桥梁长期健康监测系统集成与设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
科学而客观地获取桥梁结构特征信号,研判桥梁的健康状态,保证桥梁长期安全运营,对国民经济和社会安全起到至关重要的作用。桥梁长期健康监测系统是解决上述科学问题的主要技术途径和关键。目前由于传感器技术的限制和系统各个组成部分没有有机集成,缺乏可靠的长期监测手段和方法,致使系统缺乏整体性、长期性和实时性,严重影响了系统的可行性和实用性。随着光纤光栅传感技术的突破和其广泛应用,满足了桥梁结构大体积、大尺寸、分布式的多场、多维、多参量的长期测量的需求,表明了光纤光栅传感器在系统监测中具有可行性,可实现桥梁的长期在线实时监测。对该系统的深入研究和实践具有重大的研究意义和应用推广价值。
     本论文是在导师的悉心指导下,从光纤光栅传感技术和计算机应用技术的基础理论、基本实验、工程应用上研究了用于重大桥梁结构的光纤传感网络和基于计算集群与存域网的系统集成技术,保证了桥梁安全多参量的长期实时传感、传输、采集、存储与处理。目的是建立统一的高效、长期在线健康监测系统平台,并实现在重大工程中的应用。
     在对国内外桥梁健康监测研究现状深入分析基础上,本文针对大型桥梁的实际需求,利用布设的光纤光栅传感器构建了高性能的光纤光栅传感网络,研究了其网络架构和特点,并设计了网络的采集软件。同时,本文分别从系统硬件、系统软件和数据库系统三个方面进行系统的有机集成,并使系统成功应用在了多座大型桥梁的长期健康监测中。全文主要研究内容包括以下几个部分:
     1.基于多品种、大容量的光纤光栅传感器,分别详细研究了其在系统中的应用方法和监测目的,并基于现场安装的光纤光栅传感器构建了大型桥梁长期健康监测系统的光纤光栅传感网络。研究了光纤光栅传感网络的组成结构、组成网络的传感器选择方法、光纤布线方式、网络架构及其特点。
     2.研究了光纤光栅传感网络监测的多线程数据采集软件,详细设计了其软件的设计流程。根据在系统中应用的监测传感器,详细给出了光纤光栅传感器软件采集的波长换算成实际物理量的计算公式。并利用了无线传输网络,实现了波长数据和物理量的无线远程传输。
     3.集成了一个光纤光栅传感网络和电类传感器分布式网络的统一桥梁长期健康监测系统平台。电类分布式传感网络在现场配置采集站,采用冗余光纤网将其数据传输到中央数据库。并利用系统时钟同步技术,保证了各采集单元的数据同步性。针对监测网络长期在线所获取的海量数据存储和分析处理,系统采用了高性能的计算集群和存域网技术,保证了系统的长期实时在线存储和处理数据。桥梁健康监测系统网络通信采用了光纤自愈环网,实现了网络的自诊断功能,保证了系统的长期可靠性。
     4.设计了桥梁长期健康监测的软件结构、流程和架构特点。各个功能软件通过动态链接库调用的方式进行相互之间的无缝集成,实现了模块间的相互协同工作。并探讨了软件设计中的难点及解决方法。同时,根据采集和计算的不同数据类别分别设计了相应的数据库表。通过研究嵌入式数据库和关系数据库的互融性,实现了统一的数据库,保证了整个系统数据存储的完整性和数据的集中调度。
     5.以武汉长江二桥为工程实例,构建了长期健康监测系统。实现了光纤光栅传感网络和软件系统的设计。通过分析系统采集和处理的数据,验证了系统集成的高效性、长期性和在线性。
It plays a very important role for the national economy and the social security to gain bridge structure characteristic signal scientifically, to evaluate the bridge health condition and to guarantee long-term safe operation. The bridge long-term health monitoring system (BHMS) is a major technique and a key issue to solve the above scientific questions. At present as a result of sensing technology limit, each constituent of the system does not have effective integration, and the system is lack of integrity, long-term and real-time monitoring. This seriously influences its feasibility and application. Along with the breakthrough of the fiber grating sensing technology and its widespread application, it has satisfied the demand of the bridge structure monitoring with great volume, great size, multi-dimensional, multi-parameter in distributed long-term. That indicates the fiber grating sensors have the feasibility in the system monitoring. So BHMS is possible for online long-term monitor. It has meaningful research significance and the application prospective.
