缝洞型介质流体流动规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳酸盐岩储层对世界油气生产作出了重要贡献,但由于强非均质性,储层中流体流动规律至今还没有认识清楚。该研究综合利用物理模拟、数值模拟和理论分析方法,较为系统地研究了缝洞型介质中流体流动规律。取得的主要成果及认识如下:(1)以塔河油田缝洞型储层为基础,将缝洞型油藏储集空间分为六类——广义基质、孤立裂缝网络、孤立溶洞、裂缝网络系统、裂缝-溶洞系统和溶洞系统。(2)提出以福希海默数作为判别缝洞型介质中非达西渗流开始的标准,并利用该标准建立了由达西渗流转换为非达西渗流的临界速度公式,系统分析了缝洞模型中单相临界速度变化特征,在实验研究范围内,单相临界速度随流体粘度和裂缝密度(或连通度、洞密度、洞穴度)增大而增大。(3)根据相对渗透率曲线特征参数和形态,将常见相对渗透率曲线分为六种类型——水相上凹型、水相直线型、水相下凹型、水相上凸型、水相靠椅型和驼背型。研究表明,①在实验驱替速度范围内,由于注入水早期突破导致缝洞型介质中相对渗透率曲线基本为水相下凹型;②束缚水饱和度较低,油相相对渗透率在初期陡直下降,随着含水饱和度的增加,其下降速度逐渐减缓,而水相相对渗透率曲线明显下凹,在高含水相饱和度段其增加幅度越来越小,残余油处所对应的水相相对渗透率最高;③垂直于渗流方向竖直缝数减小或平行于渗流方向竖直缝数增加,都会使裂缝网络模型中残余油饱和度增大,等渗点饱和度减小;④溶洞的存在使残余油饱和度增加;⑤两相流动时不存在固定的临界速度值。(4)采用有限元方法数值研究了缝洞型介质中单相流动形态,①重力作用对溶洞内部流态影响随洞径减小而减小,而对裂缝内部流态影响可以忽略;②当流速增大到某一数值时,溶洞内部出现射流现象。(5)首次采用Level Set方法与N-S方程耦合方法数值研究考虑重力作用下不同洞径、不同洞位置和不同孔喉位置模型内两相流动特征,①洞径越大,缝洞模型最终采出程度越低,缝洞模型中残余油主要存在于溶洞上部空间;②只有一个洞口与主裂缝连通的溶洞,其中的油能否被采出来,取决于洞口的位置,凡是裂缝在洞口上方,则可以靠油水密度差将溶洞中的油驱替出来,反之,溶洞中只有少部分油被驱替出来;③若只有一个孔喉与溶洞连通,不论与其连通缝的方位如何,溶洞内的油都采不出来。该研究成果完善了缝洞型介质流动机理,为进一步认识缝洞型油藏、提高油藏采收率提供理论基础。
Carbonate reservoirs have made important contributions to oil and gas production in the world. It is very difficult to understand the fluid flow law in this kind of reservoir because of high heterogeneity. Fluid flow in fractured vuggy media was studied systematically by physical simulation, numerical simulation and theretical analyzation. The main results are as follows: (1) At the beginning of this study, reservoir space of fractured-vuggy reservoirs was divided into six types: generalized matrix, independent fracture network, independent vug, fracture network system, fractured-vuggy system and vug system on the basis of fractured-vuggy in Tahe Oilfield. (2) The Forchheimer number has been used as a criterion to identify the beginning of non-Darcy flow in fractured-vuggy media. And the formula of critical velocity from Darcy flow to non-Darcy was developed based on this criterion. Characteristics of single-phase critical velocity variation in different structural fractured-vuggy models had been analyzed systematically. In the range of experimental studies, single-phase critical velocity increases with fluid viscosity and fracture density (or connectivity, vug density and vug porosity). (3) According to characteristic parameter and shape, relative permeability curves had been divided into six types: water-phase top concave, water-phase straight line, water-phase below concave, water-phase top convex, water-phase chair and humpback.①In the range of experimental displacement rate, most of relative permeability curves in fractured-vuggy models are belong to water-phase below concave due to early breakthrough of injected water.②Residual water saturation is small, and oil relative permeability descended quickly at the beginning and its decline speed gradually slow with water saturation increasing. However, water relative permeability curve showed below concave clearly, water relative permeability increased slowly at high water saturation, and maximum of water relative permeability was at residual oil.③Reduction of vertical fractures perpendicular to fluid flow or augment of vertical fractures parallel to fluid flow will increase the residual oil saturation and decrease the water saturation of isoperm point.④ Existence of vugs will increase the residual oil saturation.⑤Two-phase critical velocity is not a fixed value. (4) Single-phase fluid flow in fractured-vuggy media had been simulated by finite element method.①Effect of gravity on fluid flow decreases with the decrease vug diameter in the vug and can be neglected in fracture.②When velocity increases to a certain numerical, there is similar“jet”phenomenon in vug. (5) Characteristics of two-phase fluid flow under gravity in different vug diameter, vug position and pore throat position models had been numerical studied by level set method coupling with N-S equation at the first time.①Final recovery is lower in fractured model with bigger vug and residual oil presents in the top space of vug.②Whether oil in the vug, where is only one port connected with the main fracture, can be taken out depending on the location of the vug. If fracture is above the vug, oil in the vug can be taken out by the density difference between oil and water. On the contrary, only a little part of oil in the vug can be flooded out.③If there is only one pore throat connected with vugs, the oil in vugs can’t be recovered regardless of orientation of fracture connected with pore throat. The research achievements improved the mechanism of fluid flow in fractured-vuggy media and provide a theoretical basis to further understand the fractured-vuggy reservoir and enhance oil recovery in this kind of reservoir.
