commingled fiber have been developed rapidly and used widely in recently years. Though people have realized the advantages and potentials of thermoplastic composites in structure manufacture, the development and study of practical processing technique has been conducted only in recent ten years. At present, the successful applic
    ation processes mainly are pultrusion process, winding and uni-direction band compressing molding process, etc.
    Three-dimensional fabric used as preform of weaving structural composite is ideal material with excellent integrity; its toughness, damage tolerance and reliability are better than traditional materials. The research of there-dimensional preform has a history over twenty years, though great progress has been made, high performance fibers such as glass fiber and carbon fiber are easy to be damaged because of the complex motion and the great friction between fibers during fabric production, which limits the weaving efficiency greatly.
    In this paper, a kind of low-cost but effective manufacturing technology of 3D woven thermoplastic composites is designed, and micro-braided yarn is chosen as
    
    
    
    the medium to meet the requirement of rapid, even impregnating and rigorous 3D weaving condition, which inaugurates a new approach for weaving 3D weave and producing thermoplastic composites. Along with the fiber-resin
    impregnating model's construction, the transverse finite impregnating model and lognitudinal-impregnating model of fibers are also constructed. The
    impregnating and flowing patterns of resin-air among the fibers are established according to the theory of two-phase fluid dynamism. These models can explain the results of the experiment done before and are proved to be correct by the experiment of this research. The relationships among the processing-microstructure-property of the 3D woven thermoplastic composites are established, which offer theoretical foundation for determining the reasonable processing technique and improving the composites' quality.
    The core yarn is wrapped tightly and firmly by micro-braided yarn's wrapping fibers with little hair on its surface and has good weaving properties under the circumstances of non-sizing. The less the diameter of reinforcing fiber (core yarn), the better quality of the final material. However, when the core's diameter is too small, the spinning efficiency is low. The geometry model of 3D woven structure indicates that the factors that influence the binder orientation angle mainly include the aspect ratio of weft yarn cross section, binding pattern, the shot diameter of binder and weft density. A good agreement is demonstrated between theoretical predictions and experimental results.
    Temperature, pressure and time are the most important parameters in the fabrication process. Rising temperature may reduce resin viscosity. Temperature has great influence on viscosity of the resin when melting point of PP resin is within 160 ~200 C; but viscosity varies slightly over 200 C. Experiment demonstrates when temperature is over 180掳C, resin overflows easily, and the surface resin's color becomes faint. The processing pressure which influences the combination state, the flowing behavior of the matrix among the fiber bundles, the overflowing
    
    character should be determined by the woven structure, the temperature
引文
1. 沃丁柱主编,李顺林,王兴业等副主编.复合材料大全.北京:化学工业出版社,2000.146-50.
    2. GROVE,S.M.&SHORT, D.,Fabrication processes for continuous fiber-reinforced thermoplastic.High-tech-The Way Into the ineties,ed.K.Brunsch, 11.D.Golden & C.M.Herkert. Elsevier Science Publishers B.V.,Amster-dam, 1986.
    3. LOU,A.Y.,MURTHA,T.P.,O'CONNOR,J.E. and BRADY, D.G.,Continuous-fiber thermoplastic composite. In thermoplastic composites materials,composites series,7,cd.L.A. Carlssion. Elsevier Science Publishers B.V., 1991.
    4. OKEN,S.,Graphite thermoplastic YC-14 outboard elevator.Proc. 12th National.SAMPE Technical Conf.,7-9 October 1980,pp.461-481.
    5. SANDGREN,G., Applications for thermoplastic composites in automotive market.Proc. 46th Annual Conf.,Composites institute, The Society of the plastic industry. Inc., 18-21 February,1991,pp. 17-A.
    6. OFFRINGA, A.& ZIMMERMANN,P., Thermoplastic ICE protection plates for the Dornier 328. In advanced materials and structures from research to application ,ed.J.Brandt,H. Homfeld & M. Neitzel. SAMPE European Capter 1992,Switzerland.
    7. GARVEY, R.E.,ANDRIULL,J.B.,MCKEEVEI,J.W.&RUDNESS,R.V.,Minimum-gage, maximum-stiffness graphite/thermoplastic spacecraft structure. Polym.Comp.,12(2)(1991) 108-118.
    8. DELALOYE,S.& KONING,G, Design, calculation and manufacturing of a rim in continuous fiber reinforced thermoplastic.Proc. 9th Int. Conf. Composite materials (ICCM/9),Madrid,12-16 July ,1993,ed .A. Miravete. University of Zaragoza,1993,pp.301-314.
    9. Meng Hou,Lin Ye & Yiu-Wing Mai. Review advances in processing of continuous fibre reinforced composites with thermoplastic matrix. Plastics Rubber and Applications 23(1995)279-293.
    10. Jmco.Bernd Racrers..The challenge for Advanced Composites to increase applications on
    
