1.白血病干细胞标志的研究 2.p53对GRO生物学作用的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:白血病干细胞(LSCs)是白血病发生和耐药、复发的重要原因,其具有自我更新能力。目前的研究表明LSCs存在于CD34+/CD38-/CD123+细胞群中,但LSCs的精确表面标记尚不清楚。LSCs通过粘附分子与骨髓基质相互作用可能会促进白血病细胞的自我更新失调和凋亡受阻,这可能是LSCs能够逃逸化疗的机制之一。因此研究骨髓微环境(niche)相关的细胞表面标记,有助于靶向LSCs治疗靶点的发现。本实验中我们研究粘附分子N-cadherin,Tie2和CD44在白血病干细胞中的表达及化疗对上述抗原表达富集的影响,探讨其是否为LSCs的潜在标志。
     研究方法:用流式细胞术检测63例急性髓系白血病(acute myeloid leukemia, AML)患者骨髓单个核细胞(BMMNCs)化疗前后N-cadherin、Tie2、CD44、CD34、CD38和CD123的表达,观察LSCs (CD34+/CD38-/CD123+细胞群)中N-cadherin, Tie2和CD44的表达情况。联合免疫表型和荧光原位杂交技术,对4例伴有t(8;21)移位患者的BMMNCs,分选纯化CD34+/CD38-/CD123+/N-cadherin+和CD34+/CD38-/CD123+/Tie2+细胞群和CD34+/CD38-/CD 123+/N-cadherin-和CD34+/CD38-/CD 123+/Tie2-细胞群,检测AML1/ETO的表达情况。实时定量PCR技术,对5例AML患者的BMMNCs,分选纯化CD34+/CD38-/CD123+/N-cadherin+和CD34+/CD38-/CD123+/Tie2+细胞群和CD34+/CD38-/CD123+/N-cadherin-和CD34+/CD38-/CD123+/Tie2-细胞群,检测耐药基因MDR1mRNA的表达水平情况。结果:①在AML患者BMMNCs中N-cadherin和Tie2表达阳性的LSCs比例在停化疗当天与化疗前比较无明显差异,在停化疗后第7天分别由0.17%、0.02%升高到0.6%、0.94%(P<0.05,P<0.01),而CD44阳性细胞的LSCs比例由17.28%降低到2.25%(P<0.05)(中位数);②在LSCs中,N-cadherin,Tie2和CD44表达阳性细胞比例在停化疗的第7天较化疗前分别升高了38.17(P=0.03)、210(P<0.01)、1.01(P=0.15)倍(中位数),提示N-cadherin+和Tie2+的LSCs细胞能抵抗化疗,可能是潜在的LSCs标志;③共表达N-cadherin和Tie2的LSC细胞群化疗后富集比例高于共表达CD44的LSCs细胞群,提示共表达CD44的LSCs细胞群可能比较成熟,而共表达N-cadherin和Tie2的LSCs细胞群可能是真正的LSC细胞群;④未缓解病例组中,共表达N-cadherin、Tie2和CD44的LSCs细胞群在治疗前和停化疗后第21天的比例明显高于缓解组病例,提示共表达N-cadherin、Tie2和CD44的LSCs细胞群可能是微量残留细胞,与预后不良有关;⑤细胞遗传学分组、CD56表达强弱分组及治疗前外周血白细胞计数分组显示共表达N-cadherin和Tie2的LSCs细胞群在预后不良组中的比例明显高于良好组,进一步提示N-cadherin+和Tie2+的LSCs与预后不良有关;⑥N-cadherin和Tie2在LSCs细胞群中的表达水平与临床骨髓涂片的幼稚细胞比例显著相关,提示检测共表达N-cadherin和Tie2的LSCs细胞群可作为临床评估预后及微量残留病的指标;⑦分选纯化的CD34+/CD38-/CD123+/N-cadherin+和CD34+/CD38-/CD123+/Tie2+细胞群,检测到AML1/ETO的融合信号分别是87.53%和92.18%,而分选纯化的CD34+/CD38-/CD123+/N-cadherin-和CD34+/CD38-/CD123+/Tie2-细胞群,检测到AML1/ETO的融合信号分别是72.36%和80.87%,提示AML1/ETO表达在干细胞水平,其恶性程度更高。⑧在分选纯化的CD34+/CD38-/CD123+/N-cadherin+细胞中检测到N-Cadherin mRNA的表达,而在CD34+/CD38-/CD123+/N-cadherin-细胞群中未检测到N-Cadherin mRNA的表达;在分选纯化的CD34+/CD38-/CD 123+/Tie2+和CD34+/CD38-/CD123+/Tie2-细胞群中,一位AML患者的标本检测到N-Cadherin mRNA表达,而另两位AML患者标本中未检测到N-Cadherin mRNA表达,提示部分患者LSCs中共表达N-Cadherin和Tie2;⑨分选纯化的CD34+/CD38-/CD123+/N-cadherin+和CD34+/CD38-/CD123+/Tie2+细胞群,检测到MDR1 mRNA,表达水平分别是8.16±1.07和4.18±3.93,而分选纯化的CD34+/CD38-/CD123+/N-cadherin-和CD34+/CD38-/CD123+/Tie2-细胞群,检测到MDR1mRNA,表达水平分别是0.06±0.06和0.46±0.49,进一步说明N-cadherin+和Tie2+的CD34+/CD38-/CD123+比N-cadherin-和Tie2-的CD34+/CD38-/CD123+对化疗更不敏感。
     结论:共表达粘附分子N-cadherin和Tie2的LSCs细胞群具有抵抗化疗的作用,能够通过化疗而富集,并表达AML1/ETO恶性分子和耐药基因MDR1,可以作为识别LSCs的潜在标志。
     研究目的:富含鸟嘌呤的寡核苷酸(G-rich oligonucletides, GRO)通过非反义途径,具有抑制肿瘤及白血病细胞生长和增殖的功能,诱导肿瘤细胞停滞于细胞周期的S期。GRO可以形成独特的G—四聚体的稳定折叠结构,可以与特异性核蛋白——核仁素结合。核仁素蛋白的表达水平反映细胞增殖状态,增殖旺盛的肿瘤细胞中核仁素蛋白表达水平高。有研究发现,细胞受到外来打击后,核仁素能与P53结合形成复合物。为研究GRO抗白血病细胞增殖的作用及机制,本实验探讨了GRO、核仁素和P53的相互作用,尤其是P53基因及其相关信号途径是否影响GRO的生物学作用。
     研究方法:设计GRO和其对照药物富含胞嘧啶的寡核苷酸(C-rich oligonucletides, CRO)。通过慢病毒载体将P53基因转入U937细胞系(缺失表达P53),分别用PBS、GRO及CRO处理U937细胞系、转染空载体和转染P53的U937细胞,从抑制增殖、促进细胞凋亡、诱导细胞周期停滞及对核仁素蛋白和周期蛋白的作用等方面检测P53基因对GRO药物作用的影响。
     研究结果:(1)GRO具有明显抑制细胞增殖,促进凋亡及诱导细胞周期停滞于S期的功能。(2)激光共聚焦结果显示:U937细胞中,GRO能与核仁素蛋白结合,可能是GRO发挥作用的机制。转染P53的U937细胞中, GRO的摄入减少。(3)转染P53后削弱GRO抑制细胞增殖、促进凋亡及诱导细胞周期停滞的作用。(4)GRO处理U937细胞24h后,CDK2蛋白表达水平增加,48h后CDK2蛋白表达水平降低,而GRO处理转染P53的U937细胞,细胞周期蛋白的表达出现滞后现象。
     研究结论:GRO可以抑制白血病细胞增殖、促进细胞凋亡及诱导细胞周期停滞于S期,而转染P53后,GRO摄入减少,其抑制增殖、促进细胞凋亡、诱导细胞周期停滞的生物学作用降低;GRO诱导细胞周期停滞的机制可能与CDK2有关,24h时CDK2表达增加,促进细胞进入S期,48h后CDK2表达降低使细胞停滞于S期。而P53的表达影响了细胞周期,细胞周期蛋白的表达出现滞后现象。本实验提示,P53与核仁素结合,影响了GRO的生物学作用,解释了GRO、P53、核仁素三者的相互关系,并对GRO的临床使用具有指导意义。
Objective:Leukemia stem cell (LSC) is the main cause of leukemogenesis, drug-resistance and relapse of leukemia. They have the potential of self-renewal. It has been recognized that LSCs reside within the CD34+/CD38-/CD123+ compartment. However, the pure population of LSCs in patients with AML has not been identified. The interaction mediated by adhesion molecules between LSCs and BM stromal cells played a role in the disturbed self-renewing and inhibited apoptosis of LSCs, which may be one of the mechanism of escape from chemotherapy. Therefore, to study the cell surface makers related to niche on LSCs is helpful for the potential target therapy in the future. In this study, expression of the three adhesion molecules, the N-cadherin, Tie2 and CD44 in the proportion of CD34+/CD38-/CD123+ LSCs from AML patients before and after chemotherapy were analyzed. Whether the N-cadherin, Tie2 and CD44 could be the potential markers for identification of LSCs were investigated.