     With basic theory and experiment, project application of the fiber optical technology and the computer technology, this paper studied the fiber optical sensing network and system integration technology for the BMHS based on computing cluster and storage attach network. This will guarantee the bridge multi-parameter, long-term, real-time sensing, transmission, storage and processing. The goal is to establish BHMS in high effective and long-term online monitoring, and to find application in the important engineering construction.
     By investigation and analysis of BHMS in the domestic and foreign cases, with the actual demand of the large bridge, this paper constructed the high performance fiber grating sensing network using the fiber grating sensor, studied its network construction and the characteristic, and designed the network gathering software. Meanwhile, this paper proposed from three aspects of system hardware, software and database to promote system organic integration, and generate its successful application in many BHMS. The research contents of this full paper include the following several parts:
     1. Based on the multi-varieties and the large capacity fiber grating sensors, this paper reviewed their application methods and the monitoring goal in the system, and constructed fiber grating sensing network based on field installation of fiber grating sensors for the BHMS. This paper proposed the fiber grating sensing network compsition structure, the sensors choice method in the network, the fiber optical wiring way, the network skeleton and its characterization.
     2. This paper studied data acquisition software for the fiber grating sensing network monitor by multi-thread technology, and designed its software flow in details. According to the system applicated monitoring sensors, this paper proposed the formula which was used to convert the wave length to the actual physical quantity in detail. With the wireless network, it realized wireless long-distance transmission for the wave length data and the physical quantity.
     3. This paper integrated a fiber grating sensing network and the electric sensor distribution network to a whole BHMS platform. The electric sensors were installed at the local gathering station. It used the redundant optical fiber network to transmit the data to the central database, and with the system clock synchronization technology, the system used the high performance computation cluster and storage attach network technology to guarantee the data storage and the processing for long-term and real-time online monitoring. The BHMS network communication used the optical fiber self-recovery ring to realize the network self-diagnosis function in order to guarantee long-term reliability of the system.
     4. This paper designed the software architecture, the flow and the construction characteristic for the long-term BHMS. It proposed the software call each other through the dynamic link library to seamlessly integrate the software subsystem to make the module mutually collaborative work. And it discussed in the software design difficulty and their solutions. At the same time, this paper designed the corresponding database tables separately according to gathering and the relational database melt mutually, it built the integrated database to guarantee the overall system data storage integrity and the data centralized dispatching.
     5. This paper took Wuhan Yangtze 2nd River as a project example to construct the BHMS. It realized the design of the fiber sensing network and software system. By analyzing the data of the system gathering and processing, validated the integrated system with high effective, the long-term characteristic and online monitoring.
引文
[1]R W, B H, W L, et al. Cable-stayed Bridges[M]. London:Thomas Telford,1988.
    [2]Mc T. The 40-Year Evolution of Cable-Stayed Bridges[C]. Shanghai:1994.
    [3]中华人民共和国交通运输部.2008年公路水路交通运输行业发展统计公报[R].中华人民共和国交通运输部,2009.
    [4]潘松林,张红阳.公路桥梁检测概述[J].城市道桥与防洪.2003,5:5-8.
    [5]宣纪明,沈福兴.桥梁检测技术研究及工程运用[J].桥梁建设.2007,1:158-160.
    [6]韩大建,谢峻.大跨度桥梁健康监测技术的近期研究进展[J].桥梁建设.2002(06):69-73.
    [7]韩之江,杨建红.桥梁健康监测技术的研究与实施[J].公路.2008(03):51-56.
    [8]赵文秀.桥梁健康监测系统的若干问题[J].世界桥梁.2008(04):75-77.
    [9]孟表柱.检测工作在公路工程中的重要意义[J].公路.2002,9:1-2.
    [10]陶昆.新型桥梁健康监测与安全评估的现状与展望[J].山西建筑.2009,35(27):338-339.
    [11]闫桂荣,段忠东,欧进萍.基于结构振动信息的损伤识别研究综述[J].地震工程与工程振动.2007,27(3):95-103.
    [12]姜德生,Claus Richard O.智能材料器件结构与应用[M].武汉:武汉工业大学出版社,2000.
    [13]詹亚歌,向世清,方祖捷,et al.光纤光栅传感器的应用[J].物理.2004,33(01):58-61.
    [14]Measures R M, Alavie A T, Maaskant R, et al. Bragg grating fiber optic sensing for bridge and other structures[C]. Glasgow:Proc. SPIE,1994.
    [15]张巍,吕志涛.光纤传感技术用于桥梁监测[J].公路交通科技.2003,20(3):91-95.