    commercial aircraft,A discussion on research and development in materials and processing. ICCM-13.
    11. YE,L.,KLINKMULLER,V.& FRIEDRICH,K., Impregnation and consolidation in composites made of GF/PP powder impregnated bundles .j. Thermoplastic Comp.mater, 5(1992).
    12. GYSIN,H.,Machine industry-a market for advanced thermoplastic composites? Proc. 4th Industry Fair of Europe for Reinforced Materials and Composite Technologies, 1-3 July 1992. Wiesbanden,Germany.
    13. COGSWELL,F.N.,Thermoplastic Aromatic Polymer Composites. Butterworth-Heinemann Ltd,1992.
    14. TURTON,N. & MCNAINSH,J.,US Patent 3785916,1974.
    15. LIND,D.J.&COFFEY, V.J.,UK Patent 1485586,1977.
    16. WOOLSTENCROFT, D.Cost effective thermoplastic material forms.Proc. 12th Eur. Capter Conf. SAMPE,28-30 May, 1991,Maastricht,The Netherlands.
    17. IYER,S.R.& DRZAL,L.T., Manufacture of powder-impregnated thermoplastic composites.J. Thermoplastic Comp. Mater., 3(1990)325-355.
    18. YE,L.,FRIEDRICH,K,.CUTOLO,D.& SAVADORI,A., Manufacturing of CF/PEEK composites from powder/sheath fiber preforms. Comp. Manufacturing, 5(1994)41-50.
    19. WERDEMANN,C.,CIRINO,M.,PIPES,R.B&FRIEDRICH,K., Design and fabrication of an on-line consolidation facility for thermoplastic composites. J. Thermoplastic Comp.Mater,.2(1989)293.
    20. EGERTON,M.W. & GRUBER,M.B., Thermoplastic filament winding demonstration of economics and properties via in-situ consolidation .Proc.33rd SAMPE Symp.,Anaheim California,USA,7-10March 1988,pp.35-46.
    21. WINKEL,J.D.& HURDLE,J.R.,Mechanical performance of filament wound polyphenylenesulfide thermoplastic composite tubular structures .Proc.33rd SAMPE Symp.,Anaheim Califomia,USA, 7-10March 1988,pp. 816-828.
    22. STEINER,R.L.,COLE,J.D,.STRONG, A.B.&TODD,R.H,.Recommendations for composite manufacturing pultrusion process and equipment.SAMPE Quarterly,24(1)(1992)38-44.
    
