牛Sry基因核心启动子定位及其基因功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Sry(sex-determining region of the Y chromosome)基因主导哺乳动物雄性性别决定和睾丸的起始发育。转基因鼠证明Sry可以诱导XX型小鼠向雄性发育。Sry蛋白含有一段可以结合DNA的区域,被称为HMG-box。HMG-box在哺乳动物不同物种间相对保守,人SRY HMG-box区域相应位置的点突变可以引起性别反转。对人SRY的亚细胞定位研究结果表明其分布在Sertoli细胞细胞核内,推测其发挥转录因子作用。目前,Sry的表达调控机制依然不清楚。鼠Sry在XY型胚胎生殖嵴Sertoli前体细胞中表达,并受到严格的时空限制,但在其他物种并不十分严格,如人、羊在成年雄性的睾丸内依然可以检测到其表达。虽然已证明Sry具有诱导睾丸发育的功能,但其下游目的基因仍然无法确定。Sox9是Sry可能的下游基因之一。Sf1 (Steroidogenic fator-1)、Gata4 (GATA binding protein 4)、Wt1 (Wilms’tumor gene)、Sox9(Sry-related HMG box-9)、Amh (Anti Mullerian Hormone)和Dax1 (Dosage sensitive sex reversal locus-1)也被证明在性别决定过程中有重要作用。目前关于哺乳动物Sry基因的大量研究主要集中在人和鼠上,在其他动物上的研究较少。牛作为重要的经济动物,在畜牧业生产中具有重要价值,奶牛繁殖时产生的半数雄性牛,经济价值很低,目前采用的性别控制技术,主要是依据X精子和Y精子DNA含量上的微小差别,以流式细胞技术分离,存在价格昂贵,分离效率低,及所分离的精子受精率低等问题。阐明牛性别控制相关基因的调控模式,有希望在分子水平上干扰性别决定的调控网络,可以为奶牛性别控制提供新的思路;也可为哺乳动物性别分化的比较生物学研究填补牛相关数据的空白。
     本试验对牛Sry基因进行了结构与功能的研究,主要内容包括:克隆了牛Sry基因包含5’侧翼和编码区在内的1838bp序列;原代分离培养牛生殖嵴细胞及卵巢颗粒细胞,并对生殖嵴细胞进行性别鉴定及特征鉴定;利用生物信息学方法预测牛Sry 5’侧翼1066bp内潜在转录起始位点TSS及转录因子结合位点,比较10个物种SRY/Sry蛋白同源性及趋异分化程度,并进行物种进化分析,比较牛及人SRY蛋白的三维结构;构建不同长度的缺失牛Sry 5’侧翼序列调控的报告基因载体,利用荧光素酶双报告基因分析系统在生殖嵴细胞内研究牛Sry核心启动子区域位置;构建了pcDNA3.1-Sry表达载体,在生殖嵴细胞和卵巢颗粒细胞中进行了Sry过表达,利用半定量RT-PCR对性别控制相关基因在Sry过表达前后的表达水平变化进行检测,包括Sf1、Gata4、Wt1、Sox9、Amh和Dax1;构建pEGFP-N1-Sry亚细胞定位表达载体,其可以表达融合蛋白(Sry-GFP),在牛生殖嵴细胞和卵巢颗粒细胞中进行了Sry亚细胞定位研究。主要结论如下:
     1.克隆了牛Sry基因包括5’侧翼及编码区(ORF)在内的1838bp序列,通过测序及序列比对,结果和GenBank中牛Sry序列(No. AB039748.1)完全一致。
     2.原代分离培养牛生殖嵴细胞,对其进行鉴定表明,此细胞为处于性别分化时期的雄性生殖嵴细胞,在体外生长状态良好,可以稳定传代,为后继研究奠定了基础。
     3.原代分离培养牛卵巢颗粒细胞,经过在体外传代观察,细胞形态均一,在体外生长状态良好,可以稳定传代,为后继研究奠定了基础。
     4.对牛Sry5’端1066bp序列的生物信息学分析发现,分别在-93、-419、-722(ATG中A为0点)位置存在三个潜在的转录起始点(TSS),而且这段区域含有非常丰富的转录因子结合位点信息,这和Sry基因表达的特异性、复杂性相一致。
     5. 10个物种SRY/Sry蛋白序列比较结果表明,牛和山羊Sry蛋白同源性最高,达到93.5%;牛和小鼠Sry蛋白趋异分化程度最高,达60.4%。
     6.进化分析表明牛与羊在亲缘关系上最为接近,归为一类,在比较的10个物种中是处于进化最远的亚类,表明偶蹄目动物Sry基因在进化上受自然选择的影响有较大的变异。
     7.比较牛和人SRY蛋白结构,仅在保守区HMG-box处有较高的相似性,但是空间构象却比较相似,都是通过结合DNA螺旋小沟来识别7个碱基的核心靶序列,作用方式也很相似,说明虽然SRY/Sry蛋白在物种间序列差异较大,但蛋白的结构和作用方式却是很保守的。
     8.在生殖嵴细胞内,利用双荧光素酶报告基因检测系统,用13个缺失表达载体,对牛Sry5’侧翼1056bp启动子区域进行了细致扫描,结果表明牛Sry核心启动子位于翻译起始位点ATG(A为0点)上游-599~-565bp一段35bp大小的区域内。
     9.利用pcDNA3.1-Sry表达载体在牛生殖嵴细胞内过量表达Sry,用RT-PCR检测性别发育相关基因Sry过表达前后表达水平变化,包括Sf1、Gata4、Wt1、Sox9、Amh和Dax1,结果证明牛Sry对Sox9表达有正调控作用,而其他基因不受Sry过表达影响。
     10.利用pEGFP-N1-Sry融合蛋白表达载体(Sry-GFP)在牛生殖嵴细胞和卵巢颗粒细胞中研究Sry的细胞内分布,结果证明牛Sry蛋白定位于细胞核内,进一步证实其作为转录因子发挥作用。
     创新点:
     1.首次利用生物信息学方法对牛Sry基因作全面的生物信息学分析,如结论4-7条,预测分析对牛Sry基因启动子潜在转录起始位点和转录因子结合位点;比较10个物种Sry蛋白序列同源性和分化程度;利用10个物种的Sry序列,对牛Sry基因进行进化分析;对比牛和人的SRY蛋白空间结构。
     2.首次细致分析了牛Sry基因启动子区域,并将核心启动子定位于翻译起始位点ATG(A为0点)上游-599~-565bp一段35bp大小的区域内。
     3.首次证明牛Sry基因对Sox9基因有正调控作用,证明牛Sry基因可能直接或间接调控Sox9表达。
     4.首次利用实验证实牛Sry蛋白定位于细胞核。
In mammals, male sex determination and initiating testis development are under the control of the Sry (sex-determining region of the Y chromosome). In 1991, Koopman reported that Sry gene can direct male development in an XX transgenic mouse. Sry protein contains a DNA binding domain known as the HMG-box. The HMG box is the singular part of Sry conserved between species, and point mutations in the corresponding region of the SRY gene cause sex reversal in humans. In human, SRY protein was detected in the nuclei of Sertoli cells, and was speculated that it worked as a transcriptional factor.Although the testis-inducing function of Sry has been clearly demonstrated, its direct target gene or genes still await identification. As one likely Sry target, the Sry-related gene Sox9 has emerged. Most other genes which are involved in this complex process and play important roles in male sex differentiation have been identified, including Sf1 (Steroidogenic fator-1), Gata4 (GATA binding protein 4), Wt1 (Wilms’tumor gene), Sox9 (Sry-related HMG box-9), Amh (Anti Mullerian Hormone), and Dax1 (Dosage sensitive sex reversal locus-1). At present, almost all the researches about mammals are focus on human and mouse, and there are fewer researches on other animals.Cattle is thought to be an important economic animal, it is great valuable in animal husbandry. The male calves are valueless. At present, the sex control technologies being used in cow production is separation of X and Y sperms. Its disadvantages are expensive, low efficiency, reduction of fertility rate, and so on. Researches on molecular regulation mechanism about sex determination, finding the method to interfere the regulation net of sex determination can provide a new means for cow sex control. The researches among different species could also help us to further understand the mechanisms of sex determination and the evolutionary rules in mammalian sex determination.