     Methods:Bone marrow mononuclear cells (BMMNCs) from the 63 AML patients were obtained at different time points including the day before chemotherapy (at time of diagnosis, Pre), one day after the induction chemotherapy (Post-Day1), seven days after the induction chemotherapy (Post-Day7) and twenty one days after the induction chemotherapy (Post-Day 21), and analyzed by fluorescence activated cell sorting (FACS) for the expression of N-cadherin, Tie2, CD44, CD34, CD38 and CD123. And the proportions of N-cadherin, Tie2 and CD44 in LSCs (CD34+/CD38-/CD123+ cells compartment) were investigated. Combination with immunophenotyping and fluorescence in situ hybridization (FISH) analysis, N-cadherin and Tie2 positive CD34+/CD38-/CD123+ LSCs proportions of BM samples derived from 4 AML-M2 patients were isolated by FACS sorting for expression of AML1/ETO. N-cadherin and Tie2 positive CD34+/CD38-/CD123+ LSCs proportions of 5 AML patients were isolated by FACS sorting for expression of MDR1 mRNA by real-time PCR.
     Results:①In BMMNCs of AML patients, no obvious increase in the proportions of LSCs is occurred at Post-Day 1. With the subsequent effect of chemotherapy and the complete elimination of chemosensitive cells, the proportions of N-cadherin and Tie2 positive CD34+/CD38-/CD123+ LSCs increased from 0.17% and 0.02% to 0.6% and 0.94% at Post-Day 7, respectively (P<0.05, P<0.01), but the proportions of CD44 positive CD34+/CD38-/CD123+ LSCs decreased from 17.28% to 2.25%(P<0.05) (median);②In CD34+/CD38-/CD123+ LSCs, the fold of increase in the proportions of N-Cadherin, Tie2 and CD44 positive in CD34+/CD38-/CD123+ LSCs populations at Post-Day 7 could be clearly demonstrated as 38.17 (P=0.01),210 (P=0.03) and 1.01 (P=0.15), respectively. Results further illustrated that CD34+/CD38-/CD123+/N-Cadherin+ and CD34+/CD38-/CD123+/Tie2+ cells compartments were more resistant to chemotherapy than CD34+/CD38-/CD123+/CD44+ cells compartment, and the former two cells compartments have the properties of LSCs, they may be the true LSCs;③The enrichment capability of N-cadherin and Tie2 positive LSCs compartment were stronger than CD44 positive LSCs compartment, which indicated N-cadherin and Tie2 positive LSCs compartment may be the true LSCs;④In patients did not achieve CR (non-remission, NR) group, the proportions of CD34+/CD38-/CD123+/N-Cadherin+, CD34+/CD38-/CD123+/Tie2+ and CD34+/CD38-/CD123+/CD44+ cells compartments in BMMNCs showed a tendency to be higher than that in complete remission (CR) group at the time of diagnosis (P>0.05), which proposed that N-Cadherin, Tie2 and CD44 expression may serve as markers for MRD cells that may allow their identification for early detection of relapse;⑤At diagnosis, the proportions of N-Cadherin and Tie2 positive CD34+/CD38-/CD123+cells compartment were higher in cytogenetic unfavorable group, the white blood cell (WBC) count of more than 30×109/L and CD56 positive expression, which further proposed that N-Cadherin, Tie2 and CD44 expression may be associated with poor prognosis;⑥The proportions of N-Cadherin, Tie2 and CD44 positive CD34+/CD38-/CD123+ cells compartment were correlated with BM blast percentages at Post-Day 7, which proposed that N-Cadherin, Tie2 and CD44 co-expression may serve as markers for MRD cells that may allow their identification for early detection of relapse;⑦(87.75±6.01)%and (72.36±16.47)%AML1/ETO fusion signals were detected in the CD34+/CD38-/CD123+/N-cadherin+and CD34+/CD38-/CD123+/N-cadherin- LSCs populations, respectively. And (92.18±8.23)%and (80.87±16.45)%AML1/ETO fusion signals were detected in the CD34+/CD38-/CD123+/Tie2+ and CD34+/CD38-/CD123+/Tie2- LSCs populations, respectively, which suggesting that they might present at LSCs populations.⑧N-cadherin mRNA expression were detected in CD34+/CD38-/CD123+/N-Cadherin+ cells counterparts, and none in CD34+/CD38-/CD123+/N-Cadherin- cells counterparts, which would be as positive control. However, in 3 samples of Tie2 LSCs counterparts, N-cadherin mRNA expression was detected in both Tie2+ and Tie2- LSCs counterparts in 1 sample, but none in Tie2+ and Tie2- LSCs counterparts of another 2 samples. The results indicated that the expression of Tie2 and N-cadherin seems overlapped in some patients.⑨The relative quantity of MDR1 expression in N-cadherin+ and Tie2+ LSCs counterparts were higher than that of N-cadherin- and Tie2- LSCs counterparts(8.16±1.07 and 4.18±3.93 vs 0.06±0.06 and 0.46±0.49, respectively). These results could further confirm the finding that N-cadherin+ and Tie2+ LSCs counterparts are more resistant to chemotherapy than their negative LSCs counterparts.
