脑缺血再灌注损伤神经保护策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,脑血管意外位居世界致死率排行榜的第二位。据我国卫生部统计数据,2009年脑血管病的城市死亡率为126.27/10万,占死亡人数的20.36%,农村为152.09/10万,占23.19%。意外幸存者的致残率也非常高。治疗的选择性小,风险高。对于缺血性脑血管意外,首要的是要恢复其血流供应,其后会发生脑缺血再灌注损伤。在脑缺血再灌注损伤进程的不同阶段起主导作用的可能有氧化损伤机制、免疫炎症机制、神经营养因子学说等,针对这些机制我们选用异丙酚、白介素1受体拮抗剂、PTD-BDNF,研究其对于脑缺血再灌注损伤后神经功能的保护作用,寻找合理的时间窗及神经保护因子组合。
     异丙酚(2,6-Diisopropylphenol,propofol)是一种静脉麻醉药,具有抗氧化作用。在本研究中用于SH-SY5Y神经细胞缺糖缺氧再给氧模型(oxygen glucosedeprivation,OGD)后48h的流式细胞仪检测显示:异丙酚用药组与模型组比较SH-SY5Y神经细胞存活数量较多,晚期凋亡和死亡细胞减少。在海马细胞的OGD模型也有同样的结果。海马细胞钙成像试验显示异丙酚可以使钙内流延迟出现3-4min。在SD大鼠的大脑中动脉阻断模型(Middle Cerebral Artery Occlusion,MCAO)中,对于脑缺血大鼠的死亡率,体重恢复及神经症状改善情况最佳的为中异丙酚组,先异丙酚组次之,后异丙酚的体重恢复及神经症状改善情况与模型组没有统计学差异。中异丙酚组可提高SD大鼠MCAO后对Morris水迷宫的立体空间学习和记忆的能力,先、后异丙酚组不能提高。在随后的实验中,中异丙酚可减少脑梗死体积,HE染色显示异丙酚减少神经元凋亡和坏死,免疫印迹结果显示可增强脑中突触素(synaptophysin,syn)的表达。总之,先、后异丙酚应用对神经细胞保护也有一定程度的作用,但效果不及中异丙酚组明显。
     白介素1受体拮抗剂(Interleukin-1receptor antagonist,IL-1RA)用于SH-SY5Y神经细胞OGD模型后48h的流式细胞仪检测显示:IL-1RA组与模型组比较SH-SY5Y神经细胞存活数量较多,晚期凋亡和死亡细胞减少,在海马细胞的OGD模型后也有同样结果。在不同时间点向细胞培养皿中加入IL-1RA均可以引起突触素的表达,增加GAP-43的表达。在MCAO模型,前IL-1RA组对MCAO大鼠死亡率改善不明显,中IL-1RA组可使死亡率较模型组明显降低,改善其体重恢复及神经症状,后IL-1RA组不仅不能降低死亡率,反而使其升高。。在对中IL-1RA组随后的实验中HE染色显示14天、21天后可以减少神经元凋亡和坏死,免疫组化和免疫印迹均显示可增强脑中突触素的表达。
     脑源性神经营养因子(brain-derived neurotrophic factor,BDNF)与HIV-1反式激活蛋白(trans-activator transcription,TAT)中的蛋白转导区(protein transduc tiondomain, PTD)相连成重组的PTD-BDNF,用于SH-SY5Y神经细胞OGD模型后48h的流式细胞仪检测显示:PTD-BDNF组与模型组比较SH-SY5Y神经细胞存活数量较多,凋亡细胞减少,在海马细胞的OGD模型后也有同样结果。在海马细胞的OGD模型后,PTD-BDNF组与模型组比较细胞状态较好,CCK-8实验显示不同浓度PTD-BDNF可促进OGD后海马细胞的存活,在1-100ng/ml范围内呈浓度依赖性。PTD-BDNF可以使海马细胞突触素的表达增高。在MCAO模型,中、后PTD-BDNF组可使死亡率较模型组明显降低,改善其体重恢复及神经症状,先PTD-BDNF组没有降低死亡率,体重改善与神经症状评分也不及中、后PTD-BDNF组明显。中后PTD-BDNF组可提高SD大鼠MCAO后对Morris水迷宫的立体空间学习和记忆的能力,在随后的实验中,中PTD-BDNF组可以在7天、14天时增加脑中Brdu细胞的数量。免疫印迹显示PTD-BDNF可增强脑中突触素的表达。
     联合应用不同因子组合实验中,在海马细胞免疫组化实验中,异丙酚联合IL-1RA组突触素表达不明显;异丙酚联合PTD-BDNF组、 PTD-BDNF联合IL-1RA组能明显增强突触素的表达。不同因子组合应用可增强GAP-43的表达。在MCAO大鼠模型中,不同因子组合死亡率、体重恢复及神经症状评分相对于单独应用有进一步的改善效果。
     本研究表明异丙酚、白介素1受体拮抗剂、PTD-BDNF单独应用均可在细胞的OGD模型,SD大鼠的MCAO模型中显示神经保护作用,时间窗的选择以缺血后再灌注前1小时加入神经保护因子的神经细胞保护作用较好。不同因子组合在动物实验中显示,三种因子的各个组合联用相比单独应用有进一步的改善的作用。本研究为神经保护因子应用时合理的时间窗选择,应用因子组合后对于神经细胞的保护作用提供了实验依据。
At present, the disease of cerebral vascular which can upset millions of familieshas a high death and teratogenic rate with scant therapies. The treatment of acutephase is limited to reperfusion with tissue-type plasminogen activator or catheter. Aleading role in a different phase of cerebral ischemia and reperfusion injury processmay be the following mechanisms of oxidative damage, immune and inflammatorymechanisms, neurotrophic factor doctrine and so on. Focus on these mechanisms, wechose propofol, interleukin-1receptor antagonist and the PTD-BDNF as theprotective factor of each mechanism in cerebral ischemia and reperfusion injury. Weassume this study to work out which one is the best in the combinations among thedifferent factors and different inject time.
