轻质高压储氢容器整体优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与其它储氢技术相比,高压储氢容器结构相对简单、成熟;压缩氢气成本较低;氢气灌装速度快,能耗低。该技术成为国内外综合利用氢能的主要发展方向。国外采用复合纤维缠绕结构,提高容器工作压力、降低容器质量,以提高单位质量储氢密度。我国复合纤维缠绕结构轻质高压储氢压力容器的研究还处于起步阶段。
     本文以国家高技术研究发展计划(863计划)“轻质高压储氢系统的研究”项目为依托,开展了纤维缠绕结构高压(单位质量储氢密度:3wt%,工作压力:40MPa)储氢容器的研究。主要工作为:
     (1)确定多层纤维缠绕结构高压储氢容器的结构设计方案。采用无缝金属内衬,碳纤维缠绕增强结构,并设置外保护层。首次提出新型外层保护结构。该结构在保持原有结构优点的前提下,结构更加简单、易于加工、装配,在各种跌落情况下,能更好地保护容器的端部和侧面。
     (2)纤维缠绕层的力学分析。根据网格理论、层板理论,充分考虑纤维缠绕的实际加工工艺,提出纤维增强层设计方法。简体按照网格理论进行多角度纵向缠绕+环向缠绕初步设计;按照层板理论,采用二次失效以及Tsai-Hill强度理论,进行强度校核。封头采用测地线和非测地线两种缠绕方式,计算确定其缠绕角度,并进行强度校核。
     (3)整体优化设计。综合考虑筒体与封头强度、质量、尺寸、缠绕工艺等因素的要求。以容器的质量最小作为优化的目标函数,以容积、应力、阻隔性和加工工艺等为约束条件,以容器内衬内直径D_0为设计参数,建立优化设计模型。并结合Matlab软件,开发了优化设计程序。
     (4)根据理论设计方案进行样品加工。对全部(10只)样品进行水压试验和质量称量;对两只容器进行爆炸试验。初步试验结果表明容器各项指标均达到既定要求,说明设计方案正确、可靠。
The technique using compressed hydrogen gas is widely used due to its simplicity of the storage system and low cost for storage and transport of hydrogen gas compared with the other techniques. This paper introduces the state-of-the-art of lightweight high-pressure hydrogen storage tanks. To improve hydrogen storage mass efficiency and reduce transportation cost, The fiber-reinforced composite hydrogen storage tank is developed which could resist the high storage pressure and lighten the weight. In the high-pressure hydrogen storage technology, China is behind the developed countries.
    Based on the 863 programs(the Hi-tech research and development program of China) "lightweight high-pressure hydrogen storage system", the filament-wound lightweight high-pressure hydrogen storage tank(hydrogen storage mass efficiency : 3wt%, working pressure: 40MPa), is developed in this paper. The main research results are as follows:
    (1) The structure of the filament-wound tank is designed. It mainly consists of internal liner, transition layer that is overwrapped with carbon fiber-reinforced layer, impact-resistant layer, and fiberglass-reinforced external protective layer. The new structure of the impact-resistant layer was first developed in the paper. The structure of this tank can resist the small or large angle impact and protect the boss, the dome and the side of the tank. Moreover, the impact-resistant layer is easier to be fixed on the dome of the carbon-fiber shell.
    (2) The theories of mechanics of material such as the netting theory, the laminated plate theory are used to evaluate tank design. Based on the netting theory, the cylinder with filaments in both hoop and longitudinal orientation is presented and checked by the Quadratic failure criterion and Tsai-Hill criterion. At the same time, the head is wound by the geodesic method and un-geodesic method.
    (3) The method of parametric unitary optimization of tank is performed in this paper. Based on the constraint conditions, the object function, the minimum mass of the tank is solved to get the best design proposal.
    (4) Ten prototypes are manufactured based on the design proposal. To insure the safety and the reliability of the prototypes, the tanks are tested. The programs include the hydrostatical test for all tanks and bursting test for two random tanks. The tests satisfy the requirement. It shows that the design proposal is right and reliable.
