结直肠癌中EphB2的表达及其下调机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
EPHB2基因编码的蛋白EphB2是受体酪氨酸激酶家族的一员,表达于细胞膜,与相邻细胞表面的配体结合介导双向信号转导,在膜蛋白酶水解作用或内吞作用下受体、配体之间的结合被破坏,从而导致细胞间的排斥。早期研究发现EphB2在人类多数肿瘤(包括结直肠癌)中存在表达上调,能通过提升细胞迁移能力和促进血管生成,参与肿瘤的形成和发展。但新近研究却发现EphB2在结直肠腺瘤-癌过渡时期存在不同程度的表达下调,它与结直肠癌的发生、发展密切相关,主要通过与其配体结合介导细胞间排斥(区室化)抑制结直肠上皮细胞癌变及进展。
     结直肠癌中EphB2表达下调的原因还不清楚。目前,仅发现极少数结直肠癌中存在EPHB2基因的突变、杂合性丢失等遗传学改变。而关于表观遗传学改变也存在一定争议。因此有必要对结直肠癌中EphB2的表达和调控进行进一步的研究。
     在本研究中,我们采用Western印迹法检测了4株结肠癌细胞EphB2的表达,采用免疫组织化学和Real-time PCR技术检测了13例正常人直肠粘膜组织、30例结直肠癌及癌旁正常肠粘膜组织中EphB2蛋白和mRNA表达水平,证实结直肠癌中EphB2的表达存在不同程度的下调,其表达水平与肿瘤分化程度有关(P<0.05),分化越差,表达越低。采用甲基化特异性PCR技术检测了上述细胞和标本中EPHB2基因启动子区CpG岛甲基化状态,结果发现无一例存在甲基化。同时采用亚硫酸氢盐修饰后基因组测序技术在所有细胞和其中17例EphB2缺失表达的结直肠癌组织中验证了以上结果。
     由于转录调控是基因表达调节的重要环节,目前关于EPHB2这方面的研究报道较少。我们首先采用报告基因和荧光素酶检测系统对EPHB2基因启动子进行克隆、鉴定,确定核心启动子位于-425~+83区域内,并发现-1174~-970区域存在沉默子。生物信息学分析发现这两个区域分别存在转录因子Sp1的结合位点之一GC盒和转录因子c-Rel的结合位点。我们对这两个位点进行突变后发现,GC盒突变后启动子活性较突变前降低了15%左右(P>0.05);c-Rel结合位点突变后启动子活性较突变前升高了85%左右(P<0.01)。
     综上所述,结直肠癌中EphB2的表达无论在蛋白还是mRNA水平均存在不同程度的下调,其原因与基因启动子区CpG岛甲基化无关,而与转录调控有关。在结直肠癌中,可能是转录因子c-Rel活化后与沉默子结合,从而抑制了EPHB2基因的转录表达。以上的研究结果为阐明结直肠癌中EphB2表达下调机制提供了新的线索,也有希望为结直肠癌的基因和药物治疗提供新的靶点。
EphB2 receptor coded by EPHB2 gene is a member of receptor tyrosine kinase. They are located on the cell surface, and transduce bi-directional signals when binding with their ligands on adjacent cell surface. Being cleaved by transmembrane proteases or removed from the cell surface by trans-endocytosis results in cell-cell repulsion. EphB2 was found at high levels in diverse human tumor types, including colorectal cancer (CRC). Elevated expression has been proposed to promote tumorigenesis by modulating cell motility and angiogenesis. But recent studies have found most human CRCs lose expression of EphB2 at the adenoma-carcinoma transition. It represents a critical step in CRC progression. EphB2-mediated compartmentalization by binding with its ligand restricts the spreading of tumor cells.
     The mechanisms of EphB2 expression silencing in CRC remain uncharacterized. Genetic changes, such as point mutations and loss of heterozygosity, were found in a fraction of CRCs. There are conflicting data regarding epigenetic regulation of EPHB2 in CRCs. Anyway, a further research on the expression and its regulation is helpful.
     In this study, we examined the expression of EphB2 in four colon cancer cells, 13 normal rectal mucosas, 30 CRCs and matched normal colorectal mucosa samples by using western blot, immunohistochemistry or real-time PCR. We found that expression of EphB2 was silenced in most of the CRCs. A significant association (P<0.05) was found between EphB2 expression and histological differentiation. Tumors with negative EphB2 expression were more often poorly differentiated. Methylation status of promoter CpG island of EPHB2 in all tissues and 4 colon cancer cells were determined by methylation specific PCR, and showed a complete absence of methylation. These results were confirmed in 17 CRCs with negative expression of EphB2 and the four colon cancer cells by bisulfite genomic sequencing.