     Conclusions:N-cadherin+ and Tie2+ expressed CD34+/CD38-/CD123+ LSCs populations could be less sensitive to chemotherapy and be enriched by chemoresistance. However, AML1/ETO and MDR1 were found in the N-cadherin+ and Tie2+ positive LSCs. It is suggested that N-Cadherin and Tie2 may be the potential markers of LSCs and also be the candidate therapeutic targets.
     Objective:G-rich oligonucleotides (GROs) have been demonstrated to inhibit proliferation and induce cell cycle arrest at S phase in tumor cell lines. The biological activity of GROs results from their binding to specific cellular proteins, nucleolin. Increases in nucleolin levels in unstressed cells led to activation of P53. It has been previously identified that activation of P53 could stimulate nucleolin-P53 complex formation under stress. GROs showed anti-proliferation activity through a non-antisense way, due to their stable G-quartets structure formation. This stable structure was found to interact with a specific cellular protein, nucleolin. Increases in nucleolin levels in unstressed cells led to activation of P53. And the biological activity of GROs results from their binding to nucleolin, as well as, nucleolin can interact with P53. The relationship among the effect of GRO, nucleolin and P53 is unknown yet. To investigate its mechanism of GRO, the effects of p53 on the biological function of GROs were studied.
     Methods:GROs and C-rich oligonucleotides (CROs) as control were performed to determine the function of GRO in leukemia cell lines. Western blot analysis was employed to identify the P53 protein expression in U937 cell lines, which have no P53 protein expression. HIV-based lentivector expression vector pCDH1-MCS1-EF1-copGFP containing full-length coding sequence (CDS) region of p53 was constructed and transfected to express p53 in U937 cell lines. Apoptosis assay by flow cytometry, cell cycle and MTT were performed to determine the function of GRO in U937 cell lines induced by the apoptotic stimuli, P53.
     Results:1) GRO was shown to have significant anti-proliferative activities, inducing apoptosis and cell cycle arrest at S phase in U937 cells (human monocytic leukemia cells) which have no P53 protein expression.2) By the laser scanning confocal microscope (LSCM) assay, we verify for the first time the co-localization between GRO and nucleolin inside U937 cells. However, P53 expression could cause the partial formation of nucleolin-P53 complexion by exposure to GRO.3) The effect of GRO was weakened in U937 cells with P53 expression.4) In U937 cells with GRO treatment, increased Cdk2 led the cells enter S phase. Then, Cdk2 began to decease that made the cells arrest in S phase. Expression of P53 in U937 cells affects the alteration of cell cycle and related regulation proteins.
     Conclusion:GRO was shown to have significant anti-proliferative activities, inducing apoptosis and cell cycle arrest at S phase in U937 cells. And in U937 cells with GRO treatment, increased Cdk2 led the cells enter S phase. Then, Cdk2 began to decease that resulted in the cells arrest in S phase. However, the effect of GRO was weakened in U937 cells with P53 expression, which may be related with the decreased intake of GRO because of the partial formation of nucleolin-P53 complexion.
引文
[1]R.T. Costello, F. Mallet, B. Gaugler, D. Sainty, C. Arnoulet, J.A. Gastaut, D. Olive, Human acute myeloid leukemia CD34+/CD38-progenitor cells have decreased sensitivity to chemotherapy and Fas-induced apoptosis, reduced immunogenicity, and impaired dendritic cell transformation capacities, Cancer Res 60 (2000) 4403-4411.
    [2]B.J. Huntly, D.G. Gilliland, Leukaemia stem cells and the evolution of cancer-stem-cell research, Nat Rev Cancer 5 (2005) 311-321.
    [3]D. Bonnet, J.E. Dick, Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell, Nat Med 3 (1997) 730-737.
    [4]T. Lapidot, C. Sirard, J. Vormoor, B. Murdoch, T. Hoang, J. Caceres-Cortes, M. Minden, B. Paterson, M.A. Caligiuri, J.E. Dick, A cell initiating human acute myeloid leukaemia after transplantation into SCID mice, Nature 367 (1994) 645-648.
    [5]I.H. Oh, A. Lau, C.J. Eaves, During ontogeny primitive (CD34(+)CD38(-)) hematopoietic cells show altered expression of a subset of genes associated with early cytokine and differentiation responses of their adult counterparts, Blood 96 (2000) 4160-4168.
    [6]D. Haase, M. Feuring-Buske, S. Konemann, C. Fonatsch, C. Troff, W. Verbeek, A. Pekrun, W. Hiddemann, B. Wormann, Evidence for malignant transformation in acute myeloid leukemia at the level of early hematopoietic stem cells by cytogenetic analysis of CD34+subpopulations, Blood 86 (1995)2906-2912.