引文
[1] 索鸿英. 氢能新能源中的一颗明珠. 世界科学. 2000,(5):35~35
    [2] 李晋平,许宁平. 氢气—神奇的燃料. 科技情报开发与经济. 1993,3:10~11
    [3] 陈霖新. 氢气的规模生产初探. 工厂动力. 2001. (2):24~33
    [4] 美国发明用新法制氢和活性炭. 无机化工信息. 2003. (1):25~25
    [5] 用植物制造氢气新方法的开发(美国). 无机化工信息. 2002. 25(12):40~40
    [6] Appleby AJ. Fuel cell and hydrogen fuel. Int. J. Hydrogen Energy, 1994, 19: 175-180
    [7] Schlapbach L and Zuttel A. Hydrogen-storage Materials for Mobile Applications [J]. Nature, 2001, 414: 353-358.
    [8] 詹亮、李开喜、朱星朋等. 超级活性炭储氢性能研究. 材料科学与工程,2002,20:31~34
    [9] Scherer G and Newson E. Analysis of the Seasonal Energy Storage of Hydrogen in Liquid Organic Hydrides. Int. J. Hydroyen Energy, 1998, 23: 19-25
    [10] Scherer G, Newson E and Wokaun A. Economic Analysis of the Seasonal Storage of Electricity with Liquid Organic Hydrides. Int. J. Hydroyen Energy, 1999, 24: 1157-1169
    [11] 刘永纯,董雨达,王秉权. 复合材料压缩天然气(CNG)气瓶应用研究(下). 纤维复合材料. 2000,49(4):49~50
    [12] Neel Sirosh. Hydrogen Composite Tank Program. The 2002 U. S. DOE Hydrogen Program Review Meeting. Colorado: 2002
    [13] Fuel Cells Bulletin. 2002, (7): 6
    [14] 陈汝训. 复合材料天然气气瓶设计的几个问题. 宇航材料工艺. 2001,31(5):55~57
    [15] L. Varga, A. Nagy, A. Kovács. Design of CNG Tank Made of Aluminium and Reinforced Plastic. Composites. 1995. 26(6): 457—463
    [16] 沃西源. 国内外几种碳纤维性能比较及初步分析. 高科技纤维与应用. 2000,25(2):30~36
    [17] 黄汉生. 国外碳纤维发展动态. 现代科技译丛. 2002,(1):3~5
    [18] 王曼霞,赵稼祥. 碳纤维的发展、问题与对策. 玻璃钢/复合材料. 2000,(1):48~51
    [19] 方芳,颜万生. 碳纤维复合材料结构件成型工艺研究. 电子机械工程.
    
    2000,84(2):50~52
    [20] 赵稼祥. 美国 HEXEL 公司的碳纤维及其复合材料--国外碳纤维进展之三. 高科技纤维与应用. 2000,25(6):24~29
    [21] 赵稼祥. 东丽公司碳纤维及其复合材料的进展. 宇航材料工艺. 2000,(6):53~56
    [22] 赵稼祥. 国外碳纤维及其复合材料材料开发应用动向. 工程塑料应用. 2001,29(1):46~48
    [23] 罗益锋. 未来碳纤维复合材料的五大新市场. 现代化工. 1996,(12):40~42
    [24] 陈昌杰. 塑料包装容器. 北京:中国石化出版社,1999
    [25] 刘伯元,徐凌秀. 尼龙的改性剂和高阻隔性树脂-EVOH. 塑料技术. 2001,21(1):44~49
    [26] 刘伯元,徐凌秀. 高阻隔性EVOH树脂. 现代塑料加工应用. 2000,12(4):39~40
    [27] 高翔,陈旭东. 阻隔性塑料包装材料的现状及研究动向. 塑料加工. 2001,24(6):17~19
    [28] 何继敏. 聚丙烯发泡材料的应用现状. 工程塑料应用. 2002,30(6):54~57
    [29] 余忠康. 缓冲材料的选择与应用. 现代包装. 1993,(3):42~44
    [30] 杨春柏. 聚氨酯在汽车上的应用. 中国塑料. 1996,10(3):5~12
    [31] 缓冲材料大革命-EPP. 上海包装. 1992,(2):26-27
    [32] Benzion Avni (Kfar Saba), Leonid Lukov (Beer Sheva), Yuly liberman (Beer Sheva). U. S.: 6146481. 2000. 11. 14
    [33] A. John Ayorinde (Lincolon, NE). U. S.: 6361635B1. 2002. 3. 26
    [34] Ikuya Yamashita (Wako). U. S.: 6182717B1. 2001. 2. 6