引文
[1]吕爱民.碳酸盐岩缝洞型油藏工程方法研究[D].山东:中国石油大学,2007
    [2]王殿生.缝洞型介质流动机理实验与数值研究[D].山东:中国石油大学,2009
    [3]杨辉廷,江同文,颜其彬等.缝洞型碳酸盐岩储层三维地质建模方法初探[J].大庆石油地质与开发, 2004, 23(4): 11-16.
    [4] Bertrand M. A., Prikel K., Kyte J. R. Porosity and lithology from logs in carbonate reservoirs [A], Society of petroleum engineers of AIME. SPE1867, presented at the 42nd Annual Fall Meeting of the Society of Petroleum Engineers of AIME, Houston, 1967.
    [5] Jardine D., Andrews D. P. and Wishart J. W., et al. Distribution and continuity of carbonate reservoirs [A]. SPE 6139, presented at the SPE-AIME 51st Annual Fall Technical Conference and Exhibition, New Orleans 1977:873-885
    [6] Jardine D. and Wilshart J. W.. Carbonate reservoir description [A]. SPE 10010, presented at the International Petroleum Exhibition and Technical Symposium of the Society of Petroleum Engineers, Beijing, China, 1982.
    [7]迈杰鲍尔B.H..裂缝型油田开发特征[M].北京:石油工业出版社,1986
    [8] Watfa M. and Youssef F. Z.. An improved technique for estimating permeability in carbonates [A]. SPE 15732, presented at the Fifth SPE Middle East Oil Show, Bahrain, 1987:351-360
    [9] Asar H. K., Satman A. and Saner S.. Laboratory miscible displacement study in Arabian carbonate cores [A]. SPE 15750, presented at the Fifth SPE Middle East Oil Show, Bahrain, 1987:505-520
    [10]苏尔古乔夫M.π.等.碳酸盐岩油藏的开采[M].北京:石油工业出版社,1994
    [11]罗海尔,乔奎特.世界大油气田碳酸盐岩油藏研究实例[M].北京:石油工业出版社.1993
    [12] Jennings J. W. Jr. and Lucia F. J.. Predicting permeability from well logs in carbonates with a link to geology for interwell permeability mapping [A]. SPE 71336, presented at the 2001 SPE Annual Technical Conference and Exhibition, New Orleans, 2001
    [13] Babadagli T. and Al-Salmi S.. Improvement of permeability prediction for carbonate reservoirs using well log data [A]. SPE 77889, presented at the SPE Asia Pacific Oil and Gas Conference and Exhibition, Melbourne, 2002
    [14] Jurgawczynski M., Lock P. A. and Jing X. D., et al. Permeability predictions based on two-dimensional pore space images [A]. SPE 110472, presented at the 2007 SPE Annual TechnicalConference and Exhibition, Anaheim, 2007
    [15] Tang J. and Zhang P. X.. Determination of residual oil saturation in a carbonate reservoir [A]. SPE 72111, presented at the Asia Pacific Improved Oil Recovery Conference, Kuala Lumpur, 2001
    [16] Chandran T. P. R., Vervest E. and Brown M., et al. Waterflood saturation measurement with Carbon-Oxygen tools in a middle-east carbonate [A]. SPE 78532, presented at the Abu Dhabi International Petroleum Exhibition & Conference, 2002
    [17] Byrnes A. P. and Bhattacharva S.. Influence of initial and residual oil saturation and relative permeability on recovery from transition zone reservoirs in shallow shelf carbonates [A]. SPE 99736, presented at the 2006 SPE/DOE Symposium on Improved Oil Recovery, Tulsa, 2006
    [18] Veatch R. W., Helander D. P. and Guerrero E. T.. The effect of surface roughness on fluid flow through narrow rectangular passages [A]. SPE 1291, presented at the 40th Annual Fall Meeting of the Society of Petroleum Engineers of AIME, Denver, Colorado, 1965.