    
    23. Jmco. Bernd Racrers.The challenge for Advanced Composires to increase applications on commercial aircraft,Adiscussion on research and development in materials and processing. ICCM-13
    24. Dong-JooLee,Lck-JacSeung-WookLee. Effecrs of mold temperature and cooling rate on mechanical properties of press consolidated thermoplastic composic composites.ICCM-13.
    25. Geotg Bechtold,Klaus Friedrich and Lin Ye. Model for the comparison of convective and contact preheating in a thermoplastic pultrusion process. ICCM-13.
    26. KEMPE,G.& KRAUSS,H., Manufacturing processes and moulding of fiber reinforced polytheretherketone(PEEK).ICAS-86-4.6.1.London/UK,September 1986.
    27. ITOI,M.&PIPES,R.B.,PAN and pitch-based carbon fiber reinforced polyethernitrile.J. Thermoplastic Comp.Mater.,3 (1990) 172-89.
    28. OKIN,R.K., international SAMPE Ttchnial Conference.20(1),48(1989)
    29. BHATTACHARYYA,D.,BURT, C.R.& MARTIN,T.A., Forming of fiber reinforced thermoplastic sheets .Proc. Int-Conf. Advanced composite materials (ICACM), 15-19 February,1993.
    30. SCHLEDJEWSKI,R.,HOU,M.& FRIEDRICH,K., Thermodynamic composites for orthopaedic applications: forming of individual body-adapted parts. Submitted to the 21st Annual Meeting of the society for Biomaterials, 18-22.March, 1995,San Francisco,California,USA.
    31. BERSEE,H.E.N.& ROBROEK,L.M.J., The role of a thermoplastic matrix in forming processes of composite materials.Comp.Manufacturing,2(3/4)(1991)217-22.
    32. 李龙,王善元,余健勇.热压参数对玻璃纤维/聚丙稀喷气混纤纱复合材料性能影响.玻璃钢/复合材料,1998,(1):20-21,27.
    33. N.SVENSSON~*AND R.SHISHOO,M.GILCHRISH .Manufacturing of Termoplastic Composites from Commingled Yarns-A Review. Journal of Thermoplastic Composite materials,Vol, 11-Janualy, 1998,22~56.
    34. Products, Twintex,April,2000,1~4.
    35. 丁权.Twintex复合纤维一种新颖的玻纤材料,1998,(4):36~39.
    
    
    36. Wulthorst,B.,Tetxlaff, G., and Kalde nhoff, R..Herstellung Von Hybridgarenn fur den Einsatxin Faserverbundwerkstoffen. Technische Textilien.35Marz,1992.
    37. Kaldenhoff, R. and Wulthorst,B., Textile Prepergs aus Friktionsspinhybridgarenn fur Faserverbundkunststoffe. Technische Textilien.36,Mai,1993.
    38. Fehrer, E. Friction spun hybrid yarns for composites.Textile Month,1996;(2).
    39. 吴学东,丁辛.热塑性树脂基复合材料用摩擦纺混纤纱,1997,玻璃钢复合材料 5-7
    40. M.Sakaguchi, A.Nakai,H.Hamada,N.Takeda. The mechanical properties of unidirectional Thermoplastic composites manufactured by a micro-braided technique .Composites Sicence and Technology .60(2000)717-722.
    41. M.Kamaya,A.Nakai,E.Fukui,H.Hamada. Micro-braided yarn as intermediate material system for continues fiber reinforced thermoplastic composite .ICCM 13.
    42. Ruzand JM,Guenot G.Multiaxial three-dimensional fabric and process for its manufacture .Inernationaal PatentWO 94/20658,15May September1994.
    43. Kamiya R.Mechanical properties of stitched carbon/epoxy composites.Masters thesis, University of Delaware,Department of Mechanical Engineering,1998.
    44. Farlay GL. Method and apparatus of weaving a woven angle ply fabric .US Paten 5224519,6 July 1993.
    45. Anagara M,Yasui Y, Omori H.Tree-dimensional textile and methodof produeing the three-dinmensional texile Europorpean Paten0-426-878-Al,15May 1991.
    46. Yasui Y, Anagara M,Hori F,Mita Y.Productoin of three-demensoinal woven fabric .Japanese Patent Publication 05106140.27 April 1993.
    47. Bilisik A,Mohamed MH.Multiaxial 3-D weaving machine and properties of multiaxial 3-D woven carbon/epoxy composites.Proceedings of American Society of Composites, 11-14 April, 1994.P.868-82.
    48. Mood GI,Mahboukian-Jones MGB.Multi-axial weaving, International Patent WO 92/14876,3 September 1992.
    49. Cox BN,Flanagan G, Handbook of analytical methods for testile composites.NASA Conractor Report4750,1997.
    
