反机场跑道串联随进弹终点效应的实验研究与数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
各种钻地武器已成为现代战争中发挥着不可替代作用的新型武器。串联随进弹由于其特有的优点已成为世界各国侵彻战斗部发展的一个重要方向,成为对付机场跑道和地下深埋战术和战略目标的有效手段。开展反机场跑道串联随进弹终点效应的数值模拟和实验研究,对武器战斗部的设计具有重要意义。
     围绕反机场跑道串联随进弹终点效应问题,本文在开发典型的金属材料和混凝土材料的动态本构模型及数值模拟两方面做了一些研究工作,取得了以下研究成果:
     (1)自行开发了适合描述爆轰波与金属壳体相互作用这一多尺度物理问题数值模拟的本构关系—状态方程,建立相关材料的宏、细观甚至微观模型,开发了用户材料模型子程序,并将其植入LS-DYNA动力有限元程序。对模型的可行性进行了计算考核,并将其用于串联随进战斗部中金属构件的动态响应数值模拟中。
     (2)自行开发了适合描述混凝土大变形、高应变率、高压加载响应的混凝土计算本构模型——动态随机损伤本构模型,并将其引入三维动力有限元程序LS-DYNA。模型在考虑混凝土的损伤(包括拉、压损伤)、应变率效应及破坏模式的完备性方面有所改进,并给出了确定材料模型本构参数的实用方法。新模型被用于模拟串联随进战斗部侵彻加载下的混凝土动态响应行为。
     (3)对聚能装药战斗部侵彻多层混凝土介质的实验方法和实验测量进行了分析,进行了一系列聚能装药战斗部侵彻混凝土靶体的实验研究,获取了一些实验结果,可作为数值模拟计算的对比验证。
     (4)根据战斗部的技术指标要求,对聚能装药战斗部射流形成过程及侵彻多层混凝土介质这一问题进行了建模和数值模拟计算,对影响串联随进战斗部性能指标的各因子进行了计算分析。
     (5)选取了合适的计算模型以及计算方法,针对串联战斗部前级开坑、后级随进及破坏多层混凝土靶体进行了连贯的数值模拟研究,给出了随进弹跟进聚能射流的数值模拟结果,得到了不同工况下随进弹侵彻混凝土靶体的破坏毁伤情况。
     (6)针对材料在不同动态加载条件下的响应特性,在数值模拟计算时合理地选择了材料模型。针对不同的物理问题,灵活而合理地选择了恰当的计算方法,最大限度地描述和再现了动态响应过程。
     本文的研究成果可以为串联随进战斗部侵彻机场跑道毁伤效应的工程分析、数值模拟、战斗部设计和实验技术提供重要的理论参考,从而达到节省人力、物力并提高效率的目的。
Many kinds of penetration weapon have been new pattern weapon which played important role that can't be taken placed of in modern war. Because of its special features, the tandem following warhead has been an important development direction in penetration warhead all over the world, and has been an effective means of anti-runway and other underground tactical and strategical target. Experiment research and numerical simulation on terminal effect of anti-runway tandem following warhead will benefit to warhead design.
     Focusing on the terminal effect of anti-runway tandem following warhead, this paper presents some progress in developing new dynamic constitutive model of metal and concrete and in simulating on the above dynamic problem. The main research results obtained can be summarized as:
     (1) A new metal constitutive model coupled with EOS, was independently developed. It is suitable for describing the interaction of metal and detonation wave, which is a multi-scale physical problem in numerical simulation. The newly developed model established a relation between the macrocosmic and sub-macrocosmic even microcosmic phenomena. The UMAT subroutine of the model was coded into LS-DYNA, a 3D dynamic FE code. The newly developed model has been evaluated in simulating the dynamic response of metal components in tandem following warhead.
     (2) A new concrete constitutive model, dynamic stochastic continuum damage model, was independently developed. It is suitable for describing concrete under large deformation, high strain rate, high pressure loading. The model was coded into LS-DYNA, a 3D DYNAmic FE code. The new model has advantage for categoricalness in consideration the damage, including tension and compression, strain-rate-dependence, and failure mode. Also given is the practical method of determing of the material constant of RDCDMC. The new developed model has been evaluated in simulating the dynamic response of concrete penetrated by tandem following warhead.