     In this research, we cloned the 1838bp Sry sequences, including the 5’flanking and ORF. Bovine genital ridge cells and ovary granulosa cells were isolated and cultured in vitro. We identified the sex and characteristic of the genital ridge cells. The information of Sry 5’flanking and ORF were analyzed by bioinformatics method. The potential transcriptional start site and transcriptional factor binding sites in Sry 5’flanking 1066bp were predicted. To analyzing the evolution of bovine Sry, we compared Sry protein sequences among 10 species. We also predicted and compared the three-dimensional structure SRY/Sry between human and bovine. To find the core promoter of bovine Sry, We constructed 13 deletion recombinants with different length of Sry 5' flanking, promoter activity analysis was performed in bovine genital ridge cells by the dual-luciferase reproter assay system. Sry gene was overexpressed by pcDNA3.1-Sry in genital ridge cells and granulosa cells, after that six genes which were identified as important genes in sex determination in mammals, including Sf1, Gata4, Wt1, Sox9, Amh and Dax1 were examined by semi-quantitative RT-PCR to observe their expression change influenced by Sry. Subcellular localization was also performed to analyze the disposition of Sry protein in genital ridge cells and granulosa cells. We got the conclusion below:
     1. The 1838bp Sry sequences, including the 5’flanking and ORF, were cloned and secquenced. Blast anslysis indicated that the sequences were consistent with bovine Sry sequences in GenBank(No. AB039748.1).
     2. Bovine genital ridge cells were isolated and cultured in vitro, and it were identified that it came from a male genital of sex differentiation period; they could grow normally in vitro, and be passaged stablely.
     3. Bovine ovary granulosa cells .were isolated cultured in vitro, they could grow normally in vitro, and be passaged stablely.
     4. The bovine Sry 5’flanking sequences of 1066bp were analyzed by bioinformatics method, it were indicated that there were 3 potential transcriptional start sites at -93、-419、-722(ATG, A was 0 point), and the transcriptional factor binding sites (TFBS) prediction indicated that there were copious potential TFBS in the fragment, which was consistent with the special complicated regulation mechanism of Sry.
     5. Comparison of 10 species SRY/Sry sequences showed that bos taurus was more homologous to capra hircus(93.5%); bos taurus was more divergent from mus musculus (60.4%).
     6. Evolution analysis of SRY/Sry sequences of 10 species showed bos taurus and capra hicus were more relative, and belonged to a group, they are reach to the distal end of the cladogram, indicated that artiodactylous animals has greater variation than others by means of natural selection.
     7. Comparison of SRY/Sry primary structure of human and bovine, the HMG-box was the singular conserved part, but they were similar in the three-dimensional structure. They both can recognize the 7bp conserved binding site sequences. It indicated that although the Sry primary structure has greater variation among different species, the three-dimensional structure and mode of action were similar.
     8. We constructed 13 deletion recombinants with luciferase reporeter, the promoter acativity of bovine Sry 5’flanking 1056bp was analyzed by dual-luciferase reproter assay system in genital ridge cells, the core promoter of bovine Sry was located at the -599~-565bp upstream of Sry translation start site ATG (A is 0 site.), a fragment of 35bp.
     9. Sry was overexpressed in genital ridge cells by pcDNA3.1-Sry, after that six genes which were identified as important genes in sex determination in mammals, including Sf1, Gata4, Wt1, Sox9, Amh and Dax1 were examined by semi-quantitative RT-PCR to observe their expression change influenced by Sry. The results indicated that Sry can up-regulate the Sox9 expression.
     10. Subcellular localization was performed to analyze the disposition of Sry protein in genital ridge cells and granulosa cells. Bovine Sry protein localizated in the cell nuclei, it confirmed that bovine Sry working as transcription factor.
引文
Albrecht, K. H., Young, M., Washburn, L. L., Eicher, E. M. 2003. Sry expression level and protein isoform differences play a role in abnormal testis development in C57BL/6J mice carrying certain Sry alleles. Genetics, 164 (1):277-88.
    Bardoni, B., Zanaria, E., Guioli, S., Floridia, G., Worley, K. C., Tonini, G., Ferrante, E., Chiumello, G., McCabe, E. R., Fraccaro, M. et al. 1994. A dosage sensitive locus at chromosome Xp21 is involved in male to female sex reversal. Nat Genet, 7 (4):497-501.
    Barrionuevo, F., Bagheri-Fam, S., Klattig, J., Kist, R., Taketo, M. M., Englert, C., Scherer, G. 2006. Homozygous inactivation of Sox9 causes complete XY sex reversal in mice. Biol Reprod, 74 (1):195-201.
    Behlke, M. A., Bogan, J. S., Beer-Romero, P., Page, D. C. 1993. Evidence that the SRY protein is encoded by a single exon on the human Y chromosome. Genomics, 17 (3):736-9. Behringer, R. R., Finegold, M. J., Cate, R. L. 1994. Mullerian-inhibiting substance function during mammalian sexual development. Cell, 79 (3):415-25.
    Berta, P., Hawkins, J. R., Sinclair, A. H., Taylor, A., Griffiths, B. L., Goodfellow, P. N., Fellous, M. 1990. Genetic evidence equating SRY and the testis-determining factor. Nature, 348 (6300):448-50.