     For the importance of transcriptional regulation in gene expression but the lack of detailed experimental data in the human EPHB2 promoter, it promoted us to not only investigate the responsible regions in the 5’flanking region of the human EPHB2, but also the transcription factors associated with the human EPHB2 transcript expression. Transfection assay using a series of deletion constructs of the 5’-flanking region fused to the luciferase reporter gene revealed that a 508-bp (-425/+83) fragment are necessary for high transcriptional activity, and identified a 205-bp (-1174/-970) fragment with silencer activity. The computer analysis predicted the presence of a cis-element (GC-box) in promoter region for Sp1 and a cis-element in silencer region for c-Rel. Mutation of GC-box resulted in a decline of about 15% in EPHB2 promoter activity compared to wild type promoter activity (P>0.05). Mutation of c-Rel binding site resulted in a highly significant increase of about 85% in EPHB2 promoter activity compared to wild type promoter activity (P<0.01).
     Our data indicated that expression of EphB2 was silenced at different degree in most CRCs. The silencing occured at both transcriptional and protein levels, and was not associated with methylati4on of EPHB2 promoter CpG island, but with transcriptional regulation. We postulated that transcription of EPHB2 gene is regulated negatively by binding c-Rel transcription factor on the silencer, which results in the silencing of EphB2 in CRCs. These results provide a new clew to investigate the mechanisms of EphB2 silencing in CRC, as well as a new target for gene therapy and drug treatment of CRCs.
引文
[1] Drescher U. Eph family functions from an evolutionary perspective. Curr Opin Genet Dev 2002; 12(4):397-402.
    [2] Hafner C, Schmitz G, Meyer S, et al. Differential gene expression of Eph receptors and ephrins in benign human tissues and cancers. Clin Chem 2004; 50(3):490-9.
    [3] Hubbard SR, Miller WT. Receptor tyrosine kinases: mechanisms of activation and signaling. Curr Opin Cell Biol 2007; 19(2):117-23.
    [4] Arvanitis D, Davy A. Eph/ephrin signaling: networks. Genes Dev 2008; 22(4):416-29.
    [5] Kiyokawa E, Takai S, Tanaka M, et al. Overexpression of ERK, an EPH family receptor protein tyrosine kinase, in various human tumors. Cancer Res 1994; 54(14): 3645-50.
    [6] Liu W, Ahmad SA, Jung YD, et al. Coexpression of ephrin-Bs and their receptors in colon carcinoma. Cancer 2002; 94(4):934-9.
    [7] Mao W, Luis E, Ross S, et al. EphB2 as a therapeutic antibody drug target for the treatment of colorectal cancer. Cancer Res 2004; 64(3):781-8.
    [8] Guo DL, Zhang J, Yuen ST, et al. Reduced expression of EphB2 that parallels invasion and metastasis in colorectal tumours. Carcinogenesis 2006; 27(3):454-64.
    [9] Kaidi A, Moorghen M, Williams AC, et al. Is the downregulation of EphB2 receptor expression during colorectal tumorigenesis due to hypoxia? Gut 2007; 56(11):1637-8.
    [10] Batlle E, Bacani J, Begthel H, et al. EphB receptor activity suppresses colorectal cancer progression. Nature 2005; 435(7045):1126-30.
    [11] Jubb A, Zhong, F, Bheddah, S, et al. EphB2 is a prognostic factor in colorectal cancer. Clin Cancer Res 2005; 11(7):5181-5187.
    [12] Lugli A, Spichtin H, Maurer R, et al. EphB2 expression across 138 human tumor types in a tissue microarray: high levels of expression in gastrointestinal cancers. Clin Cancer Res 2005; 11(9):6450-6458.
    [13] Merlos-Suarez A, Batlle E. Eph-ephrin signalling in adult tissues and cancer. Curr Opin Cell Biol 2008.
    [14] Alazzouzi H, Davalos V, Kokko A, et al. Mechanisms of inactivation of the receptor tyrosine kinase EPHB2 in colorectal tumors. Cancer Res 2005; 65(22):10170-3.
    [15] Nosho K, Yamamoto H, Takahashi T, et al. Genetic and epigenetic profiling in early colorectal tumors and prediction of invasive potential in pT1 (early invasive) colorectal cancers. Carcinogenesis 2007; 28(6):1364-70.