     (3) We have analyzed the experiment method and measurement of jet forming penetrating the multi-layer concrete target, and carried out a series of experiment research. The results of experiments can be used to verify the results of our numerical simulation.
     (4) According to the technology target of the warhead, we have established a model and simulated the process of jet formation and penetration into the multi-layer concrete target, and analyzed the factors that affect the performance of the tandem following warhead.
     (5) Appropriate calculation model and method were applied in continuous numerical simulation of the first jet cabin and the following bullet of tandem following warhead penetrating into multi-layer concrete target. The result of numerical simulation under several conditions showed that the damage profile of the concrete target penetrated by the following bullet and the metal jet.
     (6) Appropriate material model was applied in numerical simulation to describe the different response of material under different dynamic loading. Also selected is the appropriate formulation or method according to different physical problem, with the dynamic phenomena rendered detailedly and furthest.
     These research results can provide some important theoretical reference in the engineer analysis, numerical simulation, warhead design and experiment technology of anti-runway tandem following warhead penetration and destroy effect, and can save much manpower, material resources, and improve efficiency.
引文
[1]朱丽华.反机场跑道及反硬目标弹药总论[A].弹药技术高级研讨班专辑[C].北京:中国兵器工业总公司继续教育中心,北京理工大学机电工程系.1997:26-46.
    [2]D Krajcinovic.Damage Mechanics.Mech Mater J,1980,8(2):25-263
    [3]隋树元,王树山.终点效应学[M].北京:国防工业出版社,2000:196-232.
    [4]张宝平,张庆明,黄风雷.爆轰物理学[M].北京:兵器工业出版社,2001:147-197.
    [5]周义.美军钻地弹现状与发展趋势[J].中国航天,2002,8:31-34.
    [6]M.J.Mruphy & JMHenderson.Computer Simulation of Concrete Penetration by Shaped-Charge Jets[A].7th International Symposium on Ballistics[C].The Hague.Netherlands,April 1983.
    [7]Leonard T.Wilsion,Stewart Silling & Colin Forsyth.Performance of Explosively Formed Penetrators Against Concrete Structures[A].47th Annual Bomb &Warhead Technical Symposium[C].Monterey,CA,1997.
    [8]D Krajcinovic,J Lemaitre.Continuum Damage Mechanics-theory and application.In:Proceedings of CISM,Springer Verlag,1987
    [9]陈江瑛,王礼立.冲击载荷下水泥沙浆的损伤型非线性弹性本构关系.爆炸与冲击,1997,17(supp):282
    [10]Batra R C,Stevens J B.Adiabatic shear bands in axisymmetric impact and penetration problems.Comp Meth Appl Mech Engrg,1998,151:325-342
    [11]Tate A.A theory for the deceleration of long rod after impact.J Mech Phys Solids,15:389-399,1967
    [12]Heider N,Gunther U.Modem geopenetrators and relevant revision of concrete penetration models.In:Proceedings of the 1998 5th international conference on structures under shock and impact.1998:807-815
    [13]Forrestal M J.Penetration of grout and concrete targets with ogive-nose steel projectiles.Int J Impact Engrg,1996,18(5):465-476
    [14]初哲.钻地弹模拟弹的设计与实验研究.见:第一届全国爆炸力学实验技术交流会论文集.2000.11
    [15]Forrestal M J,Tzou D Y.A spherical cavity-expansion penetration model for concrete targets.Int J Solids Structures,1997,34(31-32):4127-4146
    [16]Anderson C E,Walker J D.An examination of long-rod penetration.Int J Impact Engrg,1991,11:481-501
    [17]蔺建勋,蒋浩征.反深层坚固目标动能侵彻弹缩比实验相似准则研究.见:中国无人飞行器学会战斗部与毁伤效率专委会第五届学术年会论文集.1997
    [18]Camacho G T,Oritiz M.Adaptive lagrangian modeling of ballistic penetration of metallic targets.Compact Meth Appl Mech Engrg,1997,142:269-301