    [7]C.T. Jordan, D. Upchurch, S.J. Szilvassy, M.L. Guzman, D.S. Howard, A.L. Pettigrew, T. Meyerrose, R. Rossi, B. Grimes, D.A. Rizzieri, S.M. Luger, G.L. Phillips, The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells, Leukemia 14 (2000) 1777-1784.
    [8]A. Blair, D.E. Hogge, L.E. Ailles, P.M. Lansdorp, H.J. Sutherland, Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo, Blood 89 (1997)3104-3112.
    [9]A. Blair, D.E. Hogge, H.J. Sutherland, Most acute myeloid leukemia progenitor cells with long-term proliferative ability in vitro and in vivo have the phenotype CD34(+)/CD71(-)/HLA-DR, Blood 92 (1998)4325-4335.
    [10]A. Blair, H.J. Sutherland, Primitive acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo lack surface expression of c-kit (CD117), Exp Hematol 28 (2000) 660-671.
    [11]R. Cairoli, A. Beghini, G. Grillo, G. Nadali, F. Elice, C.B. Ripamonti, P. Colapietro, M. Nichelatti, L. Pezzetti, M. Lunghi, A. Cuneo, A. Viola, F. Ferrara, M. Lazzarino, F. Rodeghiero, G. Pizzolo, L. Larizza, E. Morra, Prognostic impact of c-KIT mutations in core binding factor leukemias:an Italian retrospective study, Blood 107 (2006) 3463-3468.
    [12]T. Miyamoto, K. Nagafuji, K. Akashi, M. Harada, T. Kyo, T. Akashi, K. Takenaka, S. Mizuno, H. Gondo, T. Okamura, H. Dohy, Y. Niho, Persistence of multipotent progenitors expressing AML1/ETO transcripts in long-term remission patients with t(8;21) acute myelogenous leukemia, Blood 87 (1996) 4789-4796.
    [13]J. Wang, T. Hoshino, R.L. Redner, S. Kajigaya, J.M. Liu, ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1 complex, Proc Natl Acad Sci U S A 95 (1998) 10860-10865.
    [14]M. Yan, S.A. Burel, L.F. Peterson, E. Kanbe, H. Iwasaki, A. Boyapati, R. Hines, K. Akashi, D.E. Zhang, Deletion of an AML1-ETO C-terminal NcoR/SMRT-interacting region strongly induces leukemia development, Proc Natl Acad Sci U S A 101 (2004) 17186-17191.
    [15]T. Pabst, B.U. Mueller, N. Harakawa, C. Schoch, T. Haferlach, G. Behre, W. Hiddemann, D.E. Zhang, D.G. Tenen, AML1-ETO downregulates the granulocytic differentiation factor C/EBPalpha in t(8;21) myeloid leukemia, Nat Med 7 (2001) 444-451.
    [16]R.K. Vangala, M.S. Heiss-Neumann, J.S. Rangatia, S.M. Singh, C. Schoch, D.G. Tenen, W. Hiddemann, G. Behre, The myeloid master regulator transcription factor PU.1 is inactivated by AML1-ETO in t(8;21) myeloid leukemia, Blood 101 (2003) 270-277.
    [17]S.A. Burel, N. Harakawa, L. Zhou, T. Pabst, D.G. Tenen, D.E. Zhang, Dichotomy of AML1-ETO functions:growth arrest versus block of differentiation, Mol Cell Biol 21 (2001) 5577-5590.
    [18]N.A. Speck, D.G. Gilliland, Core-binding factors in haematopoiesis and leukaemia, Nat Rev Cancer 2 (2002)502-513.
    [19]L. Li, T. Xie, Stem cell niche:structure and function, Annu Rev Cell Dev Biol 21 (2005) 605-631.
    [20]T. Matsunaga, F. Fukai, S. Miura, Y. Nakane, T. Owaki, H. Kodama, M. Tanaka, T. Nagaya, R. Takimoto, T. Takayama, Y. Niitsu, Combination therapy of an anticancer drug with the FNIII14 peptide of fibronectin effectively overcomes cell adhesion-mediated drug resistance of acute myelogenous leukemia, Leukemia 22 (2008) 353-360.
    [21]L. Wang, J.E. Fortney, L.F. Gibson, Stromal cell protection of B-lineage acute lymphoblastic leukemic cells during chemotherapy requires active Akt, Leuk Res 28 (2004) 733-742.
    [22]A. Manabe, K.G. Murti, E. Coustan-Smith, M. Kumagai, F.G. Behm, S.C. Raimondi, D. Campana, Adhesion-dependent survival of normal and leukemic human B lymphoblasts on bone marrow stromal cells, Blood 83 (1994) 758-766.
    [23]L.F. Gibson, Survival of B lineage leukemic cells:signals from the bone marrow microenvironment, Leuk Lymphoma 43 (2002) 19-27.
    [24]A. Manabe, E. Coustan-Smith, F.G. Behm, S.C. Raimondi, D. Campana, Bone marrow-derived stromal cells prevent apoptotic cell death in B-lineage acute lymphoblastic leukemia, Blood 79 (1992) 2370-2377.
    [25]A. Peled, O. Kollet, T. Ponomaryov, I. Petit, S. Franitza, V. Grabovsky, M.M. Slav, A. Nagler, O. Lider, R. Alon, D. Zipori, T. Lapidot, The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells:role in transendothelial/stromal migration and engraftment of NOD/SCID mice, Blood 95 (2000) 3289-3296.
    [26]M. Konopleva, S. Konoplev, W. Hu, A.Y. Zaritskey, B.V. Afanasiev, M. Andreeff, Stromal cells prevent apoptosis of AML cells by up-regulation of anti-apoptotic proteins, Leukemia 16 (2002) 1713-1724.
    [27]S.M. Garrido, F.R. Appelbaum, C.L. Willman, D.E. Banker, Acute myeloid leukemia cells are protected from spontaneous and drug-induced apoptosis by direct contact with a human bone marrow stromal cell line (HS-5), Exp Hematol 29 (2001) 448-457.