    Bielinska, M., Seehra, A., Toppari, J., Heikinheimo, M., Wilson, D. B. 2007. GATA-4 is required for sex steroidogenic cell development in the fetal mouse. Dev Dyn, 236 (1):203-13.
    Birk, O. S., Casiano, D. E., Wassif, C. A., Cogliati, T., Zhao, L., Zhao, Y., Grinberg, A., Huang, S., Kreidberg, J. A., Parker, K. L. et al. 2000. The LIM homeobox gene Lhx9 is essential for mouse gonad formation. Nature, 403 (6772):909-13.
    Bishop, C. E., Whitworth, D. J., Qin, Y., Agoulnik, A. I., Agoulnik, I. U., Harrison, W. R., Behringer, R. R., Overbeek, P. A. 2000. A transgenic insertion upstream of sox9 is associated with dominant XX sex reversal in the mouse. Nat Genet, 26 (4):490-4.
    Bowles, J., Cooper, L., Berkman, J., Koopman, P. 1999. Sry requires a CAG repeat domain for male sex determination in Mus musculus. Nat Genet, 22 (4):405-8.
    Boyer, A., Pilon, N., Raiwet, D. L., Lussier, J. G., Silversides, D. W. 2006. Human and pig SRY 5' flanking sequences can direct reporter transgene expression to the genital ridge and to migrating neural crest cells. Dev Dyn, 235 (3):623-32.
    Bruening, W., Bardeesy, N., Silverman, B. L., Cohn, R. A., Machin, G. A., Aronson, A. J., Housman, D., Pelletier, J. 1992. Germline intronic and exonic mutations in the Wilms' tumour gene (WT1) affecting urogenital development. Nat Genet, 1 (2):144-8.
    Capel, B., Rasberry, C., Dyson, J., Bishop, C. E., Simpson, E., Vivian, N., Lovell-Badge, R., Rastan, S., Cattanach, B. M. 1993. Deletion of Y chromosome sequences located outside the testisdetermining region can cause XY female sex reversal. Nat Genet, 5 (3):301-7.
    Caspersson, T., Farber, S., Foley, G. E., Kudynowski, J., Modest, E. J., Simonsson, E., Wagh, U., Zech, L. 1968. Chemical differentiation along metaphase chromosomes. Exp Cell Res, 49 (1):219-22.
    Chen, Y., Dong, Y., Xiang, X., Zhang, X., Zhu, B. 2008. Sex determination of Microtus mandarinus mandarinus is independent of Sry gene. Mamm Genome, 19 (1):61-8.
    Clepet, C., Schafer, A. J., Sinclair, A. H., Palmer, M. S., Lovell-Badge, R., Goodfellow, P. N. 1993. The human SRY transcript. Hum Mol Genet, 2 (12):2007-12.
    Collignon, J., Sockanathan, S., Hacker, A., Cohen-Tannoudji, M., Norris, D., Rastan, S., Stevanovic, M., Goodfellow, P. N., Lovell-Badge, R. 1996. A comparison of the properties of Sox-3 with Sry and two related genes, Sox-1 and Sox-2. Development, 122 (2):509-20.
    Coward, P., Nagai, K., Chen, D., Thomas, H. D., Nagamine, C. M., Lau, Y. F. 1994.
    Polymorphism of a CAG trinucleotide repeat within Sry correlates with B6.YDom sex reversal. Nat Genet, 6 (3):245-50.
    Daneau, I., Ethier, J. F., Lussier, J. G., Silversides, D. W. 1996. Porcine SRY gene locus and genital ridge expression. Biol Reprod, 55 (1):47-53.
    Daneau, I., Houde, A., Ethier, J. F., Lussier, J. G., Silversides, D. W. 1995. Bovine SRY gene locus: cloning and testicular expression. Biol Reprod, 52 (3):591-9.
    Daneau, I., Pilon, N., Boyer, A., Behdjani, R., Overbeek, P. A., Viger, R., Lussier, J., Silversides, D. W. 2002. The porcine SRY promoter is transactivated within a male genital ridge environment. Genesis, 33 (4):170-80.
    de la Chapelle, A. 1981. The etiology of maleness in XX men. Hum Genet, 58 (1):105-16.
    de Santa Barbara, P., Mejean, C., Moniot, B., Malcles, M. H., Berta, P., Boizet-Bonhoure, B. 2001. Steroidogenic factor-1 contributes to the cyclic-adenosine monophosphate down-regulation of human SRY gene expression. Biol Reprod, 64 (3):775-83.
    Desclozeaux, M., Poulat, F., de Santa Barbara, P., Capony, J. P., Turowski, P., Jay, P., Mejean, C., Moniot, B., Boizet, B., Berta, P. 1998a. Phosphorylation of an N-terminal motif enhances DNA-binding activity of the human SRY protein. J Biol Chem, 273 (14):7988-95.
    Desclozeaux, M., Poulat, F., de Santa Barbara, P., Soullier, S., Jay, P., Berta, P., Boizet-Bonhoure, B. 1998b. Characterization of two Sp1 binding sites of the human sex determining SRY promoter. Biochim Biophys Acta, 1397 (3):247-52.
    Dewing, P., Chiang, C. W., Sinchak, K., Sim, H., Fernagut, P. O., Kelly, S., Chesselet, M. F., Micevych, P. E., Albrecht, K. H., Harley, V. R. et al. 2006. Direct regulation of adult brain function by the male-specific factor SRY. Curr Biol, 16 (4):415-20.
    DiNapoli, L., Capel, B. 2008. SRY and the standoff in sex determination. Mol Endocrinol, 22 (1):1-9.
    Dubin, R. A., Coward, P., Lau, Y. F., Ostrer, H. 1995. Functional comparison of the Musmusculus molossinus and Mus musculus domesticus Sry genes. Mol Endocrinol, 9 (12):1645-54. Dubin, R. A., Ostrer, H. 1994. Sry is a transcriptional activator. Mol Endocrinol, 8 (9):1182-92.
    Eicher, E. M., Washburn, L. L., Whitney, J. B., 3rd, Morrow, K. E. 1982. Mus poschiavinus Y chromosome in the C57BL/6J murine genome causes sex reversal. Science, 217 (4559):535-7.
    Ely, D., Milsted, A., Bertram, J., Ciotti, M., Dunphy, G., Turner, M. E. 2007. Sry delivery to the adrenal medulla increases blood pressure and adrenal medullary tyrosine hydroxylase of normotensive WKY rats. BMC Cardiovasc Disord, 76.