    
    50. Edgson R,temple S.Fiber performs for structural composite components.US Patent 5783279.21july1998.
    51. 黄故.纺织学报,1999,20(1):4-6.
    52. Klinkmuller, V.,R.Kastel,L.Ye and K. Friedrich. 1995.On impregnation quality and resulting mechanical properties of compression moulded commingled yarn based thermoplastic composites, IUTAM Symposium on microstructure-property interactions in composite materials,pp. 189-201.
    53. Klinkmuller, V.,M.-K.Um.M.Steffens,K.Frieddrich and B.-S.Kim. 1995. A new model for impregnation mechanisms in different GF/PP commingled yarns, Applied composite materials, 1:351-371.
    54. Ye,L.,K. Fridrich and J.Kastel. 1995.consolidation of GP/PP commingled yarn composites ,Applied composite material, 1:415-429.
    55. Ye,L.,K. Fridrich ,J.Kastel and Y.-W.Mai. 1995.Consolidation of unidirectional CF/PEEK composites from commingled yarn prepreg,Composites science and technology ,54:349-358.
    56. Van West,B.P.,R.B.Pipes and S.G.Advani.1991.The consolidation of commingled thermoplastic fabrics, Polymer composites,12(6):417-427.
    57. Cain,T.A.,M.D.Wakeman,R.Brooks,A.C. Long and C.D.Rudd.1997. Towards an integrated processing molded for a Co-mingled thermoplastic composites, Proceedings of the eleventh international conference on composite materials. Gold coast,Australia,Vol.V, pp. 11:366-376
    58. N.BERNET, V.MICHAUD,P.-E.BOURBAN AND J.-A.E.MANSON. An impregnation model for the consolidation of thermoplastic composites made from commingled yarns. 1999;journal of composite materials, Vol.33.No.8.
    59. B. Lauke,U.Bunzel and K, Schneider. Effect of hybrid yarn structure on the delamination behaviour of thermoplastic composites. Composites Part A 29A(1998) 1397-1409)
    60. M.Sakaguchi,A.Nakai,H. Hamada, N.Takeda The mechanical properties of unidirectional thermoplastic composites manufactured by a micro-braiding techcique Composites Science and Technology 60(2000)717-722
    
    
    61. A.C.Long,C.E.Wilks,C.D.Rudd. Experimental characterization of the consolidation of a commingled glass/polypropylene composites. Composites science and technology 61(2001)1590-1603
    62. Klinkmuller V, Um MK, Steffens M,Friedrich K, Kim BS.A new model for impregnation mechanisms in different GF/PP commingled yarns. Applied Composites Materials 1995;59:709-729.
    63. Leterrier Y,G'Sell C. Formation and elimination of voids during the processing of thermoplastic matrix composites. Polymer Composites 1994; 15 (2): 101-105.
    64. Wakeman MD,Cain TA,Rudd CD,Brooks R,Long AC. Compression moulding of glass and micro-mechanical properties-Ⅱ. Glass-mat reinforced thennoplastics. Comp Sci Tech 1999;59:709-729.
    65. Wen-Shyaong Kou,Jiunn Fang. Processing and characterization of 3D woven and braided thermoplastic composites. Composites Science and Technology 60 (2000) 643-656.
    66. 翁永华,马满珍,虞叶琴.GF/PET混纤纱复合材料成型工艺条件与材料性能关系的探讨.玻璃钢复/合材料,1999 NO 12-15.
    67. 李龙,王善元,余建勇.喷气混纤纱复合材料短梁剪切试验纤维复合材料 2000 6 18-19
    68. 吴晓青,李嘉禄,李学明,焦亚男.三维整体编织热塑性复合材料的研究.纺织学报,1998,19(1):51-53.
    69. Herzbrg,Sybille Kizywinski,Hartmut Rodel. Claudia Herzbrg,Sybille Kizywinski,Hartmut. Rodel load-adapted 3D-rinforcement by means of function-adjusted ready-making process. ICCM13.
    70. 董卫国,崔俊芳.三维机织物的织造技术和工艺.NCCM-12 中国 天津 2002.10.
    71. 于修业主编.纺纱原理.北京:中国纺织出版社,1995;152-153
    72. 易洪雷.三维机织复合材料的结构设计与力学性能研究:[博士论文].上海:东华大学,2000
    73. Lynch,T.,Thermoplastic/Graphite Fiber Hybrid Fabric,SAMPE Journl,1989:25(1)
    74. Ye,L,Friedrich,K.,Modl-Interlaminar Fracture of Commingled Yarn Based Glass/Polypropylene Composites,. Composite Sci and Tech.,1992:46
    75. Hugh,M.K.,etal.,Textile Composites From Powder Coated Towpreg: Yarn Treatment for
    