     Propofol (2,6-Diisopropylphenol) is an intravenous anesthetic with the propertyof antioxidant. We confirm that propofol can increase the survival rate and reduce theapoptosis and death rate of SH-SY5Y cell after the oxygen glucose deprivation model(OGD) by flow cytometry analysis. The same consequence can be observed inhippocampal cell. Calcium imaging testes showed that propofol may delay theemergence of calcium influx for3-4min in Hippocampal cell. The SD rat middlecerebral artery occlusion model (MCAO) is regarded as the representative of cerebralischemia and reperfusion injury. We found that injecting propofol in the surgery canachieve the best protective effect compared with injecting propofol before the surgeryand after the surgery. Propofol injected in the surgery and before the surgery havepositive effects on the recovery of weight, the score of neurological symptoms andthree-dimensional space learning and memory ability of the Morris water maze. Propofol injected after the surgery compared with the model group have nostatistically significant. Propofol groups can decrease the infarct volume by HTTstaining, reduce neuronal apoptosis and necrosis by HE staining and enhance theexpression of brain synaptophysin. In a word, propofol protect nerve cells sufferingcerebral ischemia and reperfusion injury and injecting before reperfusion achieve thebest effcacy.
     Interleukin-1receptor antagonist (IL-1RA) can increase the survival rate andreduce the apoptosis and death rate of SH-SY5Y cell after the oxygen glucosedeprivation model (OGD) by flow cytometry analysis. The same consequence can beobserved in hippocampal cell. IL-1RA can cause an increase the expression ofsynaptophysin and GAP-43. We found that intravenous injecting IL-1RA havepositive effects on the significantly low of the mortality, the recovery of weight, thescore of neurological symptoms and three-dimensional space learning and memoryability of the Morris water maze. On the opposite, the other intravenous injectingways increase the death risk in MCAO even achieve75%and have no benefits oncerebral ischemia and reperfusion injury. IL-1RA increase three-dimensional space ofthe Morris water maze learning and memory capacity in the14days MCAO model; In14days and21days after MCAO surgery, IL-1RA shows a reduction of neuronsapoptosis and necrosis and the enhancement of healthy side brain synaptophysinexpression by HE staining.
     PTD-BDNF is the combination of Brain-derived neurotrophic factor (BDNF),and the protein transduction District (PTD) in HIV-1trans-activator protein (TAT).PTD-BDNF can increase the survival rate and reduce the apoptosis and death rate ofSH-SY5Y cell after the oxygen glucose deprivation model (OGD) by flowcytometry analysis. Different concentrations of CCK-8experiments showed that thePTD-of BDNF can promote the added value of the OGD hippocampal cells,concentration-dependent manner1-100ng/ml range. The PTD-of BDNF groupcompared with model group increase the survival of live cells and early apoptoticcells in hippocampal cell. PTD-BDNF can cause synaptophysin significantlyincreased, but the expression of GAP-43have no obvious increased. Intravenousinjecting PTD-BDNF in the surgery and after the surgery groups can reduce themortality, the body weight recovery and neurological symptoms. Intravenousinjecting PTD-BDNF before surgery can’t reach the same goal. PTD-BDNFincrease three-dimensional space of the Morris water maze learning and memory capacity in the7days MCAO model; In7days and14days after MCAO surgery,PTD-BDNF shows an addition of Brdu expression and the enhancement of brainsynaptophysin expression by Immunohistochemical staining.
     In the Combination of different factors experiments, propofol and thePTD-BDNF can significantly improve expression of synaptophysin the byimmunohistochemistry staining compared with the other combination. Only in thecombination of IL-1RA and PTD-BDNF in the surgery and after the surgery canobserve the increase the GAP-43expression. For body weight recovery andneurological symptom score, the combination of three factors in MCAO model canachieve the best results.
     This study shows that propofol, IL-1RA and PTD-BDNF can showneuroprotective effects and before reperfusion is the best choice of injecting time inrat MCAO model. Propofol and PTD-of BDNF, IL-1RA and the PTD-BDNF havethe additive effect using before the irrigation in the cell experiments. In animalexperiments, various combinations of the three factors compared to a solo applicationto have a more visible effect. In this study, the application of drug combinationsprovides the experimental basis for the neuroprotective in cerebral ischemia andreperfusion injury.
引文
[1] Lo E, Dalkara T, Moskowitz M. Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci.2003;4:399–415.
    [2] Kotani Y, Nakajima Y, Hasegawa T, et al. Propofol exerts greater neuroprotection with disodium Edentate(EDTA) than without it [J]. J Cereb Blood Flow Metab,2008,28:354–366.