    Fechner, P. Y., Marcantonio, S. M., Jaswaney, V., Stetten, G., Goodfellow, P. N., Migeon, C. J., Smith, K. D., Berkovitz, G. D., Amrhein, J. A., Bard, P. A. et al. 1993. The role of the sex-determining region Y gene in the etiology of 46,XX maleness. J Clin Endocrinol Metab, 76 (3):690-5.
    Ferguson-Smith, M. A. 1966. X-Y chromosomal interchange in the aetiology of true hermaphroditism and of XX Klinefelter's syndrome. Lancet, 2 (7461):475-6.
    Ferguson-Smith, M. A., Affara, N. A. 1988. Accidental X-Y recombination and the aetiology of XX males and true hermaphrodites. Philos Trans R Soc Lond B Biol Sci, 322 (1208):133-44.
    Ferrari, S., Harley, V. R., Pontiggia, A., Goodfellow, P. N., Lovell-Badge, R., Bianchi, M. E. 1992. SRY, like HMG1, recognizes sharp angles in DNA. Embo J, 11 (12):4497-506.
    Ford, C. E., Jones, K. W., Polani, P. E., De Almeida, J. C., Briggs, J. H. 1959. A sex-chromosome anomaly in a case of gonadal dysgenesis (Turner's syndrome). Lancet, 1 (7075):711-3.
    Forwood, J. K., Kaur, G., Jans, D. A. 2007. Nuclear Import Properties of the Sex-Determining Factor SRY. Methods Mol Biol, 39083-98.
    Foster, J. W., Dominguez-Steglich, M. A., Guioli, S., Kowk, G., Weller, P. A., Stevanovic, M., Weissenbach, J., Mansour, S., Young, I. D., Goodfellow, P. N. et al. 1994a. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature, 372 (6506):525-30.
    Foster, J. W., Graves, J. A. 1994b. An SRY-related sequence on the marsupial X chromosome: implications for the evolution of the mammalian testis-determining gene. Proc Natl Acad Sci U S A, 91 (5):1927-31.
    Fu, Q., Zhang, M., Qin, W. S., Lu, Y. Q., Zheng, H. Y., Meng, B., Lu, S. S., Lu, K. H. 2007. Cloning the swamp buffalo SRY gene for embryo sexing with multiplex-nested PCR. Theriogenology, 68 (9):1211-8.
    Giese, K., Cox, J., Grosschedl, R. 1992. The HMG domain of lymphoid enhancer factor 1 bends DNA and facilitates assembly of functional nucleoprotein structures. Cell, 69 (1):185-95.
    Giese, K., Kingsley, C., Kirshner, J. R., Grosschedl, R. 1995. Assembly and function of a TCR alpha enhancer complex is dependent on LEF-1-induced DNA bending and multipleprotein-protein interactions. Genes Dev, 9 (8):995-1008.
    Giese, K., Pagel, J., Grosschedl, R. 1994. Distinct DNA-binding properties of the high mobility group domain of murine and human SRY sex-determining factors. Proc Natl Acad Sci U S A, 91 (8):3368-72.
    Giuili, G., Shen, W. H., Ingraham, H. A. 1997. The nuclear receptor SF-1 mediates sexually dimorphic expression of Mullerian Inhibiting Substance, in vivo. Development, 124 (9):1799-807. Graves, J. A. 1998. Evolution of the mammalian Y chromosome and sex-determining genes. J Exp Zool, 281 (5):472-81.
    Griffiths, R. 1991. The isolation of conserved DNA sequences related to the human sex-determining region Y gene from the lesser black-backed gull (Larus fuscus). Proc Biol Sci, 244 (1310):123-8.
    Grosschedl, R., Giese, K., Pagel, J. 1994. HMG domain proteins: architectural elements in the assembly of nucleoprotein structures. Trends Genet, 10 (3):94-100.
    Gubbay, J., Collignon, J., Koopman, P., Capel, B., Economou, A., Munsterberg, A., Vivian, N., Goodfellow, P., Lovell-Badge, R. 1990. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature, 346 (6281):245-50. Gubbay, J., Vivian, N., Economou, A., Jackson, D., Goodfellow, P., Lovell-Badge, R. 1992.
    Inverted repeat structure of the Sry locus in mice. Proc Natl Acad Sci U S A, 89 (17):7953-7.
    Hacker, A., Capel, B., Goodfellow, P., Lovell-Badge, R. 1995. Expression of Sry, the mouse sex determining gene. Development, 121 (6):1603-14.
    Hanley, N. A., Hagan, D. M., Clement-Jones, M., Ball, S. G., Strachan, T., Salas-Cortes, L., McElreavey, K., Lindsay, S., Robson, S., Bullen, P. et al. 2000. SRY, SOX9, and DAX1 expression patterns during human sex determination and gonadal development. Mech Dev, 91 (1-2):403-7.
    Harley, V. R., Jackson, D. I., Hextall, P. J., Hawkins, J. R., Berkovitz, G. D., Sockanathan, S., Lovell-Badge, R., Goodfellow, P. N. 1992. DNA binding activity of recombinant SRY from normal males and XY females. Science, 255 (5043):453-6.
    Harley, V. R., Layfield, S., Mitchell, C. L., Forwood, J. K., John, A. P., Briggs, L. J., McDowall, S. G., Jans, D. A. 2003. Defective importin beta recognition and nuclear import of the sex-determining factor SRY are associated with XY sex-reversing mutations. Proc Natl Acad Sci U S A, 100 (12):7045-50.
    Harley, V. R., Lovell-Badge, R., Goodfellow, P. N. 1994. Definition of a consensus DNA binding site for SRY. Nucleic Acids Res, 22 (8):1500-1.
    Harley, V. R., Lovell-Badge, R., Goodfellow, P. N., Hextall, P. J. 1996. The HMG box of SRY is a calmodulin binding domain. FEBS Lett, 391 (1-2):24-8.
    Hatano, O., Takayama, K., Imai, T., Waterman, M. R., Takakusu, A., Omura, T., Morohashi, K. 1994. Sex-dependent expression of a transcription factor, Ad4BP, regulating steroidogenic P-450genes in the gonads during prenatal and postnatal rat development. Development, 120 (10):2787-97.
    Hossain, A., Saunders, G. F. 2001. The human sex-determining gene SRY is a direct target of WT1. J Biol Chem, 276 (20):16817-23.
    Hsu, S. Y., Kubo, M., Chun, S. Y., Haluska, F. G., Housman, D. E., Hsueh, A. J. 1995. Wilms' tumor protein WT1 as an ovarian transcription factor: decreases in expression during follicle development and repression of inhibin-alpha gene promoter. Mol Endocrinol, 9 (10):1356-66.
    Ikeda, Y., Shen, W. H., Ingraham, H. A., Parker, K. L. 1994. Developmental expression of mouse steroidogenic factor-1, an essential regulator of the steroid hydroxylases. Mol Endocrinol, 8 (5):654-62.