    [19] Firoozabadi A., Markeset T.. An Experimental Study of Capillary and Gravity Crossflow in Fractured Porous Media [A]. SPE 24918, presented at the 57th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, Washington, 1992:617-626
    [20] Firoozabadi A., Markeset T.. Fracture-liquid Transmissibility in Fractured Porous Media [A]. SPE 24919, presented at the 1992 SPE Annual Technical Conference and Exhibition, Washington, 1992:201-207
    [21] Fourar M, Bories S, Lenormand R, Persoff P. Two-Phase flow in smooth and rough fractures: measurernent and correlation by porous-medium and pipe flow models [J]. Water Ressour Res., 1993; 29 (11): 3699-3708.
    [22] Rafael H. G., Fernando S. V. and Francisco H. P. On the petrophysics of carbonate reservoirs through whole core analysis [A]. SPE 28675, presented at the SPE International Petroleum Conference and Exhibition of Mexico, Veracruz, 1994
    [23] DeZabala E F and Kamath J. Laboratory evaluation of waterflood behavior of vugular carbonates [A], SPE 30780, presented at the SPE 70th Annual Technical Conference and Exhibition, Dallas, TX, 22–25 October, 1995
    [24] Kamath J., Xu B. and Lee S. H., et al. Pore network modeling of laboratory experiments on heterogeneous carbonates [A]. SPE 36681, presented at the 1996 SPE Annual Technical Conference and Exhibition, Denver, Colorado, 1996:61-67
    [25] Xu B.M., Kamath J. and Yortsos Y. C., et al. Use of pore-network models to simulate laboratory corefloods in a heterogeneous carbonate sample [A]. SPE Journal, 1999, 4(3):179-186
    [26] Kamath J., Meyer R. F. and Nakagawa F. M.. Understanding waterflood residual oil saturation of four carbonate rock types [A]. SPE 71505, presented at the 2001 SPE Annual Technical Conference and Exhibition, New Orleans, 2001
    [27] Dauba C, Hamon G, Quintard M and Lasseux D. Stochastic description of experimental 3D permeability fields in vuggy reservoir cores [A]. SCA1998-28, presented at 1998 International Symposium of the Society of Core Analysts held in Pau, France, 22-25 September, 1998.
    [28] Borgia G. C., Bortolotti V. and Fantazzini P.. Combined Magnetic Resonance Relaxation and Imaging for quantitative determination of matrix and vugular porosity in carbonate cores [A]. SPE 49294, presented at the 1998 SPE Annual Technical Conference and Exhibition, New Orleans, 1998:751-756
    [29] Borgia G. C., Bortolotti V. and Fantazzini P.. Magnetic Resonance Relaxation-Tomography to assess fractures induced in vugular carbonate cores [A]. SPE 56787, presented at 1999 SPE Annual Technical Conference and Exhibition, Houston, 1999
    [30] Ausbrooks R., Hurley N. F. and May A., et al. Pore-size distributions in vuggy carbonates from core images, NMR, and capillary pressure [A]. SPE 56506, presented at the 1999 SPE Annual Technical Conference and Exhibition, Houston, 1999
    [31] Gurpinar O., H-RT S. and Kalbus J., et al. Numerical modeling of a large, naturally fractured oil complex [A]. SPE 59061, presented at the 2000 SPE International Petroleum Conference and Exhibition in Mexico, Villahermosa, 2000
    [32] Rangel-German E R, Kovscek A R. Experimental and analytical study of multi- dimensional imbibition in fractured porous media [J]. Journal of Petroleum Science and Engineering, 2002; 36: 45-60
    [33] Elena Kazatchenko and Aleksandr Mousatov. Primary and secondary porosity estimation of carbonate formations using total porosity and the formation factor [A]. SPE 77787, presented at the SPE Annual Technical Conference and Exhibition, San Antonio, 2002
    [34] P. Egermann, C. Laroche and E. Manceau. Experimental and Numerical Study of Water/Gas Imbibition Phenomena in Vuggy Carbonates. SPE89421, 2006:86-96
    [35] Ivan E. Terez and Abbas Firoozabadi. Water Injection in Water-Wet Fractured Porous Media: Experiments Using Modified Buckley-Leverett Theory. SPE 39605, paper to be prepared for the 1998SPE/DOE Improved Oil Recovery Symposium, Tulsa, Oklahoma, 19-22 April 1998: 21-34
    [36] Aanda M. Wijesinghe and Wilmer E. Cuham. Single-well pressure testing solutions for naturally fractured reservoirs with arbitrary fracture connectivity [A]. SPE 13055, presented at the 59th Annual Technical Conference and Exhibition, Houston, Texas, 1984
    [37] W.F. Leung. A general purpose single-phase naturally fractured (carbonate) reservoir simulator with rigorous treatment of rock-stress/fluid-pressure interactions and interporosity flow [A]. SPE 13528, presented at the SPE 1985 Reservoir Simulation Symposium, Dallas, Texas, 1985
    [38] A. Spivak, D. Karaoguz and K. Issever, et al. Simulation of immiscible CO2 injection in a fractured carbonate reservoir, Bati Raman Field, Turkey [A]. SPE 18765, presented at the SPE California Regional Meeting, California, 1989
    [39] M Fourar, R Lenormand. A new model for two-phase flows at high velocities through porous media and fractures. Journal of Petroleum Science and Engineering, 2001; 30: 121–127
    [40] A Moctezuma-Berthier, O Vizika, J F Thovert And P M Adler. One- and Two-Phase Permeabilities of Vugular Porous Media. Transport in Porous Media. 2004; 56: 225–244.