    [16] Laiho P, Kokko A, Vanharanta S, et al. Serrated carcinomas form a subclass of colorectal cancer with distinct molecular basis. Oncogene 2007; 26(2):312-20.
    [17] Wu Q, Lind GE, Aasheim HC, et al. The EPH receptor Bs (EPHBs) promoters are unmethylated in colon and ovarian cancers. Epigenetics 2007; 2(4):237-43.
    [18] Ikegaki N, Tang XX, Liu XG, et al. Molecular characterization and chromosomal localization of DRT (EPHT3): a developmentally regulated human protein-tyrosine kinase gene of the EPH family. Hum Mol Genet 1995; 4(11):2033-45.
    [19] Tong J, Elowe S, Nash P, et al. Manipulation of EphB2 regulatory motifs and SH2 binding sites switches MAPK signaling and biological activity. J Biol Chem 2003; 278(8):6111-9.
    [20] Wu Q, Suo Z, Risberg B, et al. Expression of Ephb2 and Ephb4 in breast carcinoma. Pathol Oncol Res 2004; 10(1):26-33.
    [21] Deng X, Tannehill-Gregg SH, Nadella MV, et al. Parathyroid hormone-related protein and ezrin are up-regulated in human lung cancer bone metastases. Clin Exp Metastasis 2007; 24(2):107-19.
    [22] Narayan G, Bourdon V, Chaganti S, et al. Gene dosage alterations revealed by cDNA microarray analysis in cervical cancer: identification of candidate amplified and overexpressed genes. Genes Chromosom Cancer 2007; 46(4):373-84.
    [23] Batlle E, Henderson JT, Beghtel H, et al.Β-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell 2002; 111(2):251-63.
    [24] Clevers H, Batlle E. EphB/EphrinB receptors and Wnt signaling in colorectal cancer. Cancer Res 2006; 66(1):2-5.
    [25] Cortina C, Palomo-Ponce S, Iglesias M, et al. EphB-ephrin-B interactions suppress colorectal cancer progression by compartmentalizing tumor cells. Nat Genet 2007; 39(11):1376-83.
    [26] de Lau W, Barker N, Clevers H. WNT signaling in the normal intestine and colorectal cancer. Front Biosci 2007; 12:471-91.
    [27] Kuhnert F, Davis CR, Wang HT, et al. Essential requirement for Wnt signaling in proliferation of adult small intestine and colon revealed by adenoviral expression of Dickkopf-1. Proc Natl Acad Sci USA 2004; 101(1):266-271.
    [28] Wang LH, Kim SH, Lee JH, et al. Inactivation of SMAD4 tumor suppressor gene during gastric carcinoma progression. Clin Cancer Res 2007; 13(1):102-10.
    [29] Oba SM, Wang YJ, Song JP, et al. Genomic structure and loss of heterozygosity of EPHB2 in colorectal cancer. Cancer Lett 2001; 164(1):97-104.
    [30] Kokko A, Laiho P, Lehtonen R, et al. EPHB2 germline variants in patients with colorectal cancer or hyperplastic polyposis. BMC Cancer 2006; 6(6):145-50.
    [31] Ushijima T. Detection and interpretation of altered methylation patterns in cancer cells. Nat Rev Cancer 2005; 5(3):223-31.
    [32] Murai KK, Pasquale EB. 'Eph'ective signaling: forward, reverse and crosstalk. J Cell Sci 2003; 116(Pt 14):2823-32.
    [33] Knudsen S. Promoter2.0: for the recognition of PolII promoter sequences. Bioinformatics 1999; 15(5):356-61.
    [34] Heroult M, Schaffner F, Augustin HG. Eph receptor and ephrin ligand-mediated interactions during angiogenesis and tumor progression. Exp Cell Res 2006; 312(5):642-50.
    [35] Liu X, Clarke ND. Rationalization of gene regulation by a eukaryotic transcription factor: calculation of regulatory region occupancy from predicted binding affinities. J Mol Biol 2002; 323(1):1-8.
    [36] Li L, He S, Sun JM, et al. Gene regulation by Sp1 and Sp3. Biochem Cell Biol 2004; 82(4):460-71.
    [37] Vanden Berghe W, Dijsselbloem N, Vermeulen L, et al. Attenuation of mitogen- and stress-activated protein kinase-1-driven nuclear factor-κB gene expression by soy isoflavones does not require estrogenic activity. Cancer Res 2006; 66(9):4852-62.
    [38] Jurka J. Conserved eukaryotic transposable elements and the evolution of gene regulation. Cell Mol Life Sci 2008; 65(2):201-4.