    [19]Malvar L J.A Plasticity Concrete Material Model for DYNA3D.Int J Impact Engrg,1997,19(9-10):847-873
    [20]ANSYS/LS-DYNA算法基础和使用方法.北京理工大学ANSYS/LS-DYNA中国技术支持中心
    [21]Gebbeken,Ruppert M.On the concrete material response to explosive loading-numerical simulations.In:Proceedings of the 5th Inter Confer On structure under shock and impact.1998:773-782
    [22]D Krajcinovic,J Lemaitre.Continuum Damage Mechanics-theory and application.In:Proceedings of CISM,Springer Verlag,1987
    [23]谈庆明.高速冲击模型律.见:王礼立,余同希,李永池编.冲击动力学进展.合肥:中国科技大学出版社,1992:88-116
    [24]王道荣,孙宇新,郭场.混凝土靶高速侵彻的模型律.弹道学报,2001,113(1):7-11
    [25]Javier L Malvar,John E Crawford.DYNAmic increase factors for concete.In:Proceedings of the 28th DDESB Seminar,Orlando,FL,Aug 1998
    [26]Kaplan M F.Crack propagation and the fracture of concrete:I.ACI J,1961,58(5):575-590
    [27]夏蒙芬,韩闻生.统计细观损伤力学和损伤演化诱致突变(Ⅰ).力学进展,1995,25(1):1-40
    [28]张庆明,黄风雷.超高速碰撞动力学引论.北京:科学出版社,2000
    [29]马晓青.冲击动力学.北京:北京理工大学出版社,1992
    [30]Backman M E,Goldsmith W.The mechanics of projectiles into targets.Int J Engrg Sci,1978(16):1-99
    [31]王儒策,赵国志.弹丸终点效应.北京:北京理工大学出版社,1993
    [32]吴祥云.细长弹侵彻防护工程材料靶体的实验和理论研究[博士论文].长沙:国防科技大学,Dec 2002
    [33]Franklin H.A.Nonlinear Analysis of Reinforced Concrete Frames and Panels,Ph.D.Dissertation,Division of Structure Engineering and Structural Mechanics,University of California,Berkeley,March,1970
    [34]Paul F Hadala.Evalution of Empirical and Analytical Procedures Used for Predicting the Rigid Body Motion of an Earth Penetrator.ADA012143
    [35]Gorge W Stone.Projectile Penetration into Representative Targets.DE95003489
    [36]William L Hacker,John C Galloway.An Efficient Technique for Calculating Weapon Response to Penetration Loads,43th Bomb&Warhead Technical Meeting
    [37]Jaies R Clifton.Penetration Resistance of Concrete-a review.PB82-277912
    [38]Sathya Hanagud,Bernard Ross.Large deformation,deep penetration theory for a compressible strain-hardening target material.AIAA Journal,9(5)
    [39]Dass R.N,Yen S C,Puri V K,Das B M,etal.Tensile stress-strain behavior of lightly cemented sand.Int J Rock Mech Min Sci&Geomeh,Abstr,1993,30(7):711-74
    [40]Darren L ice.Finite Element Analysis of Concrete Subjected to Ordnance Velocity Impact.ADA258266
    [41]Wright T W,Frank K.Approaches to penetration problems.Impact,Balkema,1988:85-104
    [42]Backman M E,Goldsimith W.The mechanics of penetration of projectiles into targets.Int J Engrg Sci,1978,16:1-99
    [43]Anderson C E,Bodner S R.Ballistic impact:The status of analytical and numerical modeling.Int J Impact Engrg,1988,7:9-35
    [44]Young C W.Penetration Equations.SAND-97-2426,4-5
    [45]Young C W.Equation for predicting earth penetration by projectiles:an update.SAND-88-0013
    [46]防护工程设计规范.工程兵国防工程设计所,1976
    [47]尹放林.弹体侵彻深度计算公式对比研究.爆炸与冲击,2000,20(1):79-82
    [48]王明洋.弹体在含钢球的钢纤维混凝土介质中侵彻深度工程计算模型.兵工学报,2002,23(1):14-18
    [49]Heuze F E.An Overview of Projectile Penetration into Geologic Materials,with Emphasis on Rocks.Int J Rock Mech Min Sci,1990,27(2):221-228
    [50]张若棋.射弹弹形侵深系数的实验研究.船舶力学,2002,6(supp):268-274
    [51]Kennedy R P.Effects of an aircraft crash into a concrete reactor containment building.Holmes and Narver Inc,Anaheim,1966
    [52]Degen P P.Perforation of reinforced concrete slabs by rigid missiles.J Struct Div,ASCE,1980,106(7):1623-1642
    [53]刘瑞朝.射弹侵彻混凝土深度经验公式评估与分析.船舶力学,2002,6(supp):99-106
    [54]徐建波,林俊德,唐润棣等.长杆射弹侵彻混凝土实验研究.爆炸与冲击,2002,22(2):175-178
    [55] Martineau R. L. A Viscoplastic Model of Expanding Cylindrical Shells Subjected to Internal Explosive Detonations. Los Alamos National Laboratory. LA-13424-T.1998.