    [28]T. Matsunaga, N. Takemoto, T. Sato, R. Takimoto, I. Tanaka, A. Fujimi, T. Akiyama, H. Kuroda, Y. Kawano, M. Kobune, J. Kato, Y. Hirayama, S. Sakamaki, K. Kohda, K. Miyake, Y. Niitsu, Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia, Nat Med 9 (2003) 1158-1165.
    [29]F.J. Giles, A. Keating, A.H. Goldstone, I. Avivi, C.L. Willman, H.M. Kantarjian, Acute myeloid leukemia, Hematology Am Soc Hematol Educ Program (2002) 73-110.
    [30]S. Puch, S. Armeanu, C. Kibler, K.R. Johnson, C.A. Muller, M.J. Wheelock, G. Klein, N-cadherin is developmentally regulated and functionally involved in early hematopoietic cell differentiation, J Cell Sci 114 (2001) 1567-1577.
    [31]W. Birchmeier, J. Behrens, Cadherin expression in carcinomas:role in the formation of cell junctions and the prevention of invasiveness, Biochim Biophys Acta 1198 (1994) 11-26.
    [32]G. Li, K. Satyamoorthy, M. Herlyn, N-cadherin-mediated intercellular interactions promote survival and migration of melanoma cells, Cancer Res 61 (2001) 3819-3825.
    [33]M. Ozawa, R. Kemler, Altered cell adhesion activity by pervanadate due to the dissociation of alpha-catenin from the E-cadherin.catenin complex, J Biol Chem 273 (1998) 6166-6170.
    [34]M. Watarai, H. Miwa, M. Shikami, K. Sugamura, M. Wakabayashi, A. Satoh, K. Tsuboi, A. Imamura, H. Mihara, Y. Katoh, K. Kita, M. Nitta, Expression of endothelial cell-associated molecules in AML cells, Leukemia 16 (2002) 112-119.
    [35]R. Riccioni, D. Diverio, G. Mariani, S. Buffolino, V. Riti, E. Saulle, E. Petrucci, M. Cedrone, F. Lo-Coco, R. Foa, C. Peschle, U. Testa, Expression of Tie-2 and other receptors for endothelial growth factors in acute myeloid leukemias is associated with monocytic features of leukemic blasts, Stem Cells 25 (2007) 1862-1871.
    [36]J. Cichy, E. Pure, The liberation of CD44, J Cell Biol 161 (2003) 839-843.
    [37]H. Ponta, L. Sherman, P.A. Herrlich, CD44:from adhesion molecules to signalling regulators, Nat Rev Mol Cell Biol 4 (2003) 33-45.
    [38]B. Lowenberg, J.R. Downing, A. Burnett, Acute myeloid leukemia, N Engl J Med 341 (1999) 1051-1062.
    [39]Y. Mi, Y. Xue, W. Yu, S. Liu, Y. Zhao, Q. Meng, S. Bian, J. Wang, Therapeutic experience of adult acute myeloid leukemia in a single institution of China and its relationship with chromosome karyotype, Leuk Lymphoma 49 (2008) 524-530.
    [40]K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods 25 (2001) 402-408.
    [41]M.J. Greenwood, M.D. Seftel, C. Richardson, D. Barbaric, M.J. Barnett, H. Bruyere, D.L. Forrest, D.E. Horsman, C. Smith, K. Song, H.J. Sutherland, C.L. Toze, T.J. Nevill, S.H. Nantel, D.E. Hogge, Leukocyte count as a predictor of death during remission induction in acute myeloid leukemia, Leuk Lymphoma 47 (2006) 1245-1252.
    [42]L. Jin, K.J. Hope, Q. Zhai, F. Smadja-Joffe, J.E. Dick, Targeting of CD44 eradicates human acute myeloid leukemic stem cells, Nat Med 12 (2006) 1167-1174.
    [43]A. Venditti, F. Buccisano, G. Del Poeta, L. Maurillo, A. Tamburini, C. Cox, A. Battaglia, G. Catalano, B. Del Moro, L. Cudillo, M. Postorino, M. Masi, S. Amadori, Level of minimal residual disease after consolidation therapy predicts outcome in acute myeloid leukemia, Blood 96 (2000) 3948-3952.
    [44]D. Fang, Y. Bao, X. Li, F. Liu, K. Cai, J. Gao, Q. Liao, Effects of Iron Deprivation on Multidrug Resistance of Leukemic K562 Cells, Chemotherapy 56 (2010) 9-16.
    [45]D. Traver, K. Akashi, I.L. Weissman, E. Lagasse, Mice defective in two apoptosis pathways in the myeloid lineage develop acute myeloblastic leukemia, Immunity 9 (1998) 47-57.
    [46]L. Klampfer, J. Zhang, A.O. Zelenetz, H. Uchida, S.D. Nimer, The AML1/ETO fusion protein activates transcription of BCL-2, Proc Natl Acad Sci U S A 93 (1996) 14059-14064.
    [47]B. Mehrotra, T.I. George, K. Kavanau, H. Avet-Loiseau, D. Moore,2nd, C.L. Willman, M.L. Slovak, S. Atwater, D.R. Head, M.G. Pallavicini, Cytogenetically aberrant cells in the stem cell compartment (CD34+lin-) in acute myeloid leukemia, Blood 86 (1995) 1139-1147.
    [48]T. Miyamoto, I.L. Weissman, K. Akashi, AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8;21 chromosomal translocation, Proc Natl Acad Sci U S A 97 (2000) 7521-7526.
    [49]J. Zhang, C. Niu, L. Ye, H. Huang, X. He, W.G. Tong, J. Ross, J. Haug, T. Johnson, J.Q. Feng, S. Harris, L.M. Wiedemann, Y. Mishina, L. Li, Identification of the haematopoietic stem cell niche and control of the niche size, Nature 425 (2003) 836-841.
    [50]F. Arai, A. Hirao, M. Ohmura, H. Sato, S. Matsuoka, K. Takubo, K. Ito, G.Y. Koh, T. Suda, Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche, Cell 118 (2004) 149-161.
    [51]K.A. Moore, I.R. Lemischka, "Tie-ing" down the hematopoietic niche, Cell 118 (2004) 139-140.
    [1]T.R. Schwartz, C.A. Vasta, T.L. Bauer, H. Parekh-Olmedo, E.B.Kmiec, G-rich oligonucleotides alter cell cycle progression and induce apoptosis specifically in OE19 esophageal tumor cells. Oligonucleotides 18 (2008) 51-63.