    Ingraham, H. A., Lala, D. S., Ikeda, Y., Luo, X., Shen, W. H., Nachtigal, M. W., Abbud, R., Nilson, J. H., Parker, K. L. 1994. The nuclear receptor steroidogenic factor 1 acts at multiple levels of the reproductive axis. Genes Dev, 8 (19):2302-12.
    Ishii, M., Tachiwana, T., Hoshino, A., Tsunekawa, N., Hiramatsu, R., Matoba, S., Kanai-Azuma, M., Kawakami, H., Kurohmaru, M., Kanai, Y. 2007. Potency of testicular somatic environment to support spermatogenesis in XX/Sry transgenic male mice. Development, 134 (3):449-54.
    Ito, M., Miyagishi, M., Murata, C., Kawasaki, H., Baba, T., Tachi, C., Taira, K. 2006. Down-regulation of endogenous Wt1 expression by Sry transgene in the murine embryonic mesonephros-derived M15 cell line. J Reprod Dev, 52 (3):415-27.
    Jacobs, P. A., Strong, J. A. 1959. A case of human intersexuality having a possible XXY sex-determining mechanism. Nature, 183 (4657):302-3.
    Jager, R. J., Anvret, M., Hall, K., Scherer, G. 1990. A human XY female with a frame shift mutation in the candidate testis-determining gene SRY. Nature, 348 (6300):452-4.
    Jantzen, H. M., Admon, A., Bell, S. P., Tjian, R. 1990. Nucleolar transcription factor hUBF contains a DNA-binding motif with homology to HMG proteins. Nature, 344 (6269):830-6.
    Jeske, Y. W., Bowles, J., Greenfield, A., Koopman, P. 1995. Expression of a linear Sry transcript in the mouse genital ridge. Nat Genet, 10 (4):480-2.
    Jeske, Y. W., Mishina, Y., Cohen, D. R., Behringer, R. R., Koopman, P. 1996. Analysis of the role of Amh and Fra1 in the Sry regulatory pathway. Mol Reprod Dev, 44 (2):153-8.
    Jordan, B. K., Mohammed, M., Ching, S. T., Delot, E., Chen, X. N., Dewing, P., Swain, A., Rao, P. N., Elejalde, B. R., Vilain, E. 2001. Up-regulation of WNT-4 signaling and dosage-sensitive sex reversal in humans. Am J Hum Genet, 68 (5):1102-9.
    Just, W., Rau, W., Vogel, W., Akhverdian, M., Fredga, K., Graves, J. A., Lyapunova, E. 1995. Absence of Sry in species of the vole Ellobius. Nat Genet, 11 (2):117-8.
    Kamachi, Y., Cheah, K. S., Kondoh, H. 1999. Mechanism of regulatory target selection by the SOX high-mobility-group domain proteins as revealed by comparison of SOX1/2/3 and SOX9.Mol Cell Biol, 19 (1):107-20.
    Kawabe, K., Shikayama, T., Tsuboi, H., Oka, S., Oba, K., Yanase, T., Nawata, H., Morohashi, K. 1999. Dax-1 as one of the target genes of Ad4BP/SF-1. Mol Endocrinol, 13 (8):1267-84.
    Kent, J., Wheatley, S. C., Andrews, J. E., Sinclair, A. H., Koopman, P. 1996. A male-specific role for SOX9 in vertebrate sex determination. Development, 122 (9):2813-22.
    Kim, Y., Kobayashi, A., Sekido, R., DiNapoli, L., Brennan, J., Chaboissier, M. C., Poulat, F., Behringer, R. R., Lovell-Badge, R., Capel, B. 2006. Fgf9 and Wnt4 act as antagonistic signals to regulate mammalian sex determination. PLoS Biol, 4 (6):e187.
    King, V., Goodfellow, P. N., Pearks Wilkerson, A. J., Johnson, W. E., O'Brien, S. J., Pecon-Slattery, J. 2007. Evolution of the male-determining gene SRY within the cat family Felidae. Genetics, 175 (4):1855-67.
    Kojima, Y., Hayashi, Y., Mizuno, K., Sasaki, S., Fukui, Y., Koopman, P., Morohashi, K. I., Kohri, K. 2007. Up-regulation of SOX9 in human sex-determining region on the Y chromosome (SRY)-negative XX males. Clin Endocrinol (Oxf).
    Koopman, P., Gubbay, J., Vivian, N., Goodfellow, P., Lovell-Badge, R. 1991. Male development of chromosomally female mice transgenic for Sry. Nature, 351 (6322):117-21.
    Koopman, P., Munsterberg, A., Capel, B., Vivian, N., Lovell-Badge, R. 1990. Expression of a candidate sex-determining gene during mouse testis differentiation. Nature, 348 (6300):450-2.
    Kreidberg, J. A., Sariola, H., Loring, J. M., Maeda, M., Pelletier, J., Housman, D., Jaenisch, R. 1993. WT-1 is required for early kidney development. Cell, 74 (4):679-91.
    Lau, Y. F., Zhang, J. 1998. Sry interactive proteins: implication for the mechanisms of sex determination. Cytogenet Cell Genet, 80 (1-4):128-32.
    Lefebvre, V., Dumitriu, B., Penzo-Mendez, A., Han, Y., Pallavi, B. 2007. Control of cell fate and differentiation by Sry-related high-mobility-group box (Sox) transcription factors. Int J Biochem Cell Biol, 39 (12):2195-214.
    Li, B., Phillips, N. B., Jancso-Radek, A., Ittah, V., Singh, R., Jones, D. N., Haas, E., Weiss, M. A. 2006a. SRY-directed DNA bending and human sex reversal: reassessment of a clinical mutation uncovers a global coupling between the HMG box and its tail. J Mol Biol, 360 (2):310-28.
    Li, Y., Oh, H. J., Lau, Y. F. 2006b. The poly(ADP-ribose) polymerase 1 interacts with Sry and modulates its biological functions. Mol Cell Endocrinol, 257-25835-46.
    Lu, W., Rawlings, N., Zhao, J., Wang, H. 2007. Amplification and application of the HMG box of bovine SRY gene for sex determination. Anim Reprod Sci, 100 (1-2):186-91.
    Luo, X., Ikeda, Y., Parker, K. L. 1994. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell, 77 (4):481-90.
    Maheswaran, S., Englert, C., Zheng, G., Lee, S. B., Wong, J., Harkin, D. P., Bean, J., Ezzell, R., Garvin, A. J., McCluskey, R. T. et al. 1998. Inhibition of cellular proliferation by the Wilms tumor suppressor WT1 requires association with the inducible chaperone Hsp70. Genes Dev, 12(8):1108-20.