    [41] Peter Popov, Linfeng Yalchin Efendiev, et. al. Multiphysics and Multiscale Methods for Modeling Fluid Flow Through Naturally Fractured Vuggy Carbonate Reservoirs. SPE105378. Society of Petroleum Engineers. 2007:1-9
    [42] S. Erzeybek, S. Akin. Pore Network Modeling of Multiphase Flow in Fissured and Vuggy Carbonates. SPE113384. Society of Petroleum Engineers. 2008:1-13
    [43]柏松章,邓华云,李功治等.碳酸盐岩潜山油田开发[M].石油工业出版社,1996
    [44]张希明,杨坚,杨秋来,等.塔河缝洞型碳酸盐岩油藏描述及储量评估技术[J].石油学报, 2004,25(1):13-18
    [45]张玲,史建忠,游秀玲.缝洞型潜山油藏储量计算方法研究[J].石油大学学报:自然科学版, 2005, 29(6):11-15
    [46]李珂,李允,刘明.缝洞型碳酸盐岩油藏储量计算方法研究[J].石油钻采工艺, 2007,29(2):103-104
    [47]陈新乐,赵峰,莫振敏.塔河油田缝洞型碳酸盐岩油藏可采储量计算方法探讨[J].新疆地质,2008,26(4):412-414
    [48]杨敏.塔河油田4区岩溶缝洞型碳酸盐岩储层井间连通性研究[J].新疆地质, 2004, 22(2):196-199
    [49]胡广杰,杨庆军.塔河油田奥陶系缝洞型油藏连通性研究[J].石油天然气学报:江汉石油学院学报, 2005, 27(2):227-229
    
    [50]赵阳升,杨栋,郑少河,等.三维应力作用下岩石裂缝水渗流物性规律的实验研究[J].中国科学:E辑, 1999,29(1):82-86
    [51]周娟,薛惠,郑德温,等.裂缝油藏水驱油渗流机理[J].重庆大学学报:自然科学版, 2000, 23(增):65-67
    [52]李宁,张清秀.裂缝型碳酸盐岩应力敏感性评价室内实验方法研究[J].天然气工业, 2000,20(3):30-33
    [53]赵阳,曲志浩,刘震.裂缝水驱油机理的真实砂岩微观模型实验研究[J],石油勘探与开发, 2002, 29(1):116-119
    [54]康永尚,郭黔杰,朱九成,等.裂缝介质中石油运移模拟实验研究[J].石油学报, 2003,24(4):44-57
    [55]刘建军,刘先贵,冯夏庭.裂缝-孔隙介质油水两相微观渗流物理模拟[J].岩石力学与工程学报,2003,22(10):1646-1650
    [56]向阳,向丹,黄大志.无边底水碳酸盐岩气藏高速开采模拟实验研究[J].石油勘探与开发, 2003, 30(4):59-91
    [57]疏壮志,杜志敏,刘建仪,等.碳酸盐岩裂缝性水驱气藏水锁实验研究[J].天然气工业, 2004, 24(6):89-92
    [58]李剑峰,赵群,郝守玲,等.塔河油田碳酸盐岩储层缝洞系统的物理模拟研究[J].石油物探, 2005, 44(5):428-432
    [59]王自明,宋文杰,刘建议,等.轮南古潜山碳酸盐岩油藏长岩心驱替实验成果[J].新疆石油地质, 2006, 27(1):68-70.
    [60]薛永超,程林松.微裂缝低渗透岩石渗透率随围压变化实验研究[J].石油实验地质, 2007, 29(1):108-110
    [61]刘中春,李江龙,吕成远,等.缝洞型油藏储集空间类型对油井含水率影响的实验研究[J].石油学报,2009,30(2):271-274
    [62]李俊键,姜汉桥,徐晖,等.碳酸盐岩油藏单井缝洞型储集体开采规律试验[J].中国石油大学学报:自然科学版, 2009, 33(2):85-89.