    [2]P.J. Bates, J.B. Kahlon, S.D. Thomas, J.O. Trent, D.M. Miller, Antiproliferative activity of G-rich oligonucleotides correlates with protein binding. J Biol Chem 274 (1999) 26369-26377.
    [3]P. Weerasinghe, G.E. Garcia, Q. Zhu, P. Yuan, L. Feng, L. Mao, N. Jing, Inhibition of Stat3 activation and tumor growth suppression of non-small cell lung cancer by G-quartet oligonucleotides. Int J Oncol 31(2007)129-136.
    [4]M.E. Gleave, B.P. Monia, Antisense therapy for cancer. Nat Rev Cancer 5 (2005) 468-479.
    [5]A.M. Gewirtz, D.L. Sokol, M.Z. Ratajczak, Nucleic acid therapeutics:state of the art and future prospects. Blood 92 (1998) 712-736.
    [6]V. Dapic, P.J. Bates, J.O. Trent, A. Rodger, S.D. Thomas, D.M. Miller, Antiproliferative activity of G-quartet-forming oligonucleotides with backbone and sugar modifications. Biochemistry 41 (2002) 3676-3685.
    [7]A. Tsolou, J.F. Passos, G. Nelson, Y. Arai, T. Zglinicki, ssDNA fragments induce cell senescence by telomere uncapping. Exp Gerontol 43 (2008) 892-899.
    [8]D.E. Gilbert, J. Feigon, Multistranded DNA structures. Curr Opin Struct Biol 9 (1999) 305-314.
    [9]W.W. Zhang, W.P. Zhang, P.B. Xie, M. Yin, H.T. Chen, L. Jing, Y.S. Zhang, L.R. Lou, S.D. Xia, Optical properties of nanocrystalline Y2O3:Eu depending on its odd structure. J Colloid Interface Sci 262 (2003) 588-593.
    [10]V. Dapic, V. Abdomerovic, R. Marrington, J. Peberdy, A. Rodger, J.O. Trent, P.J. Bates, Biophysical and biological properties of quadruplex oligodeoxyribonucleotides. Nucleic Acids Res 31 (2003) 2097-2107.
    [11]T.L. Burgess, E.F. Fisher, S.L. Ross, J.V. Bready, Y.X. Qian, L.A. Bayewitch, A.M. Cohen, C.J. Herrera, S.S. Hu, T.B. Kramer, et al., The antiproliferative activity of c-myb and c-myc antisense oligonucleotides in smooth muscle cells is caused by a nonantisense mechanism. Proc Natl Acad Sci U S A 92 (1995) 4051-4055.
    [12]L. Benimetskaya, M. Berton, A. Kolbanovsky, S. Benimetsky, C.A. Stein, Formation of a G-tetrad and higher order structures correlates with biological activity of the RelA (NF-kappaB p65)'antisense' oligodeoxynucleotide. Nucleic Acids Res 25 (1997) 2648-2656.
    [13]W. Wang, H.J. Chen, J. Sun, L. Benimetskaya, A. Schwartz, P. Cannon, C.A. Stein, L.E. Rabbani, A comparison of guanosine-quartet inhibitory effects versus cytidine homopolymer inhibitory effects on rat neointimal formation. Antisense Nucleic Acid Drug Dev 8 (1998) 227-236.
    [14]X. Xu, F. Hamhouyia, S.D. Thomas, T.J. Burke, A.C. Girvan, W.G. McGregor, J.O. Trent, D.M. Miller, P.J. Bates, Inhibition of DNA replication and induction of S phase cell cycle arrest by G-rich oligonucleotides. J Biol Chem 276 (2001) 43221-43230.
    [15]A. Goodchild, A. King, M.M. Gozar, T. Passioura, C. Tucker, L. Rivory, Cytotoxic G-rich oligodeoxynucleotides:putative protein targets and required sequence motif. Nucleic Acids Res 35 (2007) 4562-4572.
    [16]Y. Teng, A.C. Girvan, L.K. Casson, W.M. Pierce, Jr., M. Qian, S.D. Thomas, P.J. Bates, AS1411 alters the localization of a complex containing protein arginine methyltransferase 5 and nucleolin. Cancer Res 67 (2007) 10491-10500.
    [17]A.C. Girvan, Y. Teng, L.K. Casson, S.D. Thomas, S. Juliger, M.W. Ball, J.B. Klein, W.M. Pierce, Jr., S.S. Barve, P.J. Bates, AGRO100 inhibits activation of nuclear factor-kappaB (NF-kappaB) by forming a complex with NF-kappaB essential modulator (NEMO) and nucleolin. Mol Cancer Ther 5 (2006) 1790-1799.
    [18]H. Ginisty, H. Sicard, B. Roger, P. Bouvet, Structure and functions of nucleolin. J Cell Sci 112 (Pt 6) (1999)761-772.
    [19]J.S. Andersen, C.E. Lyon, A.H. Fox, A.K. Leung, Y.W. Lam, H. Steen, M. Mann, A.I. Lamond, Directed proteomic analysis of the human nucleolus. Curr Biol 12 (2002) 1-11.
    [20]Y. Mi, S.D. Thomas, X. Xu, L.K. Casson, D.M. Miller, P.J. Bates, Apoptosis in leukemia cells is accompanied by alterations in the levels and localization of nucleolin. J Biol Chem 278 (2003) 8572-8579.
    [21]Y. Otake, S. Soundararajan, T.K. Sengupta, E.A. Kio, J.C. Smith, M. Pineda-Roman, R.K. Stuart, E.K. Spicer, D.J. Fernandes, Overexpression of nucleolin in chronic lymphocytic leukemia cells induces stabilization of bcl2 mRNA. Blood 109 (2007) 3069-3075.
    [22]A. Saxena, C.J. Rorie, D. Dimitrova, Y. Daniely, J.A. Borowiec, Nucleolin inhibits Hdm2 by multiple pathways leading to p53 stabilization. Oncogene 25 (2006) 7274-7288.
    [23]Y. Daniely, D.D. Dimitrova, J.A. Borowiec, Stress-dependent nucleolin mobilization mediated by p53-nucleolin complex formation. Mol Cell Biol 22 (2002) 6014-6022.