    [3] Adembri C,Venturi L,Tani A,et al.Neuroprotective effects of propofol in models of cerebral ischemia: inhibitionof mitochondrial swelling as a possible mechanism[J]. Anesthesiology,2006,104:80–89.
    [4] Arcadi FA, Rapisarda A, De Luca R, et al. Effect of2,6-diisopropylphenolon thedelayed hippocampal cell loss following transient forebrainischemia in the gerbil. Life Sci,1996,58:961–970.
    [5] Zhu SM, Xiong XX, Zheng YY,et al. Propofol Inhibits Aquaporin4Expression Through a Protein KinaseC–Dependent Pathway in an Astrocyte Model of Cerebral Ischemia/Reoxygenation[J]. Anesth Analg,2009,109(5):1493-1499.
    [6]Davies CA, Loddick SA, Toulmond S, et al. The progression and topographic dist ribution of interleukin-1βexpression after permanent middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab,1999,19(1):87-98.
    [7]Rothwell N, Alland S, Toulmond S. The role of interleukin-1in acute neurodegeneration and stroke:pathophysiological and therapeutic implications. J Clin Invest,1997,100(6):2648-2652.
    [8] Tuttolomondo A, Di Sciacca R, Di Raimondo D,et al. Neuron protection as a therapeutic target in acuteischemic stroke[J]. Curr Top Med Chem.2009,9(14):1317-1334.
    [9] Head BP, Patel P. Anesthetics and brain protection. Curr Opin Anaesthesiol[J].2007,20(5):395-399.
    [10]Longa EZ, Weinstein PR, Carlson S, et a1. Reversible middle cerebral artery occlusion without craniectomy inrats [J]. Stroke,1989,20(1):84-91.
    [11] Martini SR, Kent TA. Hyperglycemia in acute ischemic stroke: a vascular perspective. J Cereb Blood FlowMetab.2007;27:435–451.
    [12]Bang OY, Saver JL, Buck BH, Alger JR, Starkman S, Ovbiagele B, Kim D, Jahan R, Duckwiler GR, Yoon SR,Vinuela F, Liebeskind DS, UCLA Collateral Investigator. Impact of collateral flow on tissue fate in acuteischaemic stroke. J Neurol Neurosurg Psych.2008;79:625–629.所谓的神经保护
    [13]Fisher M. The ischemic penumbra: a new opportunity for neuroprotection. Cerebrovasc Dis.2006;(suppl2):64–70.应用
    [14]Hossman KA. Pathophysiology and therapy of experimental stroke. Cell Mol Neurobiol.2006;26:1055–1081.
    [15]Head BP, Patel P. Anesthetics and brain protection. Curr Opin Anaesthesiol [J].2007,20(5):395-399.
    [16]Tsai YC, Huang SJ,Lai YY, et al. Propofol does not reduce infarct volume in rats undergoing permanentmiddle cerebral artery occlusion[J]. Acta Anaesthesiol Sin,1994,32:99–104
    [17] Kawaguchi M, Furuya H, Patel PM. Neuroprotective effects of anesthetic agents[J]. J Anesth,2005,19:150–156.
    [18] K. Goslin, D.J. Schreyer, J.H. Skene, G. Banker, Development of neuronal polarity: GAP-43distinguishes axonal from dendritic growth cones, Nature336(1988)672–674.
    [19] R.P. Stroemer, T.A. Kent, C.E. Hulsebosch, Acute increase in expression of growth associated protein GAP-43following cortical ischemia in rat, Neurosci. Lett.162(1992)51–54.
    [20] A. Buffo, A.J. Holtmaat, T. Savio, J.S. Verbeek, J. Oberdick, A.B. Oestreicheer, W.H. Gipson, J. Verhaagen, F.Rossi, P. Strata, Targeted overexpression of the neurite growth-associated protein B-50/GAP-43in cerebellarPurkinje cells induces sprouting after axotomy but not axon regeneration into growth-permissive trans plants, J.Neurosci.17(1997)8778–8791.
    [21] Miyake K, Yamamoyo W, Tadokorom, et al. alternations in hippocampal GAP-43, BDNF, and L1followingsustained cerebral ischemia, Brain Res,2002,935(1-2):24-31.
    [22] Ujike H, Takaki M,Kodama M, Kuroda S, et al. Gene expression related to synaptogenesis, neuritogenesis,and map kinase in behavioral sensitization to psychostimulants. Ann N Y Acad Sci.2002;965:55–67.
    [23] Mullany PM,Lynch MA. Evidence for a role for synapto-physin in expression of long term potentiation in ratdentategyrus. Neuroreport,1998,9(11):2489
    [24] Bolay H, Gursoy-Ozdemir Y, SaraY et al. Persistent defect in transmitter release and synapsinPhosphorylation in cerebral cortex after transient moderate ischemic in jury.Stroke.2002,33(5):1369-1375.
    [25] Ishimaru H,Casamenti F,Ueda K,et al. Changes in Presynaptic Proteins,SNAP-25And synaptophysin,in the hippocamal CAI area in isehemic gerbils. Brain Res.2001,903(1-2):94-101.