    [63]张烈辉,李允.裂缝性油藏水平井数值模拟的进展和展望[J].西南石油学院学报, 1997, 19(4):48-52
    [64]程林松,李春兰,郎兆新.裂缝油藏三维油水两相渗流的有限元方法[J].大庆石油地质与开发, 1998,17(1):26-33
    [65]刘建军,张盛宗,刘先贵,等.裂缝性低渗透油藏流-固耦合理论与数值模拟[J].力学学报,2002,34(5):779-783
    [66]刘学利,翟晓先,杨坚,等.塔河油田缝-洞型碳酸盐岩油藏等效数值模拟[J].新疆石油地质,2006, 27(1):76-78
    [67]彭小龙,刘学利,杜志敏.缝洞双重介质数值模型及渗流特征研究[J].西南石油大学学报:自然科学版, 2009, 31(1):61-64
    [68]修乃岭,耿忠娟,熊伟,等.缝洞型碳酸盐岩油藏开发特征和水动力学模拟[J].石油钻采工艺, 2008, 30(2):72-74
    [69]修乃岭,熊伟,班凡生,等.缝洞型油藏裂缝-溶洞中流体运动特征研究[J].水动力学研究与进展,2007,22(3):358-362
    [70] WU Yu-Shu, QIN Guan, KANG Zhi-jiang, et al. A Triple-Continuum Pressure-Transient Model for a Naturally Fractured Vuggy Reservoir. SPE110044. Society of Petroleum Engineers. 2007:1-10
    [71]张建国,雷光伦,张艳玉.油气层渗流力学[M].山东:石油大学出版社,1998. 7-11
    [72] Whitaker,S.. Advances in theory of fluid motion in porous media[J]. Ind. Eng. Chem., 1969, 61(12):14-28
    [73] Hassanizadeh, M. and Gray, W.G.. General conservation equations for multi-phase systems:3. Constitutive theory for porous media flow[J]. Adv. Water Resour. 1980, 3:25-40
    [74] Jacob Bear著,李竟生,陈崇希译.多孔介质流体动力学[M].北京:中国建筑工业出版社,1983,95-98
    [75]葛家理,宁正福,刘月田,等.现代油藏渗流力学原理[M].北京:石油工业出版社,2001:26-29.
    [76] Brinkman, H.C.. A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles[J]. 1947, 1:27-34
    [77] Holditch, S.A. , Morse, R.A.: 1976, The effects of non-Darcy flow on the behavior of hydraulically fractured gas wells[J], J. Petrol. Technol. 1976, 1169–1179.
    [78] HANDREN P, PEARSON M, KULLMAN J, et al. The impact of non-Darcy flow on production from hydraulically fractured gas wells[A]. SPE 67299, 2001:1-9.
    [79] Chilton, T.H. and Colburn, A.P.. Pressure drop in packed tubes[J]. Ind Engng. Chem. 1931, 23(8):913-919.
    [80] Fancher, G.H. and Lewis, J.A.. Flow of simple fluids through porous materials[J]. Ind. Engng. Chem. 1933, 25(10):1139-1147.
    [81] Green, L. Jr. and Duwez, P. Fluid flow through porous metals[J]. J. Appl. Mech. 1951, 39-45
    [82] Ergun, S.. Fluid flow through packed columns[J]. Chen. Engng. Prog. 1952, 48(2):89-94.
    [83] Blick, E.F. and Civan, F.. Porous media momentum equation for highly accelerated flow[J]. SPE Reserv. Engng. 1988, 1048-1052
    [84] Ma, H. and Ruth, D. W.. The microscopic analysis of high Forchheimer number flow in porous media[J]. Transport porous media 1993, 13:139-160.
    [85] Andrade, J.A. Jr., Costa, U. M. S. and Almeida, M. P., et al. Inertial effects on fluid flow through disordered porous media[J]. Phys. Rev. Lett. 1998, 82(26):5249-5252.
    [86] Thauvin, F. and Mothanty, K. K.. Network modeling of non-Darcy flow though porous media[J]. Transport porous media. 1998, 31:19-37.
    [87] Geertsma, J.. Estimating the coefficient of inertial resistance in fluid flow through porous media[J]. Soc. Petrol. Eng. J.. 1974, 445-450.
    [88] Martins, J.P., Milton-Talyor, D. and Leung, H. K.. The effects of non-Darcy flow in propped hydraulic fractures[R]. SPE 20790, in: Proceedings of the SPE Annual Technical Conference. New Orleans, Louisiana, USA, 1990, Sept. 23-26.
    [89] Gidley, J.L.. A method for correcting dimensionless fracture conductivity for non-Darcy flow effect[J]. SPE Prod. Engng. 1991, 391-394.