    [39] Elloumi HZ, Holland SM. Complex regulation of human cathelicidin gene expression: novel splice variants and 5'UTR negative regulatory element. Mol Immunol 2008; 45(1):204-17.
    [40] Lindas AC, Tomkinson B. Characterization of the promoter of the gene encoding human tripeptidyl-peptidase II and identification of upstream silencer elements. Gene 2007; 393(1-2):62-9.
    [41] Mukhopadhyay NK, Ferdinand AS, Mukhopadhyay L, et al. Unraveling androgen receptor interactomes by an array-based method: discovery of proto-oncoprotein c-Rel as a negative regulator of androgen receptor. Exp Cell Res 2006; 312(19):3782-95.
    [42] Saaf AM, Halbleib JM, Chen X, et al. Parallels between global transcriptional programs of polarizing Caco-2 intestinal epithelial cells in vitro and gene expression programs in normal colon and colon cancer. Mol Biol Cell 2007; 18(11):4245-60.
    [43] Voboril R, Weberova-Voborilova J. Constitutive NF-κB activity in colorectal cancer cells: impact on radiation-induced NF-κB activity, radiosensitivity, and apoptosis. Neoplasma 2006; 53(6):518-23.
    [1] Hubbard SR, Miller WT. Receptor tyrosine kinases: mechanisms of activation and signaling. Curr Opin Cell Biol 2007; 19(2):117-23.
    [2] Hirai H, Maru Y, Hagiwara K, et al. A novel putative tyrosine kinase receptor encoded by the eph gene. Science 1987; 238(4834):1717-20.
    [3] Drescher U. Eph family functions from an evolutionary perspective. Curr Opin Genet Dev 2002; 12(4):397-402.
    [4] Hafner C, Schmitz G, Meyer S, et al. Differential gene expression of Eph receptors and ephrins in benign human tissues and cancers. Clin Chem 2004; 50(3):490-9.
    [5] Bruckner K, Pablo Labrador J, Scheiffele P, et al. EphrinB ligands recruit GRIP family PDZ adaptor proteins into raft membrane microdomains. Neuron 1999; 22(3):511-24.
    [6] Torres R, Firestein BL, Dong H, et al. PDZ proteins bind, cluster, and synaptically colocalize with Eph receptors and their ephrin ligands. Neuron 1998; 21(6):1453-63.
    [7] Zisch AH, Pazzagli C, Freeman AL, et al. Replacing two conserved tyrosines of the EphB2 receptor with glutamic acid prevents binding of SH2 domains without abrogating kinase activity and biological responses. Oncogene 2000; 19(2):177-87.
    [8] Wybenga-Groot LE, Baskin B, Ong SH, et al. Structural basis for autoinhibition of the Ephb2 receptor tyrosine kinase by the unphosphorylated juxtamembrane region. Cell 2001; 106(6):745-57.
    [9] Bruckner K, Pasquale EB, Klein R. Tyrosine phosphorylation of transmembrane ligands for Eph receptors. Science 1997; 275(5306):1640-3.
    [10] Kalo MS, Yu HH, Pasquale EB. In vivo tyrosine phosphorylation sites of activated ephrin-B1 and ephB2 from neural tissue. J Biol Chem 2001; 276(42):38940-8.
    [11] Hubbard SR, Till JH. Protein tyrosine kinase structure and function. Annu Rev Biochem 2000; 69:373-98.
    [12] Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2000; 103(2):211-25.
    [13] Huse M, Kuriyan J. The conformational plasticity of protein kinases. Cell 2002; 109(3):275-82.
    [14] Hubbard SR. Theme and variations: juxtamembrane regulation of receptor protein kinases. Mol Cell 2001; 8(3):481-2.
    [15] Murai KK, Pasquale EB. 'Eph'ective signaling: forward, reverse and crosstalk. J Cell Sci 2003; 116(Pt 14):2823-32.
    [16] Himanen JP, Nikolov DB. Eph receptors and ephrins. Int J Biochem Cell Biol 2003; 35(2):130-4.
    [17] Nobes CD, Hall A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 1995; 81(1):53-62.
    [18] Nobes CD, Hall A. Rho, rac and cdc42 GTPases: regulators of actin structures, cell adhesion and motility. Biochem Soc Trans 1995; 23(3):456-9.
    [19] Yang NY, Pasquale EB, Owen LB, et al. The EphB4 receptor-tyrosine kinase promotes the migration of melanoma cells through Rho-mediated actin cytoskeleton reorganization. J Biol Chem 2006; 281(43):32574-86.