    [26] Walmsley AR, Mir AK. Targeting the nogo-a signalling pathway to promote recovery following acute cnsinjury. Curr Pharm Des.2007;13:2470–2484
    [27] Ramic M, Emerick AJ, Bollnow MR, O’Brien TE, Tsai SY, Kartje GL. Axonal plasticity is associated withmotor recovery following amphetamine treatment combined with rehabilitation after brain injury in the adult rat.Brain Res.2006;1111:176–186.PTD的生物学作用
    [28]Segal RA.Seleetivity in neurotroPhin signaling:theme and variations. Annu Rev Neurosei,2003,26:299一330.
    [29] Zhou JP,Feng ZG,Yuan BL,et a1.Transduced PTD-BDNF fusion protein protects against beta amyloidpeptide—induced learning and memory deficits in mice[J].Brain Res,2008,1191:12—19.
    [30] Dolbeare F, Bromodeoxyuridine: a diagnostic tool in biology and medicine, part Ⅲ,profiferation in normal,injured and diseased tissue, growth factors, differentiation, DNA, replication sites and in situ hybridization[J],Histochem J,1996,28(8):531-575.
    [31] Higuchi Y, Hattori H, Kume T, et al. Increase in nitric oxide in the Hypo-ischemic neonatal rat brain andsuppression by7-nitroindazole and aminoguanidine [J]. Eur J Pharmacol,1998,342(1):47-49.
    [32] Cheng YD, Al-Khoury L, Zivin JA. Neuroprotection for ischemic stroke: two decades of success and failure.Neuro Rx2004;1(1):36-45
    [33] Rogalewski A,Schneider A,Ringelstein EB,et al.Toward a multimodal neuroprotective treatment ofstroke.Stroke2006;37(4):1129-1136
    [34] del Zoppo GJ. Clinical trials in acute stroke: why have they not been successful. Neurology1998;51(3Suppl3):S59-S61
    [35] Dyker AG, Lees KR. Duration of neuroprotective treatment for ischemic stroke. Stroke1998;29(2):535-542
    [36] Hickenbottom SL, Grotta J. Neuroprotective therapy. Semin Neurol1998;18(4):485-492
    [37] Gilman S. Pharmacological management of ischemic stroke: relevance to stem cell therapy. Exp Neurol2006;199:28–36.
    [38] Goldstein LB. Acute ischemic stroke treatment in2007. Circulation2007;116:1504–1514.
    [39] Fisher M, Cheung K, Howard G, Warach S. New pathways for evaluating potential acute stroke therapies. IntStroke J.2006;1:52–58.
    [40] Lo EH, Moskowitz MA, Jacobs TP. Exciting, radical, suicidal: how brain cells die after stroke. Stroke.2005;36:189–192.
    [1].余宗颐.神经内科学[M].北京:北京大学医学出版社,2003:235
    [2]. Gilman S. Pharmacological management of ischemic stroke: relevance to stem cell therapy. Exp Neurol2006;199:28–36.
    [3]. Goldstein LB. Acute ischemic stroke treatment in2007. Circulation2007;116:1504–1514.
    [4]. Gladstone DJ, Black SE, Hakim AM. Toward wisdom from failure:lessons from neuroprotective stroke trialsand new directions. Stroke.2002;33:2123–2136.
    [5]. Stroke Therapy Academic Industry Roundtable (Fisher M, Chair). Recommendations for standards regardingpreclinical neuroprotective and restorative drug development. Stroke.1999;30:2752–2758.
    [6]. Fisher M, Feuerstein GZ, Howells DW, Hurn PD, Kent TA, Savitz SI, Lo EH (for the STAIR group). Updateof the Stroke Therapy Academic Industry Roundtable preclinical recommendations. Stroke.2009;40:2244–2250.
    [7]. Belayev L, Liu Y, Zhao W, Busto R, Ginsberg MD. Human albumin therapy of acute ischemic stroke: markedneuroprotective efficacy at moderate doses and with a broad therapeutic window. Stroke2001;32:553–560.
    [8]. Remmers M, Schmidt-Kastner R, Belayev L, Lin B, Busto R, Ginsberg MD. Protein extravasation and cellularuptake afterhigh-dose human-albumin treatment of transient focal cerebral ischemia in rats. Brain Res1999;827:237–242.
    [9]. Zoellner H, H fler M, Beckmann R, et al. Serum albumin is a specific inhibitor of apoptosis in humanendothelial cells J Cell Sci1996;109:2571–2580
    [10]. Liu Y, Belayev L, Zhao W, Busto R, Belayev A, Ginsberg MD. Neuroprotective effect of treatment withhuman albumin in permanent focal cerebral ischemia: histopathology and cortical perfusion studies. Eur JPharmacol2001;428:193–201.
    [11]. Belayev L, Pinard E, Nallet H, et al. Albumin therapy of transient focal cerebral ischemia: in vivo analysis ofdynamic microvascular responses. Stroke2002;33:1077–1084.
    [12]. Rodriguez de Turco EB, Belayev L, Liu Y, et al. Systemic fatty acid responses to transient focal cerebralischemia: influence of neuroprotectant therapy with human albumin. J Neurochem2002;83:515–524.