    [90] Ergun, S. and Orning, A.A.. Fluid flow through randomly packed columns and fluidized beds[J]. Industrial and Engineering Chemistry. 1949, 41(6):1179-1184
    [91] Irmay, S.. On the theoretical derivation of Darcy and Forchheimer Formulas[J]. Trans., American Geophysical Union. 1958, 39(4):702-707.
    [92] A.E.薛定谔著,王鸿勋,张朝琛,孙书琛译.多孔介质中的渗流物理[M],石油工业出版社,1982.
    [93] Janicek, J.D. and Katz, D. L.. Applications of unsteady state gas flow calculations[R]. Proc., U. of Michigan Research Conference. 1955.
    [94] Cooke, C.E., Jr. Conductivity of fracture proppants in multiple layers [J]. JPT, 1973, 1101-1107.
    [95] MacDonald, I.E.. Flow through porous media- the Ergun equation revisited [J]. Ind. Eng. Chem. Fundam. 1979, 18:189-208.
    [96] Kutasov, I.M.. Equation predicts non-Darcy flow coefficient [J]. Oil & Gas Journal. 1993, 66-67.
    [97] Liu, X., Givan, F. and Evans, R.D. Correlation of the non-Darcy flow coefficient [J]. J. Cdn. Pet. Tech. 1995, 34(10):50-54.
    [98] Coles, M.E. and Hartman, K.J. Non-Darcy Measurements in dry core and the effect of immobileliquid[R]. SPE 39977 presented at the 1998 SPE Gas technology Symposium, Calgary, Alberta, Canada. 1998.
    [99] Pascal H., Quillian, R.G. and Kingston, J. Analysis of vertical fracture length and non-Darcy flow coefficient using variable rate tests [R]. Paper SPE 9438 presented at the 1980 SPE Annual Technical Conference and Exhibition, Dallas. 1980.
    [100] Jones, S.C. Using the inertial coefficient,β, to characterize heterogeneity in reservoir rock[R]. Paper SPE 16949 presented at the 1987 SPE annual Technical Conference and Exhibition, New Orleans. 1987.
    [101] Cooper, J.W., Wang, X. and Mohanty, K.K. Non-Darcy flow studies in anisotropic porous media[J]. SPEJ. 1999, 4(4):334-341.
    [102] Li, D., Svec, R.K. and Engler, T.W., et al. Modeling and Simulation of the wafer non-Darcy flow experiments[R]. Paper SPE 68822, Proc., the 2001 SPE Western Regional Meeting, Bakersfield, CA. 2001.
    [103] Wong, S.W.. Effect of liquid saturation on turbulence factors for gas-liquid systems[J]. J. Cdn. Pet. Tech. 1970, 274.
    [104] Evans, R.D., Hudson, C.S. and Greenlee, J.E. The effect of an immobile liquid saturation on the non-Darcy coefficient in porous media [J]. SPE Production Engineering. 1987, 331-338.
    [105] Grigg, R.B. and Hwang, M.K. High velocity gas flow effects in porous gas-water system[R]. Paper SPE 39978 presented at the 1998 SPE Gas Technology Symposium, Calgary, Canada. 1998.
    [106] Frederick Jr., D.C. and Graves, R.M. New correlations to predict non-Darcy flow coefficients at immobile and mobile water saturation[R]. Paper SPE 28451 presented at the 1994 SPE Annual Technical Conference and Exhibition, New Orleans. 1994.
    [107] Ganesh Narayanaswamy, Mukul M. Sharma and G.A. Pope. Effect of Heterogeneity on the non-Darcy flow coefficient[R]. SPE Reservoir Eval. & Eng. 1999, 2(3):296-302.