    [20] Elowe S, Holland SJ, Kulkarni S, et al. Downregulation of the Ras-mitogen- activated protein kinase pathway by the EphB2 receptor tyrosine kinase is required for ephrin-induced neurite retraction. Mol Cell Biol 2001; 21(21):7429-41.
    [21] Tong J, Elowe S, Nash P, et al. Manipulation of EphB2 regulatory motifs and SH2 binding sites switches MAPK signaling and biological activity. J Biol Chem 2003; 278(8):6111-9.
    [22] Kim I, Ryu YS, Kwak HJ, et al. EphB ligand, ephrinB2, suppresses the VEGF- and angiopoietin 1-induced Ras/mitogen-activated protein kinase pathway in venous endothelial cells. FASEB J 2002; 16(9):1126-8.
    [23] Dail M, Richter M, Godement P, et al. Eph receptors inactivate R-Ras through different mechanisms to achieve cell repulsion. J Cell Sci 2006; 119(Pt 7):1244-54.
    [24] Riedl JA, Brandt DT, Batlle E, et al. Down-regulation of Rap1 activity is involved in ephrinB1-induced cell contraction. Biochem J 2005; 389(Pt 2):465-9.
    [25] Brambilla R, Schnapp A, Casagranda F, et al. Membrane-bound LERK2 ligand can signal through three different Eph-related receptor tyrosine kinases. EMBO J 1995; 14(13):3116-26.
    [26] Cowan CA, Henkemeyer M. The SH2/SH3 adaptor Grb4 transduces B-ephrin reverse signals. Nature 2001; 413(6852):174-9.
    [27] Lu Q, Sun EE, Klein RS, et al. Ephrin-B reverse signaling is mediated by a novelPDZ-RGS protein and selectively inhibits G protein-coupled chemoattraction. Cell 2001; 105(1):69-79.
    [28] Boulin T, Pocock R, Hobert O. A novel Eph receptor-interacting IgSF protein provides C. elegans motoneurons with midline guidepost function. Curr Biol 2006; 16(19):1871- 83.
    [29] Halford MM, Armes J, Buchert M, et al. Ryk-deficient mice exhibit craniofacial defects associated with perturbed Eph receptor crosstalk. Nat Genet 2000; 25(4):414-8.
    [30] Davy A, Bush JO, Soriano P. Inhibition of gap junction communication at ectopic Eph/ephrin boundaries underlies craniofrontonasal syndrome. PLoS Biol 2006; 4(10):e315.
    [31] Flanagan JG, Vanderhaeghen P. The ephrins and Eph receptors in neural development. Annu Rev Neurosci 1998; 21:309-45.
    [32] Kullander K, Klein R. Mechanisms and functions of Eph and ephrin signalling. Nat Rev Mol Cell Biol 2002; 3(7):475-86.
    [33] Halloran MC, Wolman MA. Repulsion or adhesion: receptors make the call. Curr Opin Cell Biol 2006; 18(5):533-40.
    [34] Himanen JP, Saha N, Nikolov DB. Cell-cell signaling via Eph receptors and ephrins. Curr Opin Cell Biol 2007; 19(5):534-42.
    [35] Takeda S, Igarashi T, Mori H, et al. Crystal structures of VAP1 reveal ADAMs' MDC domain architecture and its unique C-shaped scaffold. EMBO J 2006; 25(11):2388-96.
    [36] Tomita T, Tanaka S, Morohashi Y, et al. Presenilin-dependent intramembrane cleavage of ephrin-B1. Mol Neurodegener 2006; 1(6):2-10.
    [37] Egea J, Klein R. Bidirectional Eph-ephrin signaling during axon guidance. Trends Cell Biol 2007; 17(5):230-8.
    [38] Zimmer M, Palmer A, Kohler J, et al. EphB-ephrinB bi-directional endocytosis terminates adhesion allowing contact mediated repulsion. Nat Cell Biol 2003; 5(10):869-78.
    [39] Marston DJ, Dickinson S, Nobes CD. Rac-dependent trans-endocytosis of ephrinBs regulates Eph-ephrin contact repulsion. Nat Cell Biol 2003; 5(10):879-88.
    [40] Lauterbach J, Klein R. Release of full-length EphB2 receptors from hippocampal neurons to cocultured glial cells. J Neurosci 2006; 26(45):11575-81.
    [41] Salvucci O, de la Luz Sierra M, Martina JA, et al. EphB2 and EphB4 receptors forward signaling promotes SDF-1-induced endothelial cell chemotaxis and branching remodeling. Blood 2006; 108(9):2914-22.