    [13]. Ghitescu L, Fixman A, Simionescu M, Simionescu N. Specific binding sites for albumin restricted toplasmalemmal vesicles of continuous capillary endothelium: receptor-mediated transcytosis. J Cell Biol1986;102:1304–1311.
    [14]. Tang J, Li YJ, Mu J, Li Q, Yang DY, Xie P. Albumin ameliorates tissue plasminogen activator-mediatedblood-brain barrier permeability and ischemic injury in rats. Neurol Res2009;31:189–194.
    [15]. Ammit AJ, O’Neill C. Studies of the nature of the binding by albumin of platelet-activating factor releasedfrom cells. J Biol Chem1997;272:18772–18778.
    [16]. Grigoriadis G, Stewart AG. Albumin inhibits platelet-activating factor (PAF)-induced responses in plateletsand macrophages: implications for the biologically active form of PAF. Br J Pharmacol1992;107:73–77.
    [17]. Zalewski A, Macphee CH. Role of lipoprotein-associated phospholipase A2in atherosclerosis: biology,epidemiology,and possible therapeutic target. Arterioscler Thromb Vas Biol2005;25:923–931.
    [18]. Ginsberg MD, Hill MD, Palesch YY, Ryckborst KJ, Tamariz D. A dose-escalation and safety study ofalbumin therapy for acute ischemic stroke-I: Physiological responses and safety results.Stroke2006;37:2100–2106.
    [19]. Jacobs SE, Hunt R, Tarnow-Mordi WO, Inder TE, Davis PG. Cooling for newborns with hypoxic ischaemicencephalopathy. Cochrane Database of Systematic Reviews2007, Issue4. Article number: CD003311.doi:10.1002/14651858.CD003311.pub2
    [20]. Erecinska M, Thoresen M, Silver IA. Effects of hypothermia on energy metabolism in mammalian centralnervous system. J Cereb Blood Flow Metab2003;23:513–530.
    [21]. Polderman KH. Mechanisms of action, physiological effects, and complications of hypothermia. Crit CareMed2009:37(suppl):S186–S202.
    [22]. Yang D, Guo S, Zhang T, et al. Hypothermia attenuates ischemia/reperfusion-induced endothelial cellapoptosis via alterations in apoptotic pathways and JNK signaling. FEBS Lett2009;583:2500–2506.
    [23]. Liu L, Yenari MA. Therapeutic hypothermia: neuroprotective mechanisms. Front Biosci2007;12:816–825.
    [24]. Busto R, Globus MY, Dietrich WD, Martinez E, Veldes I, Ginsberg MD. Effect of mild hypothermia onischemia-induced release of neurotransmitters and free fatty acids in rat brain. Stroke1989;20:904–910.
    [25]. Inamasu J, Suga S, Sato S, et al. Post-ischemic hypothermia delayed neutronphil accumulation andmicrogliar activation following transient global ischemia in rats. J Neuroimmunol2000;109:66–74.
    [26]. Wang GJ, Deng HY, Maier CM, Sun GH, Yenari MA. Mild hypothermia reduces ICAM-1expression,neutrophil infiltration and microglia/monocyte accumulation following experimental stroke. Neuroscience2002;114:1081–1090.
    [27]. Webster CM, Kelly S, Koike MA, Chock VY, Giffard RG, Yenari MA. Inflammation and NFKappaBactivation is decreased by hypothermia following global cerebral ischemia. Neurobiol Dis2009;33:301–312.
    [28]. Lee SM, Zhao H, Maier CM, Steinberg GK. The protective effect of early hypothermia on PTENphosphorylation correlates with free radical inhibition in rat stroke. J Cereb Blood Flow Metab2009;29:1589–1600.
    [29]. Schmidt KM, Repine MJ, Hicks SD, DeFranco DB, Callaway CW. Regional changes in glial cell line-derivedneurotrophic factor after cardiac arrest and hypothermia in rats. Neurosci Lett2004;368:135–139.
    [30]. Vosler PS, Logue ES, Repine MJ, Callaway CW. Delayed hypothermia preferentially increases expression ofbrain-derived neurotrophic factor exon III in rat hippocampus after asphyxia cardiac arrest. Brain Res Mol BrainRes2005;135:21–29.
    [31]. Van der Worp HB, Sena ES, Donnan GA, Howells DW, Macleod MR. Hypothermia in animal models ofacute ischemic stroke: a systematic review and meta-analysis. Brain2007;130:3063–3074.
    [32]. Muir KW, Lees KR. A randomized, double-blind, placebocontrolled pilot trial of intravenous magnesiumsulfate in acute stroke. Stroke1995;26:1183–1188.
    [33]. Muir KW, Lees KR. Dose optimization of intravenous magnesium sulfate after acute stroke. Stroke1998;29:918–923.
    [34]. Galeas T, C’ontos T, Exarhos P, Galea V, Valotasiou B. The role of magnesium (Mg) a natural calcium (Ca)antagonist in the treatment of acute ischemic stroke. Cerebrovasc Dis1999;9(Suppl):102. Abstract.
    [35]. Lampl Y, Gilad R, Geva D, Eshel Y, Sadeh M. Intravenous administration of magnesium sulfate in acutestroke: a randomized double-blind study. Clin Neuropharmacol2001;24:11–15.
    [36]. IMAGES Study Group, Bradford APJ, Muir KW, Lees KR. IMAGES pilot study of intravenous magnesiumin acute stroke. Cerebrovasc Dis1998;8:86. Abstract.