    [56] Johnson G. R. Material Characterisation for Warhead Computations. Tactical Missile Warheads. Ed: J. Carleone. Chapter 3, pp. 165-197. 1993.
    [57] Slate P. M. B., Billings M. J. W. et al. The Rupture Behavior of Metals at High strain Rates. J. Inst. Metals. Vol. 95, pp. 244-251. 1967.
    [58] Johnson G R, W H Cook. A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures. In: Proceedings of the 7th Inter Symp on Ballistics, The Hague, The Netherlands, Apr, 1983.
    [59] Hao S., Brocks W. The Gurson-Tvergaard-Needleman Model for Rate and Temperature Dependent Materials with Isotropic and Kinematic Hardening. Comp.Mech. Vol. 20, pp. 34-40. 1997.
    [60] Livermore Software Technology Cooperation. LS-DYNA Keywords User's Manual. 1999.
    [61] Zerilli F. J., Armstrong R. W. Dislocation Mechanics Based Constitutive Relations for Material DYNAmics Calculations. J. Appl. Phys. Vol. 51, pp. 1816-1825.1987.
    
    [62] Tipper C. F. The Fracture of Metals. Metallurgia, Vol. 39, pp. 133-137. 1949.
    [63] Rice J. R., Tracy D. M. On the Ductile Enlargement of Voids in Triaxial Stress Fields. J. Mech. Phys. Solids., Vol. 17, pp. 201-217. 1969.
    [64] Gurson A. L. Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I - Yield Criteria and Flow Rules for Porous Ductile Materials. J.Eng. Mater. & Tech. Vol. 99, pp. 2-15. 1977.
    [65] Tvergaard V. On Localization in Ductile Materials Containing Spherical Voids. Int.J. Fract. Mech. Vol. 18, pp. 237-252.
    
    [66] Needleman A., Rice J. R. Mechanics of Sheet Metal Forming, pp. 237-267. 1978.
    [67] Hibbitt, Karlsson & Sorensen Inc. ABAQUS/Explicit User's Manual. Ver. 6.1.1.2000.
    [68] John O Hallquiust. LS-DYNA Theoretical Manual. Livermore Software Technology Corporation, 1998.
    [69] Krieg R. D., Krieg D. B. Accuracies of Numerical Solutions for Elastic-plastic Models. J. Pressure Tech. Vol. 99, pp. 2-15. 1977.
    [70] Nagtegaal J. C, De Jong J. E. Some Computational Aspects of Elastic-plastic Large Strain Analysis. Int. J. Numer. Methods Eng. Vol. 17, 15-41. 1981.
    [71] Ortiz M., Popov E. P. Accuracy and Stability of Integration Algorithm for Elastoplastic Constitutive Relations.Int.J.Numer.Eng.Vol.21,pp.1561-1576.1985.
    [72]Aravas N.On the Numerical Integration of a Class of Pressure-dependent Plasticity Models.Int.J.Numer.Eng.Vol.24,pp.1395-1416.1987.
    [73]Watrous J.J.,Frese M.H."A DYNAmic Explosive Model for MACH2:with Applications to Magnetic Flux Compression Generators." Los Alamos National Laboratory.LA-SUB-95-106.1993.