    Marchal, J. A., Acosta, M. J., Bullejos, M., Diaz de la Guardia, R., Sanchez, A. 2008. Origin and spread of the SRY gene on the X and Y chromosomes of the rodent Microtus cabrerae: role of L1 elements. Genomics, 91 (2):142-51.
    Margarit, E., Guillen, A., Rebordosa, C., Vidal-Taboada, J., Sanchez, M., Ballesta, F., Oliva, R. 1998. Identification of conserved potentially regulatory sequences of the SRY gene from 10 different species of mammals. Biochem Biophys Res Commun, 245 (2):370-7.
    Marshall, O. J., Harley, V. R. 2001. Identification of an interaction between SOX9 and HSP70. FEBS Lett, 496 (2-3):75-80.
    McBride, D., Sang, H., Clinton, M. 1997. Expression of Sry-related genes in the developing genital ridge/mesonephros of the chick embryo. J Reprod Fertil, 109 (1):59-63.
    McElreavey, K., Vilain, E., Abbas, N., Herskowitz, I., Fellous, M. 1993. A regulatory cascade hypothesis for mammalian sex determination: SRY represses a negative regulator of male development. Proc Natl Acad Sci U S A, 90 (8):3368-72.
    McElreavey, K., Vilain, E., Barbaux, S., Fuqua, J. S., Fechner, P. Y., Souleyreau, N., Doco-Fenzy, M., Gabriel, R., Quereux, C., Fellous, M. et al. 1996. Loss of sequences 3' to the testis-determining gene, SRY, including the Y pseudoautosomal boundary associated with partial testicular determination. Proc Natl Acad Sci U S A, 93 (16):8590-4.
    McElreavey, K. D., Vilain, E., Boucekkine, C., Vidaud, M., Jaubert, F., Richaud, F., Fellous, M. 1992. XY sex reversal associated with a nonsense mutation in SRY. Genomics, 13 (3):838-40. McLaren, A. 1988. Somatic and germ-cell sex in mammals. Philos Trans R Soc Lond B Biol Sci, 322 (1208):3-9.
    Morais da Silva, S., Hacker, A., Harley, V., Goodfellow, P., Swain, A., Lovell-Badge, R. 1996. Sox9 expression during gonadal development implies a conserved role for the gene in testis differentiation in mammals and birds. Nat Genet, 14 (1):62-8.
    Mumm, S., Zucchi, I., Pilia, G. 1997. SOX3 gene maps near DXS984 in Xq27.1, within candidate regions for several X-linked disorders. Am J Med Genet, 72 (3):376-8.
    Muscatelli, F., Strom, T. M., Walker, A. P., Zanaria, E., Recan, D., Meindl, A., Bardoni, B., Guioli, S., Zehetner, G., Rabl, W. et al. 1994. Mutations in the DAX-1 gene give rise to both X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism. Nature, 372 (6507):672-6.
    Ng, K. W., Ridgway, P., Cohen, D. R., Tremethick, D. J. 1997a. The binding of a Fos/Jun heterodimer can completely disrupt the structure of a nucleosome. Embo J, 16 (8):2072-85.
    Ng, L. J., Wheatley, S., Muscat, G. E., Conway-Campbell, J., Bowles, J., Wright, E., Bell, D. M., Tam, P. P., Cheah, K. S., Koopman, P. 1997b. SOX9 binds DNA, activates transcription, and coexpresses with type II collagen during chondrogenesis in the mouse. Dev Biol, 183 (1):108-21.
    Nishiguchi, S., Wood, H., Kondoh, H., Lovell-Badge, R., Episkopou, V. 1998. Sox1 directlyregulates the gamma-crystallin genes and is essential for lens development in mice. Genes Dev, 12 (6):776-81.
    Numabe, H., Nagafuchi, S., Nakahori, Y., Tamura, T., Kiuchi, H., Namiki, M., Kohda, N., Fukushima, Y., Fuse, H., Kusano, M. et al. 1992. DNA analyses of XX and XX-hypospadiac males. Hum Genet, 90 (3):211-4.
    Oh, H. J., Lau, Y. F. 2006. KRAB: a partner for SRY action on chromatin. Mol Cell Endocrinol, 247 (1-2):47-52.
    Oosterwegel, M., van de Wetering, M., Dooijes, D., Klomp, L., Winoto, A., Georgopoulos, K., Meijlink, F., Clevers, H. 1991. Cloning of murine TCF-1, a T cell-specific transcription factor interacting with functional motifs in the CD3-epsilon and T cell receptor alpha enhancers. J Exp Med, 173 (5):1133-42.
    Palmer, M. S., Sinclair, A. H., Berta, P., Ellis, N. A., Goodfellow, P. N., Abbas, N. E., Fellous, M. 1989. Genetic evidence that ZFY is not the testis-determining factor. Nature, 342 (6252):937-9. Pamilo, P., O'Neill, R. J. 1997. Evolution of the Sry genes. Mol Biol Evol, 14 (1):49-55.
    Pannetier, M., Tilly, G., Kocer, A., Hudrisier, M., Renault, L., Chesnais, N., Costa, J., Le Provost, F., Vaiman, D., Vilotte, J. L. et al. 2006. Goat SRY induces testis development in XX transgenic mice. FEBS Lett, 580 (15):3715-20.
    Parker, K. L., Schimmer, B. P. 1998. Ahch and the feminine mystique. Nat Genet, 20 (4):318-9.
    Parma, P., Pailhoux, E., Cotinot, C. 1999. Reverse transcription-polymerase chain reaction analysis of genes involved in gonadal differentiation in pigs. Biol Reprod, 61 (3):741-8.
    Payen, E., Pailhoux, E., Abou Merhi, R., Gianquinto, L., Kirszenbaum, M., Locatelli, A., Cotinot, C. 1996. Characterization of ovine SRY transcript and developmental expression of genes involved in sexual differentiation. Int J Dev Biol, 40 (3):567-75.
    Pelletier, J., Bruening, W., Kashtan, C. E., Mauer, S. M., Manivel, J. C., Striegel, J. E., Houghton, D. C., Junien, C., Habib, R., Fouser, L. et al. 1991a. Germline mutations in the Wilms' tumor suppressor gene are associated with abnormal urogenital development in Denys-Drash syndrome. Cell, 67 (2):437-47.
    Pelletier, J., Schalling, M., Buckler, A. J., Rogers, A., Haber, D. A., Housman, D. 1991b. Expression of the Wilms' tumor gene WT1 in the murine urogenital system. Genes Dev, 5 (8):1345-56.