    [16]Kersey D A, Davis M, Patrick H. Fiber Grating Sensors[J]. Light wave Technol.1997,15(8): 1442-1462.
    [17]姜德生,何伟.光纤光栅传感器的应用概况[J].光电子激光.2002,13(4):420-430.
    [18]Hill K O, Fujii Y, Johnson D C, et al. Photosensitivity in optical fiber waveguides:application to reflection filter fabrication [J]. Applied Physics Letters.1978,32 (6):647-649.
    [19]Meltz G, Morey G, Glenn H. Formation of Bragg gratings in optical fibers by a transverses holographic method[J]. Optics Letters.1989,14(15):823-825.
    [20]Karen W, Timothy B, Robert R. Fiber optic sensors for health monitoring of morphing airframes: I. Bragg grating strain and temperature sensor[J]. Smart Mater Struct.2005,9(2000):163-169.
    [21]Lemaire P J, Atkins R M, Mizrahi V. High pressure loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO doped optical fibres [J]. Electronics Letters.1993,29:1191-1193.
    [22]Fuhr P L. Fiber Optic Sensing of a Bridge in Waterbury, Vermont [J]. Journal of Intelligent Material Systems and Structures.1999,10(4):293-303.
    [23]Bowker T, Shaw M. Beyond telecom:FBGs fnd use in and gas industries[J]. Laser Focus World. 2003,39(5):123-126.
    [24]Lee Y W, Yoon I, Lee B. A simple fiber-optic current sensor:A simple fiber-optic current sensor using a long-period fiber grating inscribed on a polarizatio-main-taining fiber as sensor demodulator[J]. Sensors and Actuators A.2004,112(2):308-312.
    [25]Gusarov A I, Berghmans F, Fernandez A, et al. Behavior of fiber Bragg gratings under high total dose gamma radiation[J]. IEEE Transactions on Nuclear Science.2000,47(3):688-692.
    [26]Measures M, Alavie A, Maaskant, et al. A structurally integrated Bragg grating laser sensing system for a carbon fiber prestressed concrete highway bridge[J]. Smart Mater. Struct.1995,4: 20-30.
    [27]Farhey, Daniel N. Long-term performance monitoring of the tech 21 all-composite bridge[J]. Journal of Composites for Construction.2005,9(3):255-262.
    [28]Steven M, Soltesz. Strain Monitoring for Horsetail Falls and Sylvan Bridges[R]. Federal Highway Administration,2002.
    [29]Seim J, Udd E, Schulz W, et al. Composite Strengthening and Instrumentation of the Horsetail Falls Bridge with Long Gauge Length Fiber Bragg Grating Strain Sensors[Z]. Kyongju, Korea: Symposium,1999.
    [30]Davis M A, Kersey A D, Berkoff T A, et al. Dynamic strain monitoring of an in-use interstate bridge using fiber Bragg grating sensors[Z]. San Diego:199787-95.
    [31]Klink T, Meiβner J, Slowik V. Dehnungsmessung an einer Spannbetonbrucke mit Faser-Bragg-Gitter-Sensoren[J]. Bautechnik.1997,74(6):401-405.
    [32]Volker S, Evelyn S, Thomas K. Fibre Bragg Grating Sensors in Concrete Technology [J]. Lacer. 1998,3:109-119.
    [33]Sandeep T V, Bryan A, Gregg J, et al. Quasi-Static Strain Monitoring During the'Push'Phase of a Box-Girder Bridge Using Fiber Bragg Grating Sensors[J]. European Workshop on Optical Fibre Sensors.1998,7:1-4.
    [34]李平基,徐伟.重载交通条件下虎门大桥桥面铺装试验段评价研究[J].公路工程.2009,34(3):20-22.
    [35]王迎军,朱桂新,陈旭东.虎门大桥钢桥面铺装的使用和维护[J].公路交通科技.2004,21(8):64-67.
    [36]章立滨,杨军,刘志海,et al.单索面斜拉桥模型钢索载荷应变的光纤传感测量方法[J].哈尔滨工程大学学报.2000,21(3):86-89.
    [37]邱法维,杜文博,钱稼茹,et al.虎门大桥应变监测数据处理系统设计[J].桥梁建设.2003(2):66-69.
    [38]蒋洪涛,张岩.光纤传感器在桥梁健康监测中的应用[J].北方交通.2006,10:56-59.
    [39]姚娟,姜德生,何伟.光纤光栅位移传感技术研究[J].武汉理工大学学报信息与管理工程板.2006,28(7):98-100.