    [37]. Muir KW, Lees KR. Excitatory amino acid antagonists for acute stroke. Cochrane Database of SystematicReviews2003, Issue3. Art. No.: CD001244. doi:10.1002/14651858. CD001244.
    [38]. Intravenous Magnesium Efficacy in Stroke (IMAGES) Study Investigators. Magnesium for acute stroke(IMAGES trial): randomised controlled trial. Lancet2004;363:439–445.
    [39]. Saver JL, Kidwell C, Eckstein M, Starkman S. Prehospital neuroprotective therapy for acute stroke: results ofthe field administration of stroke therapy-magnesium (FAST-MAG) pilot trial. Stroke2004;35:e106–e108.
    [40]. The Field Administration of Stroke Therapy–magnesium phase3clinical trial.2008. Available at:www.fastmag.info. Accessed on11/4/2010.
    [41]. Sprigg N, Bath P. Pharmacological enhancement of recovery from stroke. Curr Med Literature Stroke Rev2005;8:33–39.
    [42]. Sch bitz WR, Kollmar R, Schwaninger M, et al. Neuroprotective effect of granulocyte colony-stimulatingfactor after focal cerebral ischemia. Stroke2003;34:745–751.
    [43]. Kollmar R, Henninger N, Urbanek C, Sch bitz W, Schneider A, Schwab S. Effects of G-CSF in combinationwith rt-PA after experimental thromboembolic stroke. Akt Neurol2004;31:S1,V88.
    [44]. Kollmar R, Henninger N, Urbanek C, Schwab S. G-CSF and rt-PA for the treatment of experimental embolicstroke. CerebrovascDis2007;23(suppl2):A9.
    [45]. Kollmar R, Henninger N, Urbanek C, Schwab S. G-CSF, rt-PA and combination therapy after experimentalthromboembolic stroke. Exp Transl Stroke Med2010;14:2–9.46. Taguchi A, Wen Z, Myojin K, et al. Granulocytecolonystimulating factor has a negative effect on stroke outcome in a murine modelwa. Eur J Neurosci2007;26:126–133.
    [47]. Zhao LR, Berra HH, Duan WM, et al. Beneficial effects of hematopoietic growth factor therapy in chronicischemic stroke in rats. Stroke2007;38:2804–2811.
    [48]. Matchett GA, Calinisan JB, Matchett GC, Martin RD, Zhang JH.The effect of granulocyte-colony stimulatingfactor in global cerebral ischemia in rats. Brain Res2007;1136:200–207.
    [49]. Adibhatla RM, Hatcher JF. Citicoline mechanisms and clinical efficacy in cerebral ischemia. J Neurosci Res2002;70:133–139.
    [50]. Ovbiagele B, Kidwell CS, Starkman S, Saver JL. Neuroprotective agents for the treatment of acute ischemicstroke. Curr Neurol Neurosci Rep2003;3:9–20.
    [51]. Rao AM, Hatcher JF, Dempsey RJ. Does CDP-choline modulate phospholipase activities after transientforebrain ischemia? Brain Res2001;893:268–272.
    [52]. Andersen M, Overgaard K, Meden P, et al. Effects of citicoline combined with thrombolytic therapy in a ratembolic stroke model. Stroke1999;30:1464–1471.
    [53]. Shuaib A, Yang Y, Li Q. Evaluating the efficacy of citicoline in embolic ischemic stroke in rats:neuroprotective effects when used alone or in combination with urokinase. Exp Neurol2000;161:733–739.
    [54]. Leci ana LAS, Gutirrez M, Roda JM, Carceller F, Diez-Tejedor E. Effect of combined therapy withthrombolysis and citicoline in a rat model of embolic stroke. J Clin Neurosci2006;247:121–129.
    [55]. Sahin S, Alkan T, Temel SG, Tureyen K, Tolunay S, Korfali E. Effects of citicoline used alone and incombination with mild hypothermia on apoptosis induced by focal cerebral ischemia inrats. J Clin Neurosci2010;17:227–231.
    [56]. Davalos A, Castillo J, Alvarez-Sabin J, et al. Oral citicoline in acute ischemic stroke: an individual patientdata pooling analysis of clinical trials. Stroke2002;33:2850–2857.
    [57]. Ovbiagele B, Kidwell CS, Starkman S, Saver JL. Potential role of neuroprotective agents in the treatment ofpatients with acute ischemic stroke. Curr Treat Options Cardiovasc Med2003;5:441–449.
    [58]. Cramer SC. Functional imaging in stroke recovery. Stroke2004;35:2695–2698.
    [59]. Pollard S, Conti L, Smith A. Exploitation of adherent neural stem cells in basic and applied neurobiology.Regen Med2006;1:111–118.
    [60]. Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A. Embryonic stem cell lines from human blastocysts:somatic differentiation in vitro. Nat Biotechnol2000;18:399–404.
    [61]. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts.Science1998;282:1145–1147.
    [62]. Hoehn M, Kustermann E, Blunk J, et al. Monitoring of implanted stem cell migration in vivo: a highlyresolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc Natl Acad Sci USA2002;99:16267–16272.