    [74]Gebbeken,Ruppert M.On the concrete material response to explosive loading-numerical sumulations.In:Proceedings of the 5th Inter Confer On structure under shock and impact.1998:773-782
    [75]王礼立,李大红,施绍裘等.关于卸载波和材料动态卸载响应的研究.爆炸与冲击,1999,19(supp):153-156
    [76]Grote D L,Parkl S W,Zhou M.DYNAmic behavior of concrete at high strain rates and pressures:Ⅰ.experimental characterization.Int J of Impact Engrg,2001,25:869-886
    [77]Suaris W,Surendra P Shah.Mechanical properties of materials subjected to impact.In:Concrete structure under impact and impulsive loading.Rilem CEB,IAABse IASS Interassociation symposium,Berlin(west),June,1982:33-62
    [78]Pijaudier-Cabot G.These 3eme Cycle,L.M.T.,Univ.Paris,1979
    [79]Qingbin Li,Zhang Chuhan,Wang Guanglun.DYNAmic damage constitutive model of concrete in uniaxial tension.Engrg Fract Mech,1996,53(3):449-455
    [80]Holmquist T J.A computational constitutive model for concrete subjected to large strains,high strain rates,and high pressures.In:Proceedings of the 14th International Symposium on Ballistics.1993:591-600
    [81]Gebbeken N,Ruppet M.A new material model for concrete in high-DYNAmic hydrocode simulations.Archive of Appl Mech,2000,70:463-478
    [82]Johnson G R,Holmquist T J.Computed radial stresses in a concrete target penetrated by a steel projectile.In:Proceedings of the 5th Inter Confer On structure under shock and impact.1998:793-806
    [83]Taylor L M,Chen E P,Kuszmaul J S.Micro-crack induced damage accumulationin brittle rock under DYNAmic loading.J Comp Meth in Appl Mech and Engrg,1986,55(3):301-320
    [84]Chen E P.Simulation of Concrete Perforation Based on a Continuum Damage Model.In:Carpinter A eds.Proceedings of the IUTAM Symposium on Size-Scale Effects in the Failure Mechanisms of materials and Structures.Italy,Torino,1994: 574-587
    [85]徐学文.弹丸对混凝土靶的贯穿机理.中南工业大学学报,2001,32(冲击动力学论文专辑):173-175
    [86]金乾坤.混凝土穿孔过程的数值模拟.见:宁建国编.计算爆炸力学理论、方法及工程应用.第二届全国计算爆炸力学会议录.北京:北京理工大学出版社,2002:242-248
    [87]金乾坤.脆性岩石冲击损伤数值模拟研究[博士后研究报告].北京:北京理工大学,1999
    [88]Yi-An Chu,Jrping Wang.A numerical study on penetration and underground detonation damage of concrete target.In:Proceedings of the 13th International symposium on Ballistics.Stockholm,Sweden,Jun 1992:299-304
    [89]Allen C Ross,Joseph W Tedesco,Steven T Kuennen.Effects of strain rate on concrete strength.ACI Mater J,1995,92(1):37-47
    [90]王瑞臣.弹丸对混凝土介质斜侵彻效应研究[博士论文].北京:北京理工大学,1998
    [91]Javier L Malvar,John E Crawford.DYNAmic increase factors for concete.In:Proceedings of the 28th DDESB Seminar,Orlando,FL,Aug 1998
    [92]Grote D L,Park1 S W,Zhou M.DYNAmic behavior of concrete at high strain rates and pressures:Ⅰ.experimental characterization.Int J of Impact Engrg,2001,25:869-886
    [93]Meyer L W.DYNAmic material behavior under biaxial loading.In:Staudhammer K P,et al.eds.Fundamental Issues and applications of shock-wave and high-strain-rate phenomena.Amsterdam:Elsevier Science Ltd,2001:11-24
    [94]Carmeliet J,Hens H.Probable nonlocal damage model for continue with random field properties.J Engrg Mech,1994,120(10),2013-2027
    [95]Woo C W,Li D L.A general stochastic DyNAmics model of continuum damage mechanics.Inter J Solids & Structures,1992,29(23):2921-2932
    [96]Bhattacharya B,Ellingwood B.Contunuum damage mechanics-based model of stochastic damage growth.J Engrg Mech,1998,124(9):1000-1009
    [97]Krajcinovic D,Silva G.Statistic aspects of the continuous samage theory.Inter J Solids & Structures,1982,18(17):551-562
    [98]Breysse D.Probabilistic formulation of damage-evolution law of cementious composites.J Engrg Mech,1990,116(7):1489-1511
    [99]Kandarpa S,Kirkner D J.Stochastic samage model for brittle materials subjected to monotonic loading.J Engrg Mech,1996,122(8):788-795
    [100]李杰,张其云.混凝土随机损伤本构关系.同济大学学报,2001,29(10):1138-1141