    [35] Michael D. Blair, Richard Kunz, Mark J Warner(all of North Ogden). U. S.: 6095367. 2000. 8. 1
    [36] Norman L. Newbouse, Ronald B. Veys, Dale B. Tiller(all of Lincoln, Nebr). U. S.: 5429845. 1995. 7. 4
    [37] James C. Murphy (Chardon, OH), Gerald S. Boyce (Nottingham), Erik Coeckelbergs (Wechelderzande). U. S.: 6171423B1. 2001. 1. 9
    [38] Michael D. blair, Richard Kunz, Mark J. Warner(all of North Ogden). U. S.: 6095367, 2000. 8. 1
    [39] 刘锡礼,王秉权. 复合材料力学基础[M]. 北京:中国建筑工业出版社,1984
    [40] 陈汝训. 固体火箭发动机混杂纤维缠绕壳体设计分析. 宇航学报. 2000,21(4):129~133
    
    
    [41] 陈汝训. 混杂纤维缠绕壳体设计. 固体火箭技术. 2001,24(3):10~13
    [42] 陈汝训. 环向纤维增强钢压力容器设计分析. 固体火箭技术. 2002,25(1):58~60
    [43] D. D. Edie. The Effect of Processing on the Structure and Properties of Carbon Fibers. Carbon. 1998, 36(4): 345~362
    [44] Frank C. Shen. A Filament-wound Structure Technology Overview. Materials Chemistry and Physics. 1995, 42: 96~100
    [45] M. Xia, H. Takayanagi, K. Kemmochi. Analysis of Multi-layered Filament-wound Composite Pipes under Internal Pressure. Composite Structure. 2001, 53: 483~491
    [46] M. Xia, K. Kemmochi, H. Takayanagi. Analysis of Filament-wound Fiber-reinforced Sandwich Pipe under Combined Internal Pressure and Thermomechanical Loading. Composite Sturctures. 2001, 51: 273~283
    [47] Kurt Gramoll, Srinivasan Ramaprasad. Effects of Band Weaving on Fiber Strength in Filament-wound Composite Structures. Composites Engineering. 5(4): 363~373
    [48] J. M. Lifshitz, H. Dayan. Filament-wound Pressure Vessel with Thick Metal Liner. Composite Structures. 1995, 32: 313~323
    [49] Cho-Chung Liang, Hung-Wen Chen, Cheng-Huan Wang. Optimum Design of Dome Contour for Filament-wound Composite Pressure Vessels Based on a Shape Factor. Composite Structures. 2002, 58: 469~482
    [50] Ekaterina Demianouchko, Jinbo Bai. Stress State Analyses of a ±55° Filament-wound Composite Tube with Damage Effect. Composite Structures. 1997, 37: 233~239
    [51] S. M. Aceves, J. Martinez-Frias, O. Garcia-Villazana. Analytical and Experimental Evaluation of Insulated Pressure Vessels for Cryogenic Hydrogen Storage. International Journal of Hydrogen Storage Energy. 2000, 25: 1075-1085
    [52] Alexis A. Krikanov. Composite Pressure Vessels with Higher Stiffness. Composite Structure. 2000, 48: 119-127