    [63]. Erdo F, Buhrle C, Blunk J, et al. Host-dependant tumorigenesis of embryonic stem cell transplantation inexperimental stroke. J Cereb Blood Flow Metab2003;23:780–785.
    [64]. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblastcultures by defined factors. Cell2006;126:663–676.
    [65]. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts bydefined factors. Cell2007;131:861–872.
    [66]. Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somaticcells. Science2007;318:1917–1920.
    [67]. Jiang Q, Zhang ZG, Ding GL, et al. Investigation of neural progenitor cell induced angiogenesis after embolicstroke in rat using MRI. Neuroimage2005;28:698–707.
    [68]. Li L, Jiang Q, Zhang L, et al. Ischemic cerebral tissue response to subventricular zone cell transplantationmeasured by iterative self-organizing data analysis technique algorithm. J Cereb BloodFlow Metab2006;26:1366–1377.
    [69]. Zhang ZG, Jiang Q, Zhang R, et al. Magnetic resonance imaging and neurosphere therapy of stroke in rat.Ann Neurol2003;53:259–263.
    [70]. Hicks AU, Hewlett K, Windle V, Chernenko, et al. Enriched environment enhances transplantedsubventricular zone stem cell migration and functional recovery after stroke. Neuroscience2007;146:31–40.
    [71]. Kameda M, Shingo T, Takahashi K, et al. Adult neural stem and progenitor cells modified to secrete GDNFcan protect, migrate and integrate after intracerebral transplantation in rats with transient forebrain ischemia. Eur JNeurosci2007;26:1462–1478.
    [72]. Bianco P, Robey G. Skeletal stem cells. In Lanza R, ed: Handbook of Stem Cells,1st ed. San Diego: ElsevierAcademic Press,2004:415–4125.
    [73]. Chen J, Li Y, Wang L, Lu M, Zhang X, Chopp M. Therapeutic benefit of intracerebral transplantation of bonemarrow stromal cells after cerebral ischemia in rats. J Neurol Sci2001;189:49–57.
    [74]. Chen J, Li Y, Wang L, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cellsafter cerebral ischemia in rats. Stroke2001;32:1005–1011.
    [75]. Li Y, Chen J, Wang L, Lu M, Chopp M. Treatment of stroke in rat with intracarotid administration of marrowstromal cells. Neurology2001;56:1666–1672.
    [76]. Borlongan CV, Evans A, Yu G, Hess DC. Limitations of intravenous human bone marrow CD133+cell graftsin stroke rats. Brain Res2005;1048:116–122.
    [77]. Chen J, Sanberg PR, Li Y, et al. Intrvenous administration of human umbilical cord blood reduces behavioraldeficits after stroke in rats. Stroke2001;32:2682–2688.
    [78]. Xiao J, Nan Z, Morooka Y, Low WC. Transplantation of a novel cell line population of umbilical cord bloodstem cells ameliorates neurological deficits associated with ischemic brain injury. Stem Cells Dev2005;14:722–733.
    [79]. Brenneman M, Sharma S, Harting M, et al. Autologous bone marrow mononuclear cells enchance recoveryafter acute ischemic stroke in your and middle-aged rats. J Cereb Blood Flow Metab2010;30:140–149.
    [80]. Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adultmarrow. Nature2002;418:41–49.
    [81]. Dar A, Kollet O, Lapidot T. Mutual, reciprocal SDF-1/CXCR4interactions between hematopoietic and bonemarrow stromal cells regulate human stem cell migration and development in NOD/SCID chimeric mice. ExpHematol2006;34:967–975.
    [82]. Yoon YS, Wecker A, Heyd L, et al. Clonally expanded novel multipotent stem cells from human bonemarrow regenerate myocardium after myocardial infarction. J Clin Invest2005;115:326–338.
    [83]. Kucia M, Reca R, Campbell FR, et al. A population of very small embryonic-like (VSEL)CXCR4(+)SSEA-1(+)Oct-4+stem cells identified in adult bone marrow. Leukemia2006;20:857–869.
    [84]. Tang Y, Yasubara T, Hara K, et al. Transplantation of bonemarrow derived stem cells: a promising therapy forstroke. Cell Transplant2007;16:159–169.
    [85]. Zhao LR, Duan WM, Reyes M, Keene CD, Verfaillie CM, Low WC. Human bone marrow stem cells exhibitneural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol2002;174:11–20.
    [86]. Doucette JR. The glial cells in nerve fiber layer of the rat olfactory bulb. Anat Rec1984;210:385–391.
    [87]. Shyu WC, Liu DD, Lin SZ, et al. Implantation of olfactory ensheathing cells promotes neuroplasticity inmurine models of stroke. J CLin Invest2008;118:2482–2495.
    [88]. Bliss T, Guzman R, Daadi M, Steinberg GK. Cell transplantation therapy for stroke. Stroke2007;38:817–826.
    [89]. Andres RH, Guzman R, Ducray AD, et al. Cell replacement therapy for intracerebral hemorrhage. NeurosurgFocus2008;24: E16.
    [90]. Englund U, Bjorklund A, Wictorin K, Lindvall O, Kokaia M. Grafted neural stem cells develop intofunctional pyramidal neurons and integrate into host cortical circuitry. Proc Natl Acad Sci USA2002;99:17089–17094.