    [42] de Saint-Vis B, Bouchet C, Gautier G, et al. Human dendritic cells express neuronal Eph receptor tyrosine kinases: role of EphA2 in regulating adhesion to fibronectin. Blood 2003; 102(13):4431-40.
    [43] Prevost N, Woulfe DS, Jiang H, et al. Eph kinases and ephrins support thrombus growth and stability by regulating integrin outside-in signaling in platelets. Proc Natl Acad Sci USA 2005; 102(28):9820-5.
    [44] Prevost N, Woulfe DS, Tognolini M, et al. Signaling by ephrinB1 and Eph kinases in platelets promotes Rap1 activation, platelet adhesion, and aggregation via effector pathways that do not require phosphorylation of ephrinB1. Blood 2004; 103(4):1348-55.
    [45] Maulik G, Shrikhande A, Kijima T, et al. Role of the hepatocyte growth factor receptor, c-Met, in oncogenesis and potential for therapeutic inhibition. Cytokine Growth Factor Rev 2002; 13(1):41-59.
    [46] Hynes RO. A reevaluation of integrins as regulators of angiogenesis. Nat Med 2002; 8(9):918-21.
    [47] Mellitzer G, Xu Q, Wilkinson DG. Control of cell behaviour by signalling through Eph receptors and ephrins. Curr Opin Neurobiol 2000; 10(3):400-8.
    [48] Mellitzer G, Xu Q, Wilkinson DG. Eph receptors and ephrins restrict cell intermingling and communication. Nature 1999; 400(6739):77-81.
    [49] Xu Q, Mellitzer G, Robinson V, et al. In vivo cell sorting in complementary segmental domains mediated by Eph receptors and ephrins. Nature 1999; 399(6733): 267-71.
    [50] Xu Q, Wilkinson DG. Eph-related receptors and their ligands: mediators of contact dependent cell interactions. J Mol Med 1997; 75(8):576-86.
    [51] Poliakov A, Cotrina M, Wilkinson DG. Diverse roles of eph receptors and ephrins in the regulation of cell migration and tissue assembly. Dev Cell 2004; 7(4):465-80.
    [52] Cortina C, Palomo-Ponce S, Iglesias M, et al. EphB-ephrin-B interactions suppress colorectal cancer progression by compartmentalizing tumor cells. Nat Genet 2007; 39(11):1376-83.
    [53] Barker N, van Es JH, Kuipers J, et al. Identification of stem cells in small intestine andcolon by marker gene Lgr5. Nature 2007; 449(7165):1003-7.
    [54] van Es JH, Jay P, Gregorieff A, et al. Wnt signalling induces maturation of Paneth cells in intestinal crypts. Nat Cell Biol 2005; 7(4):381-6.
    [55] Pinto D, Clevers H. Wnt control of stem cells and differentiation in the intestinal epithelium. Exp Cell Res 2005; 306(2):357-63.
    [56] Gregorieff A, Clevers H. Wnt signaling in the intestinal epithelium: from endoderm to cancer. Genes Dev 2005; 19(8):877-90.
    [57] Kapoor A, Li HJ, Leiter AB. Intestinal development: the many faces of Wnt signaling. Gastroenterology 2007; 133(2):710-2.
    [58] Fevr T, Robine S, Louvard D, et al. Wnt/β-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells. Mol Cell Biol 2007; 27(21):7551-9.
    [59] Holmberg J, Genander M, Halford MM, et al. EphB receptors coordinate migration and proliferation in the intestinal stem cell niche. Cell 2006; 125(6):1151-63.
    [60] Batlle E, Henderson JT, Beghtel H, et al.β-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell 2002; 111(2):251-63.
    [61] de Lau W, Barker N, Clevers H. WNT signaling in the normal intestine and colorectal cancer. Front Biosci 2007; 12(1):471-91.
    [62] Clevers H, Batlle E. EphB/EphrinB receptors and Wnt signaling in colorectal cancer. Cancer Res 2006; 66(1):2-5.
    [63] Powell SM, Zilz N, Beazer-Barclay Y, et al. APC mutations occur early during colorectal tumorigenesis. Nature 1992; 359(6392):235-7.
    [64] Sparks AB, Morin PJ, Vogelstein B, et al. Mutational analysis of the APC/β-catenin /Tcf pathway in colorectal cancer. Cancer Res 1998; 58(6):1130-4.
    [65] Takaku K, Sonoshita M, Sasaki N, et al. Suppression of intestinal polyposis in Apc(delta 716) knockout mice by an additional mutation in the cytosolic phospholipase A(2) gene. J Biol Chem 2000; 275(44):34013-6.