    [101]李杰.混凝土随机损伤本构关系研究新进展.东南大学学报,2002,32(5):750-755
    [102]李杰,卢朝辉,张其云.混凝土随机损伤本构关系——单轴受压分析.同济大学学报,2003,31(5):505-509
    [103]Gutierrez M A,Borst R De.Deterministic and stochastic analysis of size effects and damage evolution in quasi-brittle materials.Arch of Appl Mech,1999,69,655-676
    [104]Bischoff P H,Perry S H.Compressive behaviour of concrete at high strain rates.Materials and Structures,1991,24:425-450
    [105]Etse G,Willam K.Fracture energy formulation for inelastic behavior of plain concrete.J Engrg Mech-ASCE,1994,120:1983-2011
    [106]Malvar L J,E C J,Wesevich J W,et al.A plasticity concrete material model for DYNA3D,Inter J Impact Engrg,1997,19:847-873
    [107]Tikhomirov D,Stein E.Finite element computations of anisotropic continuum damage in reinforced concrete.Compu & Struct,2001,79(22-25):2249-2260
    [108]Papa Enrico,Taliercio Alberto.Anisotropic damage model for the multiaxial static and fatigue behaviour of plain concrete.Engrg Fract Mech,1996,55(2):163-179
    [109]Peter Grassl,Karin Lundgren,Kent Gylltoft.Concrete under triaxial compression:A plasticity model with a new hardening approach.In:Mang H A,Rammerstorfer F G,Eberhardsteiner J,Eds.Proceedings of the 5th World Congress on Computational Mechanics.Vienna,Austria,Jul 2002
    [110]Heider N,Gunther U.Modern geopenetrators and relevant revision of concrete penetration models.In:Proceedings of the 5th Inter Confer on structure under shock and impact.1998:806-815
    [111]Joseph W Tedesco.Strain-rate dependent constitutive equations for concrete.ASME,PVP,Structures under extreme loading conditions,1997,351:297-303
    [112]Eibl J,Schmidt B.Strian-rate-sensitive constitutive law for concrete.J Engrg Mech,ASCE,1999,125(12):1411-1420
    [113]Allen C Ross,Joseph W Tedesco,Steven T Kuennen.Effects of strain rate on concrete strength.ACI Mater J,1995,92(1):37-47
    [114]Zheng S,Haussler-Combe U,Eibl J.New approach to strain rate sensitivity of concrete compression.J Engrg Mech,ASCE,1999,125(12):1403-1410
    [115]Danian Chen,S T S Al-Hassani,Zhihua Yin,et al.Rate-dependent constitutive law and nonlocal spallation model for concrete subjected to impact loading.Key Engrg Mater,2000,177-180:261-266
    [116]黄筑平,杨黎明,潘客麟.材料的动态损伤和失效.力学进展,1993,23(4):433-467
    [117]Nicolas Burlion,Fabrice Gatuingt,Gilles Pijaudier-Cabot,et al.Compaction and tensile damage in concrete:constitutive modelling and application to DYNAmics.Comput Meth Appl Mech Engrg,2000,183:291-308
    [118]Grady D E,Kipp M E,Continuum Modeling of Explosive Fracture in Oil Shale.Inter J Rock Mech and Min Sci,1980,17:147-157
    [119]Taylor L M,Chen E P,Kuszmaul J S.Micro-crack induced damage accumulationin brittle rock under DYNAmic loading.J Comp Meth in Appl Mech and Engrg,1986,55(3):301-320
    [120]Budiansky B,O'Connell R J.Elastic Moduli of a Cracked Solid.Inter J Solids and Structures,1976,12:91-97
    [121]Bischoff P H,Perry S H.Compressive behaviour of concrete at high strain rates.Materials and Structures,1991,24:425-450
    [122]Allen C Ross,Joseph W Tedesco,Steven T Kuennen.Effects of strain rate on concrete strength.ACI Mater J,1995,92(1):37-47
    [123]Glucklich J.Fracture of Plain Concrete.J Engrg Mech Div,ASCE,1983
    [124]http://www.lstc.com
    [125]LSTC.LS-DYNA Keyword user's manual,version 960,2001
    [126]Ansys/LS-DYNA算法基础与使用方法.Ansys/LS-DYNA中国技术支持中心.1998
    [127]LSTC.LS-DYNA Keyword user's manual,version 970,2003
    [128]黄士元,蒋家奋.近代混凝土技术.上海:陕西科学技术出版社,1998
    [129]冯乃谦.实用混凝土大全.北京:科学技术出版社,2001
    [130]张凤国,李恩征.混凝土撞击损伤模型参数的确定方法.弹道学报,2001,13(4):12-16
    [131]Dennis Grady.Shock Equation of state Properties of concrete.DE96006884,1996
    [132]Marsh S P.LASL Shock Hugoniot Data.University of California Press,1980
    [133]张宝平,张庆明,黄风雷.爆轰物理学[M].北京:兵器工业出版社,2001:147-197.