    [40]姜德生,郝义昶,刘胜春.光纤Bragg光栅测力环在系杆拱桥中的应用[J].仪表技术与传感器.2006(2):43-44.
    [4l]张东升,姚开方,罗斐,et al.一种新型的光纤光栅高频加速度传感器[J].仪器仪表学报.2009,30(7):1400-1402.
    [42]王应军,梅曙辉,李卓球,et al.基于ANSYS的武汉长江二桥非线性有限元分析[J].华中科技大学学报(城市科学版).2006,23(2):42-43.
    [43]林国雄,叶启洪.武汉长江二桥建桥技术的主要成就[J].桥梁建设.1996(3):1-3.
    [44]Jun L. FBG application in Bridge Health Monitoring System of Wuhan Yangtze River 2th Bridge[Z]. Proceedings of SPIE,2009.
    [45]欧进萍,周智,武湛君,等.黑龙江呼兰河大桥的光纤光栅智能监测技术[J].土木工程学报.2004,37(1):45-50.
    [46]岳丽娜,黄俊,刘胜春.荆岳长江公路大桥运营期监测系统设计[J].武汉理工大学学报.2009,31(1):116-119.
    [47]姜友生.荆岳长江公路大桥工程规划研究概述[J].交通科技.2008,231(6):1-3.
    [48]谢彬,钟敏,刘军.高性能计算机群的性能评测与优化[J].高能量密度物理.2006(4):170-173.
    [49]郑晓鸣.浅析高性能计算的现状与发展[J].福建电脑.2007,2:211-212.
    [50]孙凝晖,李凯,陈明宇.HPP:一种支持高性能和效用计算的体系结构[J].计算机学报.2008,31(9):1503-1508.
    [51]Vigo T L. Intelligent fibrous materials[J]. Journal of the Textile Institute.1999,90(3):1-13.
    [52]Leng J. A.Asundi. Structural health monitoring of smart composite materials by using EFPI and FBG sensors[J]. Sensors and Actuators A-Physical.2006,103(3):330-340.
    [53]Tjin S C, Wang Y. Application of quasi-distributed fibre Bragg grating sensors in reinforced concrete structures[J]. Measurement Science & Technology.2002,13(4).
    [54]Takeda T. Characterization of microscopic damage in composite laminates and real-time monitoring by embedded optical fiber sensors[J]. International Journal of Fatigue.2002,24(2): 281-289.
    [55]Tsutsui H, Kawamata A, Kimoto J, et al. Impact damage detection system using small-diameter optical-fiber sensors embedded in CFRP laminate structures [J]. Advanced Composite Materials. 2004,13(1):43-55.
    [56]Okabe Y, Tsuji R. Application of chirped fiber Bragg grating sensors for identification of crack locations in composites[J]. Composites Part A-Applied Science and Manufacturing.2004,35(1): 59-65.
    [57]Wang A, Pickrell G R. Optical Sensor Research At Virginia Tech Center For Photonics Technology[Z].20021-7.
    [58]沙占有.智能化集成温度传感器原理与应用[M].北京:机械工业出版社,2002.
    [59]余有龙,谭华耀.有源波、空分复用光纤光栅传感网络[J].中国激光.2002,29(2):131-134.
    [60]耿淑伟,余有龙.光纤光栅时分复用传感系统[J].哈尔滨工业大学学报.2002(02).
    [61]张宏斌,邱昆,周东.波分复用光纤通信技术[J].电子科技大学学报.2000,29(4):337-341.
    [62]顾畹仪.波分复用系统的发展和应用[J].电信科学.2001(3):24-26.
    [63]张永胜,郁可,姜德生,et al.用相位掩模法制作光纤光栅的技术[J].光学技术.1999(01).
    [64]李剑芝,姜德生.载氢与光纤布喇格光栅[J].材料研究学报.2006(05).
    [65]赵浩,丁浩,刘斌,et al.载氢光纤光致折变布拉格光栅[J].光学学报.1996,16(4):575-576.
    [66]万里冰,张博明,王殿富,et al.一种封装的光纤Bragg光栅应变传感器[J].激光技术.2002,26(5):385-387.
    [67]李爱群,周广东.光纤B ragg光栅传感器测试技术研究进展与展望(Ⅰ):应变、温度测试[J].东南大学学报(自然科学版).2009,2009(6):1298-1303.
    [68]赵雪峰,田石柱,周智,et al.基于封装光纤Bragg光栅传感器的混凝土应变监测试验研究[J].光学技术.2003(04).