    Braiding ,39_(th) Int.SAMPE Symp.,1994;551-559
    76. Byun J.H.and Chou T.W.Elastic properties of three-dimentional angle-interlock fabric preforms,J text Inst, 1990,Vol,81 No,4:538-548.
    77. KO F.K.and D G.W., Processing of textile preforms,In: Advanced composites anufacturing,Gutowski T.G,editor, John Wiley & Sons Inc, 1997:182-187.
    78. Pochiraju K.and Chou T.W.,Three-dimensionally woven and braided composites Ⅰ:A mode for an isotropic stiffness prediction, Polymer composites,1999.Vol.20,No.4:565-580.
    79. Bng Xin and Yi Hong Lei, Geometric Analysis of 3D Woven Structures and Determination of Fiber Volume Fraction,ICCM13
    80. 孔祥言.高等渗透力学.中国科技大学出版社,合肥:1999.7
    81. Van West,B.P,R.B.Pipes and S.G.Advani."The Consolidation of Commingled Thermoplastic Fabrics, Polymer Composites, 1991.12(6):417-427.
    82. N.BERNET, V.MICHAUD,P.-E.BOURBAN AND J.-A.E.MANSON, Journalof composite materials,VOL,33,No. 8/1999
    83. Ye,L, K.Friedrich and J.Kastel. Consolidation of GP/PP Commingled Yarn Composites, Applied Composite Materials, 1995.1:415-429.
    84. M.Vijaysri,R.Chhabra,and V.Eswaran, Power-law Fluid Flow Across an Array of Infinite Circular Cylinders:A Numerical Study, J.Non-Newtonian Fluid Mech,87,263(1999)
    85. M.Bruschke and S.Advani, Flow of Generalized Newtonian Fluids Across a Periodic Array of Cylinders, J.Rheol,J.Rheol,37,n3,479(1993).
    86. Gutowski,T.G.,Z.Cai,S.Bauer, D.Boucher, J.Kingery and S.J.Wineman. Consolidation Experiments for laminate composites, Journal of composite materials ,1987,21:650-66.
    87. eenkon,R.A. Flow phenomena in porous media,1983,M.Dekker,New York.
    88. utowski,T.G.,Z.Cai,Bauer, D.Boucher, J.Kingery and S.J.Wineman.Consolidation experiments for laminate composites,Journal of composites, 1987,21:650-669.
    89. bart, B.R. Permeability of unidirectional reinforcements for RTM, Journal of composite materials, 1992,26(8): 1100-1133.
    90. e,V.Klinkmuller and K.Friedrich, Impregnation and consolidation composites made of GF/PP
    
    powder impregnated bundles,J. Thermoplastic composites materials,1992,5:32.
    91. Miller A,Wei C and Gibson A G. Manufacture of polyphenylene sulfide (PPS) matrix composites via the powder impregnation route. Composites Part 1996,27A:49-56
    92. Van West,B.P,R.B.Pipes and S.G.Advani.1991."The Consolidation of Commingled Thermoplastic Fabrics,"Polymer Composites, 12(6):417-427.
    93. 黄家康等.复合材料成型技术.北京:化学工业出版社,2001.
    94. 沃丁柱.复合材料大全.北京:化学工业出版社,2002.
    95. 蒋咏秋,陆逢升,顾志建.复合材料力学.陕西:西安交通大学出版社,1989,3.
    96. 黄故.现代纺织复合材料[M].北京:中国纺织工业出版社.2000.
    97. 王善元,张汝光等.纤维增强复合材料[M].上海:中国纺织大学山版社,1998
    98. 欧阳国恩,欧国荣.复合材料实验技术.武汉:武汉工业出版社,1993
    99. 王山根主编.复合材料性能测试技术要点和方法。专利文献出版社,1989
    100. 李顺林.复合材料力学引论.上海:上海交通大学出版社,1985,1.
    101. 冼杏娟,李瑞义.复合材料破坏分析及微观图谱.北京:科学出版社,1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700