    [53] P. M. Wild, G. W. Vickers. Analysis of Filament-wound Cylindrical Shell under Combined Centrifugal Pressure and Axial Loading. Composite Part. Great Britain: Elsevier Science Limited, 1997
    [54] Levend Parnas, Nuran Kaiuc. Design of Fibe-reinforced Composite Pressure
    
    Vessels under Various Loading Conditions. Composite Structures. 2002, 58: 83-95
    [55] Stephen R.Swanson. 碳/环氧树脂压力容器强度设计准则. 国外导弹与航天运载器. 1992,1914(3):48-54
    [56] 谭天恩,麦本熙,丁惠华等. 化工原理. 北京:化学工业出版社,1998
    [57] 国家质量技术监督局,气瓶安全监察规程. 北京:中国劳动社会保障出版社,2000
    [58] 朱立. GN 2402907Y. 2000. 9. 2
    [59] GB 11640-2001《铝合金无缝气瓶》
    [60] Darton Greist(Clifton), Irving E. Figge(Manassas). U. S.: 5499739. 1996. 3. 19
    [61] R. Byron Bird, Warren E. Stewart, Edwin N. Lightfoot. Transport Phenomena. New York: London, John Wiley & Sons, Inc, 1960
    [62] G. A. Young JR and J. R. Scully The Diffusion and Trapping of Hydrogen in High Purity Aluminum Acta Mater 1998, 46 (18): 6337~6349
    [63] 张兴宏,赵珂,陈刚. 纤维缠绕壳体的成型工艺. 航天工艺. 2001(1):16~20
    [64] 杨林,吴美云. 缓冲材料最小厚度的预测. 出口商品包装. 1990,(3):16~20
    [65] 罗兰. 常用缓冲材料动态压缩特性研究. 包装工程. 1996,17(5):10~13
    [66] Donald Baldwin, Norman Newhouse, K. Him Lo. High Pressure Composite Accumulator Bottles. Second International Conference on Composite Materials of Offshore Operations(CMOO-2). Houston: 1997
    [67] Dale B. Tiller, P. E., John J. Wozniak. Development of Integrated Storage System for A Mid-size Automobile. International Gas Conference and Exhibition. Cologne: 1998
    [68] ASME Boiler & Pressure Vessel Code, Section X, Fiber-reinforced Plastic Pressure Vessels. 1998
    [69] 冷兴武. 纤维缠绕原理[M]. 山东:山东科学技术出版社,1990
    [70] M. Hojjati, V. Safavi Ardebili, S. V. Hoa. Design of Domes for Polymeric Composite Pressure Vessels. Composite Engineering. 1995, 5 (1):51~59
    [71] 郑津洋,董其伍,桑芝富. 过程设备设计. 北京:化学工业出版社,2001
    [72] 金永根,陈瑞斌. 容器缠绕设备的选取原则. 纤维复合材料. 1999,16(2):47~48
    [73] GB 6058-85《纤维缠绕压力容器制备和内压试验方法》
    
    
    [74] 陈军,董师颜,季宗德. 固体火箭发动机结构质量的优化设计. 固体火箭技术. 1998,21(2):14~18
    [75] 汪树玉,刘国华,包志仁. 结构优化设计的现状与进展. 基础优化. 1999,20(4):3~14
    [76] 刘夏石. 工程结构优化设计(原理、方法和应用). 北京:科学出版社,1984
    [77] 曾昭华. 优化设计. 北京:机械工业出版社,1992
    [78] GB 4962-1985《氢气使用安全技术规程》
    [79] GB 17258-1998《车用压缩天然气钢瓶》
    [80] GB/T 9251-1997《气瓶水压试验方法》
    [81] GB 15385-1994《气瓶水压爆破试验方法》
    [82] 李先立. 压力容器封头非测地线缠绕的 CAD. 玻璃钢/复合材料. 1995,(4),39~43

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700