    [134]Kennedy D R,History of the shaped charge effect(the first 100 years),AD-A220095,1990
    [135]Allison R E and Vitali R.An application of the jet formation theory to a 105mm shaped charge,BRL Report No.1165,1962
    [136]M.J.Mruphy & R.M.Kuklo.Fundamental of Shaped Charge Penetration in Concrete[A].18th International Symposium on Ballistics[C].San Antonio,1999,12:1057-1064.
    [137]Eichelberger R J.Re-examination of the nonsteady theory of formation by lined cavity charges,J.Appl.Phys.,26(4),1955
    [138]C.Weikert,K.M.Pewell & P.Winter.Interaction of Large Diameter Explosively Formed Projectiles with Concrete Targets[A].18th International Symposium on Ballistic[C].San Antonio,1999,1:15-19.
    [139]爆炸物理基础.内部资料.北京工业学院一系编,1974.8:204-152
    [140]王辉.聚能装药侵彻混凝土介质效应研究[D].北京:北京理工大学机电工程学院,1996
    [141]Birkhoff G,MacDougall D,Pugh E.Explosives with lined cavities,J.Appl.Phys.,19(6),1948
    [142]恽寿榕等.爆炸力学计算方法.北京:北京理工大学出版社,1995,126-130
    [143]Wang Cheng,Yun Shourong,Huang Fenglei,Zhang Hanping.Investigatinig Jet Appearance in Different Background Lights with High Speed Frame Photography.Journal of Beijing Institute of Technology,2002,11(2):113-116
    [144]Pugh E M,Eichelberger R J,Rostoker N.Theory of Jet Formation by Charges with Lined Conical Cavities,J.Appl.Phys.,23(5),1952
    [145]Chou P C,Flis W J.Recent development in shaped charge technology,Propellants,Explosives,Pyrotechnics,11,1986
    [146]Murphy M J,Kuklo R M,Fundamentals of shaped charge penetration in concrete,Lawrence Livermore National Laboratory,UCRL-JC-133126,1999
    [147]Carleone J.,Tactical Missile Warheads,Washington:the American Institute of Aeronautics and Astronautics,1993
    [148]Carleone J,Chou P C,User's manual for DESC-1,a one-dimensional computer code to model shaped charge liner collapse,jet formation,and jet properties,DYNA East Corporation,Technical Report No.DE-TR-75-4,1975
    [149]Randers-Pehrson G..,An improved equation for calculating fragment projection angle,Proc.2nd International Symposium on Ballistics,Daytona Beach,1976
    [150]Gazonas G A,Segletes S B.Hydrocode Simulation of the Formation and Penetration of a Linear Shaped Demolition Charge Into an RHA Plate[R].AD-A299777,1995.
    [151]恽寿榕,涂侯杰.爆炸力学计算方法[M].北京:北京理工大学出版社,1995.
    [152]Christianson K L,Roth J R,Schmidt TL.Development of an Enhanced Warhead for the Penetration Augmented Munition[A].Proceedings of the 41st Annual Bomb & Warhead Technical Meeting[C].San Diego,CA:Naval Ocean Systems Center,1991.
    [153]Mattsson K,Sorensen N,Ouve R,et al.Development of the Charge,a Short L/D Shaped Charge[A].Reinecke W G.18th In2ternational Symposium on Ballistics[C].Lancaster,Pennsylvania:Technomic Publishing Company,Inc,1999.528-534.
    [154]Kennedy D R.History of the Shaped Charge Effect(The First 100 Years)[R].AD-A220095,1990.
    [155]Waiters W P,Zukas J A.Fundamentals of Shaped Charges M.New York:John Wiley & Sons,Inc,1989.
    [156]Murphy M J.Shaped Charge Penetrationin Concrete:A Unified Approach R.UCRL-53393,1983.
    [157]Murphy M J,Kuklo R M.Fundamentals of Shaped Charge Penetrationin Concrete R.UCRL-JC-133126,1999.