    Penzel, R., Oschwald, R., Chen, Y., Tacke, L., Grunz, H. 1997. Characterization and early embryonic expression of a neural specific transcription factor xSOX3 in Xenopus laevis. Int J Dev Biol, 41 (5):667-77.
    Pevny, L. H., Lovell-Badge, R. 1997. Sox genes find their feet. Curr Opin Genet Dev, 7 (3):338-44.
    Pilon, N., Daneau, I., Paradis, V., Hamel, F., Lussier, J. G., Viger, R. S., Silversides, D. W.
    2003. Porcine SRY promoter is a target for steroidogenic factor 1. Biol Reprod, 68 (4):1098-106. Polanco, J. C., Koopman, P. 2007. Sry and the hesitant beginnings of male development. Dev Biol, 302 (1):13-24.
    Pontiggia, A., Rimini, R., Harley, V. R., Goodfellow, P. N., Lovell-Badge, R., Bianchi, M. E. 1994. Sex-reversing mutations affect the architecture of SRY-DNA complexes. Embo J, 13 (24):6115-24.
    Poulat, F., Barbara, P. S., Desclozeaux, M., Soullier, S., Moniot, B., Bonneaud, N., Boizet, B., Berta, P. 1997. The human testis determining factor SRY binds a nuclear factor containing PDZ protein interaction domains. J Biol Chem, 272 (11):7167-72.
    Poulat, F., Girard, F., Chevron, M. P., Goze, C., Rebillard, X., Calas, B., Lamb, N., Berta, P. 1995. Nuclear localization of the testis determining gene product SRY. J Cell Biol, 128 (5):737-48.
    Preiss, S., Argentaro, A., Clayton, A., John, A., Jans, D. A., Ogata, T., Nagai, T., Barroso, I., Schafer, A. J., Harley, V. R. 2001. Compound effects of point mutations causing campomelic dysplasia/autosomal sex reversal upon SOX9 structure, nuclear transport, DNA binding, and transcriptional activation. J Biol Chem, 276 (30):27864-72.
    Prior, H. M., Walter, M. A. 1996. SOX genes: architects of development. Mol Med, 2 (4):405-12.
    Qin, Y., Kong, L. K., Poirier, C., Truong, C., Overbeek, P. A., Bishop, C. E. 2004. Long-range activation of Sox9 in Odd Sex (Ods) mice. Hum Mol Genet, 13 (12):1213-8.
    Rajender, S., Rajani, V., Gupta, N. J., Chakravarty, B., Singh, L., Thangaraj, K. 2006. SRY-negative 46,XX male with normal genitals, complete masculinization and infertility. Mol Hum Reprod, 12 (5):341-6.
    Rossi, P., Dolci, S., Albanesi, C., Grimaldi, P., Geremia, R. 1993. Direct evidence that the mouse sex-determining gene Sry is expressed in the somatic cells of male fetal gonads and in the germ cell line in the adult testis. Mol Reprod Dev, 34 (4):369-73.
    Salas-Cortes, L., Jaubert, F., Bono, M. R., Fellous, M., Rosemblatt, M. 2001. Expression of the human SRY protein during development in normal male gonadal and sex-reversed tissues. J Exp Zool, 290 (6):607-15.
    Schilham, M. W., Oosterwegel, M. A., Moerer, P., Ya, J., de Boer, P. A., van de Wetering, M., Verbeek, S., Lamers, W. H., Kruisbeek, A. M., Cumano, A. et al. 1996. Defects in cardiac outflow tract formation and pro-B-lymphocyte expansion in mice lacking Sox-4. Nature, 380 (6576):711-4.
    Shahid, M., Dhillon, V. S., Hussain, Z., Masa, J. F., Aslam, M., Raish, M., Ahmad, A., Khan, N. J., Prasad, S., Batra, S. et al. 2008. Analysis of the SRY gene in two sex-reversed XY sisters identifies two new novel point mutations in the high mobility group box domain. Fertil Steril.
    Shawlot, W., Behringer, R. R. 1995. Requirement for Lim1 in head-organizer function. Nature, 374 (6521):425-30.
    Shen, W. H., Moore, C. C., Ikeda, Y., Parker, K. L., Ingraham, H. A. 1994. Nuclear receptorsteroidogenic factor 1 regulates the mullerian inhibiting substance gene: a link to the sex determination cascade. Cell, 77 (5):651-61.
    Shimamura, R., Fraizer, G. C., Trapman, J., Lau Yf, C., Saunders, G. F. 1997. The Wilms' tumor gene WT1 can regulate genes involved in sex determination and differentiation: SRY, Mullerian-inhibiting substance, and the androgen receptor. Clin Cancer Res, 3 (12 Pt 2):2571-80.
    Sinclair, A. H., Berta, P., Palmer, M. S., Hawkins, J. R., Griffiths, B. L., Smith, M. J., Foster, J. W., Frischauf, A. M., Lovell-Badge, R., Goodfellow, P. N. 1990. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature, 346 (6281):240-4.
    Soullier, S., Hanni, C., Catzeflis, F., Berta, P., Laudet, V. 1998. Male sex determination in the spiny rat Tokudaia osimensis (Rodentia: Muridae) is not Sry dependent. Mamm Genome, 9 (7):590-2.
    Stevanovic, M., Lovell-Badge, R., Collignon, J., Goodfellow, P. N. 1993. SOX3 is an X-linked gene related to SRY. Hum Mol Genet, 2 (12):2013-8.
    Su, H., Lau, Y. F. 1993. Identification of the transcriptional unit, structural organization, and promoter sequence of the human sex-determining region Y (SRY) gene, using a reverse genetic approach. Am J Hum Genet, 52 (1):24-38.
    Sudbeck, P., Scherer, G. 1997. Two independent nuclear localization signals are present in the DNA-binding high-mobility group domains of SRY and SOX9. J Biol Chem, 272 (44):27848-52.
    Sumi, E., Iehara, N., Akiyama, H., Matsubara, T., Mima, A., Kanamori, H., Fukatsu, A., Salant, D. J., Kita, T., Arai, H. et al. 2007. SRY-related HMG box 9 regulates the expression of Col4a2 through transactivating its enhancer element in mesangial cells. Am J Pathol, 170 (6):1854-64.
    Swain, A., Narvaez, V., Burgoyne, P., Camerino, G., Lovell-Badge, R. 1998. Dax1 antagonizes Sry action in mammalian sex determination. Nature, 391 (6669):761-7.
    Swain, A., Zanaria, E., Hacker, A., Lovell-Badge, R., Camerino, G. 1996. Mouse Dax1 expression is consistent with a role in sex determination as well as in adrenal and hypothalamus function. Nat Genet, 12 (4):404-9.
    Sweitzer, T. D., Hanover, J. A. 1996. Calmodulin activates nuclear protein import: a link between signal transduction and nuclear transport. Proc Natl Acad Sci U S A, 93 (25):14574-9.