    [24]G. Matlashewski, P. Lamb, D. Pim, J. Peacock, L. Crawford, S. Benchimol, Isolation and characterization of a human p53 cDNA clone:expression of the human p53 gene. EMBO J 3 (1984) 3257-3262.
    [25]M. Isobe, B.S. Emanuel, D. Givol, M. Oren, C.M. Croce, Localization of gene for human p53 tumour antigen to band 17p13. Nature 320 (1986) 84-85.
    [26]S.E. Kern, K.W. Kinzler, A. Bruskin, D. Jarosz, P. Friedman, C. Prives, B. Vogelstein, Identification of p53 as a sequence-specific DNA-binding protein. Science 252 (1991) 1708-1711.
    [27]M. Takagi, M.J. Absalon, K.G. McLure, M.B. Kastan, Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin. Cell 123 (2005) 49-63.
    [28]S. Heinrichs, W. Deppert, Apoptosis or growth arrest:modulation of the cellular response to p53 by proliferative signals. Oncogene 22 (2003) 555-571.
    [29]R.V. Sionov, Y. Haupt, The cellular response to p53:the decision between life and death. Oncogene 18 (1999) 6145-6157.
    [30]N. Albrechtsen, I. Dornreiter, F. Grosse, E. Kim, L. Wiesmuller, W. Deppert, Maintenance of genomic integrity by p53:complementary roles for activated and non-activated p53. Oncogene 18 (1999) 7706-7717.
    [31]B. Vogelstein, D. Lane, A.J. Levine, Surfing the p53 network. Nature 408 (2000) 307-310.
    [32]D.P. Guimaraes, P. Hainaut, TP53:a key gene in human cancer. Biochimie 84 (2002) 83-93.
    [33]M. Srivastava, H.B. Pollard, Molecular dissection of nucleolin's role in growth and cell proliferation: new insights. FASEB J 13 (1999) 1911-1922.
    [34]R. Tuteja, N. Tuteja, Nucleolin:a multifunctional major nucleolar phosphoprotein. Crit Rev Biochem Mol Biol 33 (1998) 407-436.
    1. Takeichi M. The cadherins:cell-cell adhesion molecules controlling animal morphogenesis. Development.1988; 102:639-655
    2. Duguay D, Foty RA, Steinberg MS. Cadherin-mediated cell adhesion and tissue segregation:qualitative and quantitative determinants. Dev Biol.2003;253(2):309-323
    3. Reiss K, Maretzky T, Ludwig A, Tousseyn T, de Strooper B, Hartmann D, Saftig P.ADAM 10 cleavage of N-cadherin and regulation of cell-cell adhesion and beta-catenin nuclear signalling.EMBO J.2005; 24(4):742-752.
    4. Luo Y, Ferreira-Cornwell M, Baldwin H, Kostetskii I, Lenox J, Lieberman M, Radice G. Rescuing the N-cadherin knockout by cardiac-specific expression of N- or E-cadherin. Development. 2001;128(4):459-469.
    5. Garcia-Castro MI, Vielmetter E, Bronner-Fraser M. N-Cadherin, a cell adhesion molecule involved in establishment of embryonic left-right asymmetry. Science.2000;288(5468):1047-1051.
    6. Tanaka H, Shan W, Phillips GR, Arndt K, Bozdagi O, Shapiro L, Huntley GW, Benson DL, Colman DR. Molecular modification of N-cadherin in response to synaptic activity. Neuron.2000;25(1):93-107.
    7. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, Ross J, Haug J, Johnson T, Feng JQ, Harris S, Wiedemann LM, Mishina Y, Li L. Identification of the haematopoietic stem cell niche and control of the niche size. Nature.2003;425(6960):836-841.
    8. Moore KA, Lemischka IR. Stem cells and their niches. Science.2006;311(5769):1880-1885.
    9. Carien M. Niessen. Tight Junctions/Adherens Junctions:Basic Structure and Function. Journal of Investigative Dermatology.2007; 127:2525-2532.
    10. Williams EJ, Williams G, Howell FV, Skaper SD, Walsh FS, Doherty P.Identification of an N-cadherin motif that can interact with the fibroblast growth factor receptor and is required for axonal growth. J Biol Chem.2001; 276(47):43879-43886.
    11. Rubinek T, Yu R, Hadani M, Barkai G, Nass D, Melmed S, Shimon I. The cell adhesion molecules N-cadherin and neural cell adhesion molecule regulate human growth hormone:a novel mechanism for regulating pituitary hormone secretion. J Clin Endocrinol Metab.2003; 88(8):3724-3730.
    12. Paik JH, Skoura A, Chae SS, Cowan AE, Han DK, Proia RL, Hla T. Sphingosine 1-phosphate receptor regulation of N-cadherin mediates vascular stabilization. Genes Dev.2004;18(19):2392-403.
    13. Derycke LD, Bracke ME. N-cadherin in the spotlight of cell-cell adhesion, differentiation, embryogenesis, invasion and signalling. Int J Dev Biol.2004; 48(5-6):463-476
    14. Haug JS, He XC, Grindley JC, Wunderlich JP, Gaudenz K, Ross JT, Paulson A, Wagner KP, Xie Y, Zhu R, Yin T, Perry JM, Hembree MJ, Redenbaugh EP, Radice GL, Seidel C, Li L. N-cadherin expression level distinguishes reserved versus primed states of hematopoietic stem cells.Cell Stem Cell.2008;2(4):367-79.
    15. Song X, Xie T. DE-cadherin-mediated cell adhesion is essential for maintaining somatic stem cells in the Drosophila ovary.Proc Natl Acad Sci U S A.2002;99(23):14813-8.
    16. Zhu J, Emerson SG.. A new bone to pick:osteoblasts and the haematopoietic stem-cell niche. Bioessays.2004;26(6):595-599
    17. Puch S, Armeanu S, Kibler C, Johnson KR, Muller CA, Wheelock MJ, Klein G. N-cadherin is developmentally regulated and functionally involved in early hematopoietic cell differentiation. J Cell Sci.2001; 114(8):1567-1577.
    18. Wilson A, Murphy MJ, Oskarsson T, Kaloulis K, Bettess MD, Oser GM, Pasche AC, Knabenhans C, Macdonald HR, Trumpp A. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev.2004;18(22):2747-2763.
    19. Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell. 2005 Jul 1;121(7):1109-1121.