    [69]Frhr P L, Spammer S. Fiber optic sensors in the Waterbun bridge[J]. SPIE.1998,3(489): 124-128.
    [70]Tennyson R C, Coroy T, Duck G. Fiber optic sensors in civil engineering structures[J]. J Civ Eng. 2000(27):880-889.
    [71]王延臣.基于桥梁健康监测的传感器优化布设[J].传感器技术学报.2005,18(4):752-755.
    [72]崔飞,袁万城,史家均.传感器优化布设在桥梁健康监测中的应用[J].同济大学学报.1999,27(2):165-169.
    [73]周文松,李惠,欧进萍,et al.大型桥梁健康监测系统的数据采集子系统设计方法[J].公路交通科技.2006(03).
    [74]Jeffrey R, Christophe N. Windows via C/C++,Fifth Edition[M]. Microsoft Press,2008.
    [75]Akyildiz I, F S, Sankara W. Wireless Sensor Network[J]. a Survey Computer Network.2002(38): 392-422.
    [76]Kahn J M, Katz R H, Pister K J. Next Century Challenges:Mobile Networking for "Smart Dust"[J]. Journal of Communication And Network.2000,2(3).
    [77]Lynch J P, Sundarajan A, Law K H, et al. Embedding Algoriths in a Wireless Structure Monitoring System[Z]. Hong Kong:2002.
    [78]肖健,吕爱琴,陈吉忠,et al.无线传感器网络技术中的关键性问题[J].传感器世界.2004(7):14-18.
    [79]刘军,童杏林,梁磊.高性能桥梁长期健康监测系统与集成研究[J].武汉理工大学学报.2009,31(23):52-56.
    [80]陈璇.网络对时技术及应用方向研究[J].中国舰船研究.2007,2(6):42-45.
    [81]Mazidi M A. The X86IBM PC and compatible computers(Volumes Ⅰ Ⅱ):assembly language design and interfacing[M]. Pearson:Prentice Hall,2004.
    [82]David L, Mill. Network time protocol(version3) specification.Implementation and Analysis[S]. 1992.
    [83]刘君华.智能传感器系统[M].西安:西安电子科技大学出版社,1999.
    [84]刘少强.检测技术与系统设计[M].北京:中国电力出版社,2002.
    [85]Wayne W. Computer as Components:Priciples of Embeded Computing System[M]. Morgan Kaufman,2001.
    [86]李胜利,郑然,骆雁,et al.一种分布式实时系统中的时钟同步算法[J].花中科技大学学报.2001,29(1):61-62.
    [87]周祖德,郭胜,徐成.桥梁健康监测系统中时钟同步的应用研究[J].武汉理工大学学报.2005,27(5):148-151.
    [88]Andrew S. Computer Network[M].1996.
    [89]李腊元,李春林.计算机网络技术[M].北京:国防工业出版社,2004.
    [90]李枝军,李爱群,缪长青,et al.面向桥梁结构健康监测的原始指纹数据库设计与开发[J].公路交通科技.2008(10):5-8.
    [91]Engelschall, Ralf. Web Load Balancing Your Web Site[J]. Web techniques.1998.
    [92]沈亦军.负载均衡集群技术在校园网中的应用[J].电脑知识与技术.2007(2):365.
    [93]戴刚.服务器集群关键技术的研究与实现[D].北京:国防科技大学图书馆,2002.
    [94]Xun J, Yao-Bi Z. Study on I/O Response Time Bounds of Network Storage Systems[J]. Journal of Wuxi South Ocean College.2007,6(3):32-36.
    [95]Farley M. Building Storage Area Networks[M]. McGraw-Hill,2001.
    [96]Perles A, Molero X, Marti A, et al. Improving the execution of groups of simulations on a cluster of workstations and its application to storage area networks[C].2001.227-234.
    [97]Namgoong J, Park C. Design and implementation of a fibre channel network driver for SAN-attached RAID controllers[Z].2001477-483.
    [98]Morris, Truskowski. The evolution of storage systems[J]. IBM Systems Journal.2003,42(2): 205-217.
    [99]曾红伍.网格存储技术在数字图书馆中的应用[J].软件导刊.2009,8(1):122-124.
    [100]李晋,刘晓洁,李涛,et al. IP网络存储技术解析[J].计算机科学.2008,35(4):186-187.
    [101]任星,韩军,张来顺,et al.基于iSCSI协议的加密存储区域网模型设计与实现[J].计算机工程与设计.2009,30(876-879).