    [108] Osher S. and Sethian J.A. Fronts propagating with curvature dependent speed: algrothms based on Hamilton Jacobi Formulations [J]. Journal of Computational Physics, 1988,79(1):12-49
    [109] Mark Sussman, Emad Fatemi and Peter Smereka, et al. An improved level set method for incompressible two-phase flows [J]. Computers & Fluids, 1998, 27:663-680
    [110] S.B. Phillapakkam and P. Singh. A level-set method for computing solutions to viscoelastic two-phase flow [J]. Journal of Computational Physics, 2001,174:552-578
    [111]马东军,孙德军,尹协远.一维多介质可压缩流动数值方法[J].计算物理,2003,20(2):183-188
    [112]谷汉斌,李炎保,李绍武,等.界面追踪的Level Set和Particle Level Set方法[J].水动力学研究与进展, 2005,20(2):152-160
    [113] Elin Olsson, Gunilla Kreiss. A conservative level set method for two phase flow [J]. Journal of Computational Physics, 2005, 210:225-246
    [114] Elin Olsson, Gunilla Kreiss and Sara Zahedi. A conservative level set method for two phase flow II [J]. Journal of Computational Physics, 2007, 225:785-807
    [115] M. Herrmann. A Eulerian level set/vortex sheet method for two-phase interface dynamics [J]. Journal of computational Physics, 2005,203:539-571
    [116] Sebastien Tanguy, Alain Berlemont. Application of a level set method for simulation of droplet collisions [J]. International Journal of Multiphase Flow, 2005,31:1015-1035
    [117] Sunitha Nagrath, Kenneth E. Jansen and Richard T. Lahey Jr. Computation of incompressible bubble dynamics with a stabilized finite element level set method [J]. Comput. Methods Appl. Mech. Engrg., 2005,194:4565-4587
    [118]宫翔飞,张树道,江松.界面捕捉Level Set方法的(AMR)数值模拟[J].计算物理, 2006, 23(4):391-395
    [119]张学莹,赵宁.一种追踪多介质流体界面运动的NND数值模拟方法[J].应用力学学报, 2006, 22(3):105-109
    [120]陈凡红,王成,郝莉,等.用Level Set方法追踪运动界面[J].力学与实践.2006,28(4):23-27
    [121] Emilie Marchandise and Jean-Francois Remacle. A stabilized finite element method using a discontinuous level set approach for solving two phase incompressible flows [J]. Journal of Computational Physics, 2006, 219:780-800
    [122] Sergey V. Shepel and Brian L. Smith. New finite-element/finite-volume level set formulation for modeling two-phase incompressible flows [J]. Journal of Computational Physics, 2006, 218:479-494
    [123] X-Y. Luo, M-J. Ni and A. Ying, et al. Application of the level set method for multi-phase flow computation in fusion engineering [J]. Fusion Engineering and design, 2006, 81:1521-1526
    [124]张志江,徐更光,史锐.基于Level Set的多介质流体动力学数值分析[J].北京理工大学学报, 2007,27(11):948-951
    [125] Sebastien Tanguy, Thibaut Me′nard and Alain Berlemont. A level set method for vaporizing two-phase flows [J]. Journal of Computational Physics, 2007,221:837-853
    [126]王革,张斌.Level Set方法和多介质可压缩流[J].计算力学学报,2008,25(增):48-51
    [127]孙振生,张世英.RKDG有限元方法计算流体与刚体耦合[J].爆炸与冲击, 2008,28(1):80-85
    [128]石国红,冀铁果,陈荣三.利用RKDG有限元方法追踪运动界面[J].河北工程大学学报:自然科学版. 2008,25(1):104-107
    [129]李栋.高阶传统型差分格式在Level Set方法中的应用[J].江苏工业学院学报,2008, 20(2):59-62
    [130]王雪瑶,姜凡,刘长春,等.基于Level Set方法的Ghost技术研究[J].武汉理工大学学报, 2008, 30(4):153-1563
    [131]崔鹍,欧阳洁,郑素佩,等.三维熔体前沿界面的Level Set追踪[J].化工学报, 2008, 59(12):3020-3026
    [132] Meisam Mehravaran and Siamak Kazemzadeh Hannani. Simulation of incompressible two-phase flows with large density differences employing lattice Boltzmann and level set methods [J]. Comput. Methods Appl. Mech. Engrg., 2008,198:223-233
    [133] Masa Prodanovic, Steven L. Bryant and Zuleima T. Karpyn. Investigation Matrix-fracture Transfer via a level set method for drainage and imbibition [A]. SPE 116110, presented at the 2008 SPE Annual Technical Conference and Exhibition, Colorado,2008:1-16
    [134]董毅峰,王雪瑶,刘长春.捕获运动界面的有限元方法[J].辽宁工程技术大学:自然科学版, 2009,28(2)234-236
    [135]吕晓,李会雄,卜琳.移动网格与Level Set耦合方法在气-液两相流数值模拟中的应用[J].工程热物理学报,2009,30(8):1319-1323
    [136] D.L. Sun and W.Q. Tao. A coupled volume-of-fluid and level set (VOSET) method for computing incompressible two-phase flows [J]. International Journal of Heat and Mass Transfer. 2009,1-11
    [137] Jürgen Becker, Michael Junk and Dirk Kehrwald, et al. A combined lattice BGK/level set method for immiscible two-phase flows [J]. Computers and Mathematics with Applications, 2009,58:950-964
    [138] Kensuke Yokoi. A variational approach to multi-phase motion of gas, liquid and solid based on the level set method [J]. Computer Physics Communications, 2009,180:1145-1149
    [139] Tony W.H. Sheu, C.H. Yu and P.H. Chiu. Development of a dispersively accurate conservative level set scheme for capturing interface in two-phase flows [J]. Journal of Computational Physics, 2009, 228:661-686
    [140] A. Christafakis, J. alexopoulos and S. Tsangaris. Modelling of two-phase incompressible flows in ducts [J]. 2009, 33:1201-1212
    [141]刘金玉.缝洞型介质两相流动机理的数值模拟研究[D].山东:中国石油大学(华东),2009
    [142]艾克拜尔·沙迪克.塔河油田盐下碳酸盐岩岩溶发育规律及储层评价研究[D].四川:西南石油大学, 2006.