    20. Luo Y, Kostetskii I, Radice GL. N-cadherin is not essential for limb mesenchymal chondrogenesis. Dev Dyn.2005;232(2):336-344.
    21. Radice GL, Morrison SJ. Lack of evidence that hematopoietic stem cells depend on N-cadherin-mediated adhesion to osteoblasts for their maintenance. Cell Stem Cell. 2007;1(2):204-217.
    22. Hooper AT, Butler J, Petit I, Rafii S. Does N-cadherin regulate interaction of hematopoietic stem cells with their niches? Cell Stem Cell.2007;1(2):127-129.
    23. Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K, Hintz L, Nusse R, Weissman IL. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature.2003;423(6938):409-414.
    24. Tuan RS. Cellular signaling in developmental chondrogenesis:N-cadherin, Wnts, and BMP-2. J Bone Joint Surg Am.2003;85-A Suppl 2:137-141.
    25. Charrasse S, Meriane M, Comunale F, Blangy A, Gauthier-Rouviere C. N-cadherin-dependent cell-cell contact regulates Rho GTPases and beta-catenin localization in mouse C2C12 myoblasts. J Cell Biol. 2002;158(5):953-965.
    26. Tsutsui J, Moriyama M, Arima N, Ohtsubo H, Tanaka H, Ozawa M. Expression of cadherin-catenin complexes in human leukemia cell lines. J Biochem.1996;120(5):1034-1039.
    27. Kawamura-Kodama K, Tsutsui J, Suzuki ST, Kanzaki T, Ozawa M.N-cadherin expressed on malignant T cell lymphoma cells is functional, and promotes heterotypic adhesion between the lymphoma cells and mesenchymal cells expressing N-cadherin. J Invest Dermatol.1999;112(1):62-66
    28. Matsuyoshi N, Toda K, Imamura S.N-cadherin expression in human adult T-cell leukemia cell line. Arch Dermatol Res.1998;290(4):223-225
    29. Jennifer M, Halbleib and W. James Nelson. Cadherins in development:cell adhesion, sorting, and tissue Morphogenesis. Genes & Dev.2006; 20:3199-3214.
    30. Zhang B, Groffen J, Heisterkamp N. Increased resistance to a farnesyltransferase inhibitor by N-cadherin expression in Bcr/Abl-P190 lymphoblastic leukemia cells. Leukemia.2007;21 (6):1189-97.
    1. Kondo M, Wagers AJ, Manz MG, Prohaska SS, Scherer DC, Beilhack GF, Shizuru JA, Weissman IL.. Biology of hematopoietic stem cells and progenitors:implications for clinical application[J]. Annu Rev Immunol.2003;21:759-806.
    2. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE. A cell initiating human acute myeloid leukemia after transplantation into SCID mice[J]. Nature;367(6464):645-8.
    3. Blair A, Hogge DE, Ailles LE, Lansdorp PM, Sutherland HJ. Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo[J]. Blood. 1997;89(9):3104-12.
    4. Blair A, Hogge DE, Sutherland HJ. Most acute myeloid leukemia progenitor cells with long-term proliferative ability in vitro and in vivo have the phenotype CD34(+)/CD71(-)/HLA-DR(-)[J]. Blood;92(11):4325-35.
    5. Hosen N, Park CY, Tatsumi N, Oji Y, Sugiyama H, Gramatzki M, Krensky AM, Weissman IL. CD96 is a leukemic stem cell-specific marker in human acute myeloid leukemia[J]. Proc Natl Acad Sci USA, 2007,104 (26):11008-11013.
    6. Scolnik MP, Morilla R, de Bracco MM, Catovsky D, Matutes E. CD34 and CD117 are over-expressed in AML and may be valuable to detect minimal residual disease[J]. Leuk Res;26(7):615-9.
    7. Jordan CT, Upchurch D, Szilvassy SJ, Guzman ML, Howard DS, Pettigrew AL, Meyerrose T, Rossi R, Grimes B, Rizzieri DA, Luger SM, Phillips GL. The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells[J].Leukemia.2000;14(10):1777-84
    8. van Rhenen A, van Dongen GA, Kelder A, Rombouts EJ, Feller N, Moshaver B, Stigter-van Walsum M, Zweegman S, Ossenkoppele GJ, Jan Schuurhuis G. The novel AML stem cell associated antigen CLL-1 aids in discrimination between normal and leukemic stem cells[J]. Blood,2007,110(7):7 2659-5666.
    9. van Rhenen A, Moshaver B, Kelder A, Feller N, Nieuwint AW, Zweegman S, Ossenkoppele GJ, Schuurhuis GJ. Aberrant marker expression patterns on the CD34+/CD38-stem cell compartment in acute myeloid leukemia allows to distinguish the malignant from the normal stem cell compartment both at diagnosis and in remission[J]. Leukemia,2007,21(8):1700-1707.
    10. Wang Y, Schulte BA, LaRue AC, Ogawa M, Zhou D. Total body irradiation selectively induces murine hematopoietic stem cell senescence[J]. Blood,2006,107(1):358-366.
    11. Narita M, Lowe SW. Senescence comes of age[J]. Nat Med,2005,11(9):920-922.
    12. Smith MR.Rituximab (monoclonal anti-CD20 antibody):mechanisms of action and resistance[J]. Oncogene,2003,22(47):7359-7368.
    13. Larson RA, Sievers EL, Stadtmauer EA, Lowenberg B, Estey EH, Dombret H, Theobald M, Voliotis D, Bennett JM, Richie M, Leopold LH, Berger MS, Sherman ML, Loken MR, van Dongen JJ, Bernstein ID, Appelbaum FR. Report of the efficacy and safety of Gemtuzumab Ozogamicin (Mylotarg) in patients with CD33-positive acute myeloid leukemia in first recurrence[J]. Cancer,2005, 104(7):1442-1452.
    14. Keating MJ, Flinn I, Jain V, Binet JL, Hillmen P, Byrd J, Albitar M, Brettman L, Santabarbara P, Wacker B, Rai KR. Therapeutic role of alemtuzumab (Campath-1H) in patients who have failed fludarabine:results of a large international study[J]. Blood,2002,99(10):3554-3561.
    15. Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE.Targeting of CD44 eradicates human acute myeloid leukemic stem cells[J]. Nature Med,2006,12(10):1167-1147.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700