    [158]Klaus Weimann.Research and Development in the Area of Explosively Formed Projectiles Charge Technology Propellants[J].Explosives,Pyrotechnics,1993,18,294-298
    [159]A.D.Resnyansky & A.E.Wildegger.Hydrocode Modeling of High-velocity Jet Penetration into Sand[A].19th International Symposium on Ballistic[C].Interlaken,Switzerland,2001.
    [160]N.Heider.Numerical Simulation of the Penetration Process of Geopenetrators into Predamaged Concrete Targets[A].20th International Symposium on Ballistic [C].Orlando,FL,2002:23-27.
    [161]A.D.Resnyansky & A.E.Wildegger-Gaissmaier.Study of the Borehole Diameter in Concrete Due to the Shaped Charge Jet Penetration[A].20th International Symposium on Ballistic[C].Orlando,FL,2002.
    [162]计冬奎,肖川,薛冰.机场跑道在动能侵彻弹药爆破作用下的毁伤机理研究[A].弹药战斗部学术交流会论文集[C].北京:北京理工大学爆炸科学与技术国家重点实验室.2005:97-100.
    [163]朱丽华,于德滨.反机场跑道及反硬目标战斗部结构[A].弹药技术高级研讨班专辑[C].北京:中国兵器工业总公司继续教育中心,北京理工大学机电工程系.1997.55-69.
    [164]LS-DYNA keyword user's manual-v1,version 960.Livermore Software Technology Corporation,Mar,2001.
    [165]Hallquiust J O.LS-DYNA Theoretical Manual.Livermore Software Technology Corporation,1998.
    [166]Lee E L,et al.Adiabatic expansion of high explosive detonation products.UCRL-50422,1968
    [167]Pezzica G,Destefanis R and Faraud M.Numerical simultion of orbital debris impact on spacecraft.Structures under shock and impact,275-284
    [168]Katayama M,Toda S and Kibe.Numerical simulation of space debris impacts on the Whipple shield.Acta Astronautica,1997,40(12):859-869
    [169]LS-DYNA keyword user's manual-v2,version 960.Livermore Software Technology Corporation,Mar,2001.
    [170]Holmquist T.J.,Johnson G.R.and Cook W.H.,14th Int.Symposium on Ballistics,Quebec,Canada.1993(26-29):591-600
    [171]陈惠武,张先锋,黄正祥.二级破/穿爆型串联攻坚战斗部技术研究[A].第三十一届弹药年会论文集[C].南京,2003.
    [172]Szendrei,T.Analytical Model of Crater Formation by Jet Impact and Its Application to Calculation of Penetration Curves and Hole Profiles[A].7th International Symposium on Ballistics[C].1983.
    [173]涂侯杰,恽授榕,赵衡阳.破爆型串联战斗部第一级爆炸对第二级影响的研究[J].兵工学报,1994,3:18-22.
    [174]Reader D,Carleone J.Explosively Formed Projectiles[A].//Seebass A R.Warhead[C].Reston,VA:AIAA,1993.367-386.
    [175]隋树元,王树山.终点效应学[M].北京:国防工业出版社,2000:272-275
    [176]王瑞臣.弹丸对混凝土介质斜侵彻效应研究,北京理工大学博士论文,1998,5
    [177]Glucklich J.Fracture of Plain Concrete.Journal of the Engineering Mechanics Division,ASCE,1983
    [178]Church P,Cornish R,Cullis I,etal.General overview of capability in the simulation of shaped charges penetrating soil/concrete targets[C].19th International Symposium of Ballistics,Interlaken.Switzerland:[S.n.],2001:1053-1060.
    [179]Charles L Mader,James N Johnson,Sharon L Crane.Los Alamos Explosives Performance Data.University Of California Press,Berkeley-Los Angeles-London,1980
    [180]高能炸药及相关物性能手册.中国工程物理研究院编
    [181]Johnson G R.Material Characterization for Warhead Computations.In:J Carleone Eds.Tactical Missile Warheads,Progress in Astronautics of AIAA,1993, 155:165-197
    
    [182] Resnyansky A D, Wildegger-Gaissmaier A E. Study of the Borehole Diameter in Concrete Due to the Shaped Charge Jet Penetration[C]. Proceedings of the 20th International Symposium to Ballistics. Orlando, FL.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700