    [66] Korinek V, Barker N, Moerer P, et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat Genet 1998; 19(4):379-83.
    [67] Pinto D, Gregorieff A, Begthel H, et al. Canonical Wnt signals are essential forhomeostasis of the intestinal epithelium. Genes Dev 2003; 17(14):1709-13.
    [68] Kuhnert F, Davis CR, Wang HT, et al. Essential requirement for Wnt signaling in proliferation of adult small intestine and colon revealed by adenoviral expression of Dickkopf-1. Proc Natl Acad Sci USA 2004; 101(1):266-71.
    [69] Sansom OJ, Reed KR, Hayes AJ, et al. Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes Dev 2004; 18(12):1385-90.
    [70] van de Wetering M, Sancho E, Verweij C, et al. Theβ-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 2002; 111(2):241-50.
    [71] Kuhnert F, Davis CR, Wang HT, et al. Essential requirement for Wnt signaling in proliferation of adult small intestine and colon revealed by adenoviral expression of Dickkopf-1. Proc Natl Acad Sci USA 2004; 101(1):266-271.
    [72] Batlle E, Bacani J, Begthel H, et al. EphB receptor activity suppresses colorectal cancer progression. Nature 2005; 435(7045):1126-30.
    [73] Ikegaki N, Tang XX, Liu XG, et al. Molecular characterization and chromosomal localization of DRT (EPHT3): a developmentally regulated human protein-tyrosine kinase gene of the EPH family. Hum Mol Genet 1995; 4(11):2033-45.
    [74] Wu Q, Suo Z, Risberg B, et al. Expression of Ephb2 and Ephb4 in breast carcinoma. Pathol Oncol Res 2004; 10(1):26-33.
    [75] Deng X, Tannehill-Gregg SH, Nadella MV, et al. Parathyroid hormone-related protein and ezrin are up-regulated in human lung cancer bone metastases. Clin Exp Metastasis 2007; 24(2):107-19.
    [76] Narayan G, Bourdon V, Chaganti S, et al. Gene dosage alterations revealed by cDNA microarray analysis in cervical cancer: identification of candidate amplified and overexpressed genes. Genes Chromosom Cancer 2007; 46(4):373-84.
    [77] Noren NK, Pasquale EB. Paradoxes of the EphB4 receptor in cancer. Cancer Res 2007; 67(9):3994-7.
    [78] Liu W, Ahmad SA, Jung YD, et al. Coexpression of ephrin-Bs and their receptors in colon carcinoma. Cancer 2002; 94(4):934-9.
    [79] Mao W, Luis E, Ross S, et al. EphB2 as a therapeutic antibody drug target for the treatment of colorectal cancer. Cancer Res 2004; 64(3):781-8.
    [80] Stephenson SA, Slomka S, Douglas EL, et al. Receptor protein tyrosine kinase EphB4is up-regulated in colon cancer. BMC Mol Biol 2001; 2(1):15-21.
    [81] Guo DL, Zhang J, Yuen ST, et al. Reduced expression of EphB2 that parallels invasion and metastasis in colorectal tumours. Carcinogenesis 2006; 27(3):454-64.
    [82] Kaidi A, Moorghen M, Williams AC, et al. Is the downregulation of EphB2 receptor expression during colorectal tumorigenesis due to hypoxia? Gut 2007; 56(11):1637-8.
    [83] Jubb A, Zhong, F, Bheddah, S, et al. EphB2 is a prognostic factor in colorectal cancer. Clin Cancer Res 2005; 11(7):5181-5187.
    [84] Lugli A, Spichtin H, Maurer R, et al. EphB2 expression across 138 human tumor types in a tissue microarray: high levels of expression in gastrointestinal cancers. Clin Cancer Res 2005; 11(9):6450-6458.
    [85] Huusko P, Ponciano-Jackson D, Wolf M, et al. Nonsense-mediated decay microarray analysis identifies mutations of EPHB2 in human prostate cancer. Nat Genet 2004; 36(9):979-83.
    [86] Murai K, Pasquale EB.‘Eph’ective signaling: forward, reverse and crosstalk. J Cell Sci 2004; 116(14): 2823-2832.
    [87] Batlle E, Bacani J, Begthel H, et al. EphB receptor activity suppresses colorectal cancer progression. Nature 2005; 435(7045):1126-30.
    [88] Merlos-Suarez A, Batlle E. Eph-ephrin signalling in adult tissues and cancer. Curr Opin Cell Biol 2008; 20(2):194-200.