    [91]. Wernig M, Benninger F, Schmandt T, et al. Functional integration of embryonic stem cell-derived neurons invivo. J Neurosci2004;24:5358–5368.
    [92]. Shyu WC, Lee YJ, Liu DD, Lin SZ, Li H. Homing genes, cell therapy and stroke. Front Biosci2006;11:899–907.
    [93]. Borlongan CV, Hadman M, Sanberg CD, Sanberg PR. Central nervous system entry of peripherally injectedumbilical cord blood cells is not required for neuroprotection in stroke. Stroke2004;35:2385–2389.
    [94]. Kuruzomi K, Nakamura K, Tamiya T, et al. Mesenchymal stem cells that produce neurotrophic factors reduceischemic damage in the rat middle cerebral artery occlusion model. Mol Ther2005;11:96–104.
    [95]. Xiao J, Nan Z, Motooka Y, Low WC. Transplantation of a novel cell line population of umbilical cord bloodstem cells ameliorates neurological deficits associated with ischemic brain injury. Stem Cells Dev2005;14:722–733.
    [96]. Chen J, Zhang ZG, Li Y, et al. Intravenous administration of human bone marrow stromal cells inducesangiogenesis in the ischemic boundary zone after stroke in rats. Circ Res2003;92:692–699
    [97]. Taguchi A, Soma T, Tanaka H, et al. Administration of CD34+cells after stroke enhances neurogenesis viaangiogenesis in a mouse model. J Clin Invest2004;114:330–338.
    [98]. Shen LH, Li Y, Chen J, et al. Intracarotid transplantation of bone marrow stromal cells increases axon-myelinremodeling after stroke. Neuroscience2006;137:393–399.
    [99]. Ishibashi S, Sakaguchi M, Kuroiwa T, et al. Human neural stem/progenitor cells, expanded in long-termneurosphere culture, promote functional recovery after focal ischemia in Mongolian gerbils. J Neurosci Res2004;78:215–223.
    [100]. Vendrame M, Gemma C, de Mesquita D, et al. Antiinflammatory effects of human cord blood cells in a ratmodel of stroke. Stem Cells Dev2005;14:595–604.
    [101]. Johansson BB. Brain plasticity and stroke rehabilitation. Stroke2000;31:223–230.
    [102]. Grote HE, Hannan AJ. Regulators of adult neurogenesis in the healthy and diseased brain. Clin ExpPharmacol Physiol2007;34:533–545.
    [103]. Parent JM, Vexler ZS, Gong C, Derugin N, Ferriero DM. Rat forebrain neurogenesis and striatal neuronreplacement after focal stroke. Ann Neurol2002;52:802–813.
    [104]. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O. Neuronal replacement from endogenous precursors inthe adult brain after stroke. Nat Med2002;8:963–970.
    [105]. Chopp M, Li Y. Treatment of stroke and intracerebral hemorrhage with cellular and pharmacologicalrestorative therapies. Acta Neurochir2008;5(suppl1):79–83.
    [106]. Johnston RE, Dillon-Carter O, Freed WJ, Borlongan CV. Trophic factor secreting kidney cell lines: in vitrocharacterization and functional effects following transplantation in ischemic rats. Brain Res2001;900:268–276.
    1Tuttolomondo A, Di Sciacca R, Di Raimondo D,et al. Neuron protection as a therapeutic target in acuteischemic stroke[J]. Curr Top Med Chem.2009,9(14):1317-1334.
    2Head BP, Patel P. Anesthetics and brain protection. Curr Opin Anaesthesiol[J].2007,20(5):395-399.
    3Longa EZ, Weinstein PR, Carlson S, et a1. Reversible middle cerebral artery occlusion without craniectomy inrats [J]. Stroke,1989,20(1):84-91.
    4李冠华,冯泽国,周建平.PTD-BDNF对大鼠局灶性脑缺血损伤的保护作用,军医进修学院学报[J].2009,30(4):522-524.
    5Kotani Y, Nakajima Y, Hasegawa T, et al. Propofol exerts greater neuroprotection with disodium Edentate(EDTA) than without it[J]. J Cereb Blood Flow Metab,2008,28:354–366.
    6Adembri C,Venturi L,Tani A,et al.Neuroprotective effects of propofol in models of cerebral ischemia:inhibition of mitochondrial swelling as a possible mechanism[J]. Anesthesiology,2006,104:80–89.
    7Arcadi FA, Rapisarda A, De Luca R, et al. Effect of2,6-diisopropylphenolon the delayed hippocampal cell lossfollowing transient forebrainischemia in the gerbil. Life Sci,1996,58:961–970.
    8Sheng-Mei Zhu,Xiao-Xing Xiong,Yue-Ying Zheng,et al. Propofol Inhibits Aquaporin4Expression Througha Protein Kinase C–Dependent Pathway in an Astrocyte Model of Cerebral Ischemia/Reoxygenation[J].ANESTHESIA&ANALGESIA,2009,109:1493-1499
    9Tsai YC,Huang SJ,Lai YY,et al. Propofol does not reduce infarct volume in rats undergoing permanent middlecerebral artery occlusion[J]. Acta Anaesthesiol Sin,1994,32:99–104
    10Kawaguchi M,Furuya H,Patel PM.Neuroprotective effects of anesthetic agents[J]. J Anesth,2005,19:150–156.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700