    Tajima, T., Nakae, J., Shinohara, N., Fujieda, K. 1994. A novel mutation localized in the 3' non-HMG box region of the SRY gene in 46,XY gonadal dysgenesis. Hum Mol Genet, 3 (7):1187-9.
    Tiersch, T. R., Mitchell, M. J., Wachtel, S. S. 1991. Studies on the phylogenetic conservation of the SRY gene. Hum Genet, 87 (5):571-3.
    Travis, A., Amsterdam, A., Belanger, C., Grosschedl, R. 1991. LEF-1, a gene encoding a lymphoid-specific protein with an HMG domain, regulates T-cell receptor alpha enhancer function [corrected]. Genes Dev, 5 (5):880-94.
    Turner, M. E., Martin, C., Martins, A. S., Dunmire, J., Farkas, J., Ely, D. L., Milsted, A. 2007. Genomic and expression analysis of multiple Sry loci from a single Rattus norvegicus Y chromosome. BMC Genet, 811.
    Uwanogho, D., Rex, M., Cartwright, E. J., Pearl, G., Healy, C., Scotting, P. J., Sharpe, P. T. 1995. Embryonic expression of the chicken Sox2, Sox3 and Sox11 genes suggests an interactive role in neuronal development. Mech Dev, 49 (1-2):23-36.
    Vainio, S., Heikkila, M., Kispert, A., Chin, N., McMahon, A. P. 1999. Female development in mammals is regulated by Wnt-4 signalling. Nature, 397 (6718):405-9.
    van de Wetering, M., Clevers, H. 1992. Sequence-specific interaction of the HMG box proteins TCF-1 and SRY occurs within the minor groove of a Watson-Crick double helix. Embo J, 11 (8):3039-44.
    van de Wetering, M., Oosterwegel, M., Dooijes, D., Clevers, H. 1991. Identification and cloning of TCF-1, a T lymphocyte-specific transcription factor containing a sequence-specific HMG box. Embo J, 10 (1):123-32.
    Veitia, R., Ion, A., Barbaux, S., Jobling, M. A., Souleyreau, N., Ennis, K., Ostrer, H., Tosi, M., Meo, T., Chibani, J. et al. 1997a. Mutations and sequence variants in the testis-determining region of the Y chromosome in individuals with a 46,XY female phenotype. Hum Genet, 99 (5):648-52.
    Veitia, R. A., Fellous, M., McElreavey, K. 1997b. Conservation of Y chromosome-specific sequences immediately 5' to the testis determining gene in primates. Gene, 199 (1-2):63-70.
    Vidal, V. P., Chaboissier, M. C., de Rooij, D. G., Schedl, A. 2001. Sox9 induces testis development in XX transgenic mice. Nat Genet, 28 (3):216-7.
    Vilain, E. 2002. Anomalies of human sexual development: clinical aspects and genetic analysis. Novartis Found Symp, 24443-53; discussion 53-6, 79-85, 253-7.
    Vilain, E., McElreavey, K., Jaubert, F., Raymond, J. P., Richaud, F., Fellous, M. 1992. Familial case with sequence variant in the testis-determining region associated with two sex phenotypes. Am J Hum Genet, 50 (5):1008-11.
    Wagner, T., Wirth, J., Meyer, J., Zabel, B., Held, M., Zimmer, J., Pasantes, J., Bricarelli, F. D., Keutel, J., Hustert, E. et al. 1994. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell, 79 (6):1111-20.
    Wallis, M. C., Waters, P. D., Delbridge, M. L., Kirby, P. J., Pask, A. J., Grutzner, F., Rens, W., Ferguson-Smith, M. A., Graves, J. A. 2007. Sex determination in platypus and echidna: autosomal location of SOX3 confirms the absence of SRY from monotremes. Chromosome Res, 15 (8):949-59.
    Waterman, M. L., Fischer, W. H., Jones, K. A. 1991. A thymus-specific member of the HMG protein family regulates the human T cell receptor C alpha enhancer. Genes Dev, 5 (4):656-69.
    Waters, P. D., Wallis, M. C., Marshall Graves, J. A. 2007. Mammalian sex--Origin and evolution of the Y chromosome and SRY. Semin Cell Dev Biol, 18 (3):389-400.
    Welshons, W. J., Russell, L. B. 1959. The Y-Chromosome as the Bearer of Male Determining Factors in the Mouse. Proc Natl Acad Sci U S A, 45 (4):560-6.
    Werner, M. H., Bianchi, M. E., Gronenborn, A. M., Clore, G. M. 1995a. NMR spectroscopic analysis of the DNA conformation induced by the human testis determining factor SRY. Biochemistry, 34 (37):11998-2004.
    Werner, M. H., Huth, J. R., Gronenborn, A. M., Clore, G. M. 1995b. Molecular basis of human 46X,Y sex reversal revealed from the three-dimensional solution structure of the human SRY-DNA complex. Cell, 81 (5):705-14.
    Whitfield, L. S., Lovell-Badge, R., Goodfellow, P. N. 1993. Rapid sequence evolution of the mammalian sex-determining gene SRY. Nature, 364 (6439):713-5.
    Wolffe, A. P. 1994. Architectural transcription factors. Science, 264 (5162):1100-1.
    Wright, E., Hargrave, M. R., Christiansen, J., Cooper, L., Kun, J., Evans, T., Gangadharan, U., Greenfield, A., Koopman, P. 1995. The Sry-related gene Sox9 is expressed during chondrogenesis in mouse embryos. Nat Genet, 9 (1):15-20.
    Wu, N., Lin, X. K., Liao, B., Du, W. H., Han, F. T., Zhao, J. H. 2008. [Effect of Sry silencing by siRNA on the expression of sex determining genes in mouse embryos]. Yi Chuan, 30 (2):195-202.
    Yu, R. N., Ito, M., Saunders, T. L., Camper, S. A., Jameson, J. L. 1998. Role of Ahch in gonadal development and gametogenesis. Nat Genet, 20 (4):353-7.
    Zanaria, E., Muscatelli, F., Bardoni, B., Strom, T. M., Guioli, S., Guo, W., Lalli, E., Moser, C., Walker, A. P., McCabe, E. R. et al. 1994. An unusual member of the nuclear hormone receptor superfamily responsible for X-linked adrenal hypoplasia congenita. Nature, 372 (6507):635-41.
    Zhou, G., Lefebvre, V., Zhang, Z., Eberspaecher, H., de Crombrugghe, B. 1998. Three high mobility group-like sequences within a 48-base pair enhancer of the Col2a1 gene are required for cartilage-specific expression in vivo. J Biol Chem, 273 (24):14989-97.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700