    [102]韦丰,周敬利,林芝,et al.存储区域网中光纤通道和!"#"$协议的性能分析[J].计算机工程与应用.2003(13):181-183.
    [103]易非,李仁发,陈佐,et al.基于ISCSI的网络存储体系结构研究[J].计算机工程与应用.2004(27):132-134.
    [104]陈云志.SDH&WDM设备与系统[M].北京:人民邮电出版社,1998.
    [105]韦东平,李英颧.SDH及其新应用[M].北京:人民邮电出版社,2002.
    [106]Condie S J. Distributed Computing, Tommorroe's Panacea-an Introduction To Current Technology[J]. Technology Journal.1999,17(2):13-23.
    [107]Aleksy, Markus, Korthaus, et al. CORBA-based Object Group Service and a Join Service Providing a Transparent Solution for Parallel Programming [Z]. Proceedings IEEE,2000123-134.
    [108]章兢,张小刚,王耀南,et al.一种基于C/S结构的工业生产过程实时监视与信息管理系统[J].湖南大学学报.2000,27(3):57-62.
    [109]陈建春.Visual C++开发GIS系统[M].北京:电子工业出版社,2004.
    [110]王德才,杨关胜,孙玉萍.精通DirectX3D图形与动画程序设计[M].北京:人民邮电出版社,2007.
    [111]Fowler M. Refactoring:Improving the Design of Existing Code[M]. Addison Wesley Longman, 1999.
    [112]Erich G, Richard H, Ralph J, et al. Design Patterns:Elments of Reusable Object-Oriented Software[M]. Addison Wesley Longman,1995.
    [113]Eric F, Elisabeth F. Head First Design Pattern[M]. O'Reilly Media,2004.
    [114]夏云庆.Visual C++6.0数据库高级编程[M].北京:北京希望电子出版社,2002.
    [115]David S. ADO.NET Core Reference[M]. Washington:Microsoft Press,2002.
    [116]金灿,陈绪君,朱绍文,et al.NET框架中三种数据访问技术及效率比较[J].计算机应用研究.2003(4):551-553.
    [117]Jeff P. Programming Windows with MFC,Second Edition[M]. Microsoft Press,1999.
    [118]Bjarne S. The C++Programming Language,Special Edition[M]. Addison Wesley,2000.
    [119]Stanley.b L, Tjosee L. C++Promer[M]. Addision Wesley Longman,1999.
    [120]Bruce E. Thinking in C++(Second Edition)[M]. Mindview,2000.
    [121]Dejan S. SQL Server 200 Stored Procedure & XML Programming,Second Edition[M]. MeGraw-Hill,2003.
    [122]萨师煊,王珊.数据库系统概论[M].北京:高等教育出版社,1983.
    [123]Kalen D. Inside Microsoft SQL Server 2005:The Storage Engine[M]. Microsoft Press,2007.
    [124]Itzik B, Dejan S, Roger W. Inside Microsoft SQL Server 2005:T-SQL Programming[M]. microsoft Press,2007.
    [125]Ben-Gan I, Kollar L, Sarka D. Inside Microsoft SQL Server 2005:T-SQL Querying[M]. Microsoft Press,2006.
    [126]Acharya, Soubir, Friedman S G.网络存储的备份策略[M]. InfoStor,2001.
    [127]郭健,顾正维,孙炳楠.基于小波分析的桥梁健康监测方法[J].工程力学.2006,23(12):129-135.
    [128]杨世锡,胡劲松,吴昭同.旋转机械震动信号基于EMD的希尔伯特变换和小波变换分析比较[J].中国电机工程学报.2003,23(6):102-107.
    [129]胡劲松,杨世锡,吴昭同.基于经验模态分解的旋转机械震动信号滤波技术研究[J].振动、测试与诊断.2003,23(2).
    [130]胡广书.数字信号处理-理论、算法与实现[M].北京:清华大学出版社,1997.
    [131]张贤达.现代信号处理[M].北京:清华大学出版社,1995.
    [132]王雪梅,倪文波,李蒂.摆式列出线路检测信号的动态自适应滤波研究[J].中国铁道科学.2005,26(5):76-81.
    [133]付梦印,邓志红,张继伟.Kalman滤波理论及其在导航系统中的应用[M].北京:科学出版社,2003.
    [134]潘泉,孟晋丽,张磊,et al.小波滤波方法及应用[J].电子与信息学报.2007,29(1):236-242.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700