    [89] Oba SM, Wang YJ, Song JP, et al. Genomic structure and loss of heterozygosity of EPHB2 in colorectal cancer. Cancer Lett 2001; 164(1):97-104.
    [90] Kokko A, Laiho P, Lehtonen R, et al. EPHB2 germline variants in patients with colorectal cancer or hyperplastic polyposis. BMC Cancer 2006; 6(6):145-50.
    [91] Alazzouzi H, Davalos V, Kokko A, et al. Mechanisms of inactivation of the receptor tyrosine kinase EPHB2 in colorectal tumors. Cancer Res 2005; 65(22):10170-3.
    [92] Laiho P, Kokko A, Vanharanta S, et al. Serrated carcinomas form a subclass of colorectal cancer with distinct molecular basis. Oncogene 2007; 26(2):312-20.
    [93] Smits KM, Schouten LJ, van Dijk BA, et al. Genetic and epigenetic alterations in the von hippel-lindau gene: the influence on renal cancer prognosis. Clin Cancer Res 2008; 14(3):782-7.
    [94] Hitchins MP, Lin VA, Buckle A, et al. Epigenetic inactivation of a cluster of genesflanking MLH1 in microsatellite-unstable colorectal cancer. Cancer Res 2007; 67(19):9107-16.
    [95] Ushijima T. Detection and interpretation of altered methylation patterns in cancer cells. Nat Rev Cancer 2005; 5(3):223-31.
    [96] Nosho K, Yamamoto H, Takahashi T, et al. Genetic and epigenetic profiling in early colorectal tumors and prediction of invasive potential in pT1 (early invasive) colorectal cancers. Carcinogenesis 2007; 28(6):1364-70.
    [97] Wu Q, Lind GE, Aasheim HC, et al. The EPH receptor Bs (EPHBs) promoters are unmethylated in colon and ovarian cancers. Epigenetics 2007; 2(4):237-43.
    [98] Davalos V, Dopeso H, Castano J, et al. EPHB4 and survival of colorectal cancer patients. Cancer Res 2006; 66(18):8943-8.
    1. Munemitsu S, Albert I, Souza B, et al. Regulation of intracellularβ-catenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein. Proc Natl Acad Sci USA 1995; 92(7):3046-50.
    2. Korinek V, Barker N, Morin PJ, et al. Constitutive transcriptional activation by aβ-catenin-Tcf complex in APC-/- colon carcinoma. Science 1997; 275(5307):1784-7.
    3. Morin PJ, Sparks AB, Korinek V, et al. Activation ofβ-catenin-Tcf signaling in colon cancer by mutations inβ-catenin or APC. Science 1997; 275(5307):1787-90.
    4. Kapoor A, Li HJ, Leiter AB. Intestinal development: the many faces of Wnt signaling. Gastroenterology 2007; 133(2):710-2.
    5. de Lau W, Barker N, Clevers H. WNT signaling in the normal intestine and colorectal cancer. Front Biosci 2007; 12(1):471-91.
    6. Kimelman D, Xu W.β-catenin destruction complex: insights and questions from a structural perspective. Oncogene 2006; 25(57):7482-91.
    7. Molenaar M, van de Wetering M, Oosterwegel M, et al. XTcf-3 transcription factor mediatesβ-catenin-induced axis formation in Xenopus embryos. Cell 1996; 86(3):391-9.
    8. Fodde R, Brabletz T. Wnt/β-catenin signaling in cancer stemness and malignant behavior. Curr Opin Cell Biol 2007; 19(2):150-8.
    9. Batlle E, Bacani J, Begthel H, et al. EphB receptor activity suppresses colorectal cancer progression. Nature 2005; 435(7045):1126-30.
    10. Clevers H, Batlle E. EphB/EphrinB receptors and Wnt signaling in colorectal cancer. Cancer Res 2006; 66(1):2-5.
    11. Alazzouzi H, Davalos V, Kokko A, et al. Mechanisms of inactivation of the receptor tyrosine kinase EPHB2 in colorectal tumors. Cancer Res 2005; 65(22):10170-3.
    12. Oba SM, Wang YJ, Song JP, et al. Genomic structure and loss of heterozygosity of EPHB2 in colorectal cancer. Cancer Lett 2001; 164(1):97-104.
    13. Guo DL, Zhang J, Yuen ST, et al. Reduced expression of EphB2 that parallels invasion and metastasis in colorectal tumours. Carcinogenesis 2006; 27(3):454-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700