    [143]张海娜,杜玉山,王善江,等.塔河油田奥陶系潜山碳酸盐岩储层特征及测井评价技术[J].测井技术, 2003, 27(4):313-316.
    [144]李江龙,黄孝特,张丽萍.塔河油田4区奥陶系缝洞型油藏特征及开发对策[J].石油与天然气地质, 2005, 26(5):630-633.
    [145]刘文,阎相宾,李国蓉.塔河油田奥陶系储层研究[J].新疆地质, 2002, 20(3):201-204.
    [146]许建喜.塔河油田4区奥陶系储层类型及其特征[J].中扬油气勘察, 2001, 43:12-15
    [147]袁恩熙.工程流体力学[M].北京:石油工业出版社,1986
    [148] Graham H. Neale, Walter K. Nader. The permeability of a uniformly vuggy porous medium[J] 1973 American Insitute of Mining, Metallurgical, and Petroleum Engineers, Inc. 1973, 69-74.
    [149]康志宏,郭春华,伍文明.塔河碳酸盐岩缝洞型油藏动态储层评价技术[J].成都理工大学学报:自然科学版. 2007, 34(2):143-146.
    [150]秦积舜,李爱芬.油层物理学[M].石油大学出版社. 2003:238-255.
    [151]王者琴,吴晓慧,张永梅,等.水驱曲线和相对渗透率曲线联用计算分类井地质储量[J].大庆石油地质与开发. 2007, 26(6):61-63.
    [152] M.霍娜波, L.科德里茨, A. H.哈维.油藏相对渗透率[M].北京:石油工业出版社. 1989:55-130.
    [153] A.H. Alizadeh, A.R. Keshavarz and M. Haghighi. Flow rate effect on two-phase relative permeability in Iranian carbonate rocks [A]. SPE 104828, presented at the 15th SPE Middle East Oil & Gas Show and Conference, Kindom of Bahrain, 2007
    [154] Ji-Youn Arns, Vanessa Robins and Adrian P. Sheppard, et al. Effect of network topology on relative permeability [J]. Transport in Porous Media, 2004, 55:21-46
    [155] Kewen Li. Generalized capillary pressure and relative permeability model inferred from fractal characterization of porous media [A]. SPE 89874, presented at the SPE Annual Technical Conference and Exhibition, Texas, 2004.
    [156] W.R. Rossen and A.T. Kumar. Effect of fracture relative permeability on performance of naturally fractured reservoirs [A], SPE 28700, presented at the SPE International Petroleum Conference & Exhibition of Mexico, Mexico, 1994:7-18
    [157]王国先,谢建勇,李建良,等.储集层相对渗透率曲线形态及开采特征[J].新疆石油地质, 2004,25(3):301-304
    [158] S.C. Jones and W.O. Roszelle. Graphical techniques for determining relative permeability from displacement experiments [A]. Journal of Petroleum Technology. 1978:807-817
    [159] J.P. Batycky, F.G. McCaffery and P.K. Hodgins, et al. Interpreting relative permeability and wettability from unsteady-state displacement measurements [A]. SPE 9403, Society of Petroleum Engineers Journal, 1981:296-308
    [160] Abdulrahman Al-Quraishi and M. Khairy. Pore pressure versus confining pressure and their effect on oil-water relative permeability curves [J]. Journal of Petroleum Science & Engineering, 2005, 48:120-126.
    [161] John S. Archer and S.W. Wong. Use of a reservoir simulator to interpret laboratory waterflood data [A]. SPE 3551, presented SPE-AIME 46th Annual Fall Meeting, New Orleans, 1971
    [162]何建民.油水相对渗透率曲线异常影响因素探讨[J].油气地质与采收率,2009,16(2):74-76
    [163] R.G. Barroeta and L.G. Thompson. Estimation of relative permeability from displacement pressure data [A]. SPE 99734, presented at the 2006 SPE/DOE Symposium on Improved Oil Recovery, Oklahoma, 2006
    [164] J. Wang, M. Dong and K. Asghari. Effect of oil viscosity on heavy-oil/water relative permeability curves [A]. SPE 99763, presented at the 2006 SPE/DOE Symposium on Improved Oil Recovery, Oklahoma, 2006
    [165]刘儒勋,王志峰.数值模拟方法和运动界面追踪[M].合肥:中国科学技术大学出版社,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700