AKAP10与汉族人群病窦综合征的关联研究及其新的突变型致病窦的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
缓慢性心律失常是临床上严重威胁人民健康的致死致残疾病之一,主要包括窦房结自律性受损和传导阻滞,临床上两者常常合并存在。其中,尤其以病窦综合征最为常见。病态窦房结综合征是因窦房结节律功能紊乱而导致的一种心律失常,每年因患病态窦房结综合征而做心脏起搏器手术的约占总心脏起搏器例数的50%。病态窦房结综合征在临床上主要表现为窦性心律不齐(过缓、过速或二者合并存在),其病因多种多样,目前发病机制并不明确,人们对病窦综合征发病机制的认识主要集中在以下三个方面:(1)离子通道基因表达的改变;(2)窦房结细胞的减少;(3)结缔组织的主要成分的累积。其中,遗传因素导致的离子通道基因表达的改变多见于国外研究报道,如HCN4,SCN5A等突变导致的病窦家系的报道,然而,针对这些离子通道进行生物起搏的研究结果并不如预料的那么理想,这提示还有很多新的病窦相关基因有待发现。因此,对病窦综合征进行遗传学研究,有助于揭示疾病的致病机制,为发现病窦有效的治疗靶点和进行生物起搏研究提供依据。本课题运用分子生物学、细胞生物学、动物实验以及遗传学的手段,系统地探讨了一个A型激酶锚定蛋白AKAP10在病窦综合征的发病过程中的作用,并探讨了其分子机制。具体包括以下两部分研究结果:
     1. AKAP10与中国汉族人群病窦综合征的关联研究病窦综合征占植入心脏起搏器手术病因的一半以上,然而大多数病窦综合征的致病基因和机制尚不清楚。我们通过大量检索文献确定了4个跟心律失常发生密切相关的基因(AKAP10, Kcnj8, Cacnald, MIR-1)作为候选基因,利用PCR-SSCP和直接测序法确定了AKAP10的多个位点的改变与窦性停搏密切相关。我们首先收集了456例病态窦房结综合征的患者(其中包含227例窦性停搏患者),467例对照样品,用PCR-SSCP筛选和直接测序法在窦性停搏患者中发现并鉴定了2个AKAP10新突变:位于Exon4的c.682_687delAGAACT (p.Arg228_Thr229del)和位于Intron6的c.1062-2A>G。而且通过关联分析的方法证实AKAP10中两个SNP位点rs203462和rs4925060与窦性停搏有统计学意义上的相关性。本研究首次在窦性停搏患者中发现AKAP10的多个位点(其中包含2个新的突变位点及2个SNP位点)改变,提示AKAP10这一基因可能参与了病窦综合征尤其是窦性停搏的发生发展。
     2.新的突变型AKAP10致病窦的机制研究我们构建AKAP10的微基因进行研究,发现并证明位于AKAP10Intron6的c.1062-2A>G突变可导致RNA剪接异常,造成EXON7的缺失,推测这可能是该突变导致病窦发生的机制。我们进一步对人的不同的细胞系包括人脐静脉内皮细胞(HUVEC),人主动脉平滑肌细胞(HASMC),人单核细胞系(THP-1)以及多个患者的心肌组织,检测了AKAP10的转录本表达情况,首次发现人的AKAP10存在两个转录本(含有EXON7及缺失EXON7),在不同的组织细胞中AKAP10表达的转录本情况是不同的,但是人的心肌中AKAP10只有一种转录本(含有EXON7),提示这种缺失EXON7的转录本可能是导致病窦发生的机制,很有可能AKAP10不同的转录本的功能是不同的。
     为了从功能上证明位于Exon4的c.682_687delAGAACT(p. Arg228_Thr229del)AKAP10新突变可以导致病窦,我们课题组创建了国际上首个停跳状态下的早期(3dpf)斑马鱼心电图检测平台,并用注射RNA的方法在过表达p. Arg228_Thr229del突变体的斑马鱼中成功模拟出窦性停搏样表型。我们进一步在HEK293A细胞中同时过表达p. Arg228_Thr229del突变体和HCN4/HCN2,利用激光共聚焦显微镜检测到与野生型相比,突变型AKAP10(p. Arg228_Thr229del)可以减弱HCN4的上膜,提示p. Arg228_Thr229del突变体可能就是通过减弱HCN4的上膜影响了窦房结细胞膜HCN4的表达,使得起搏电流If减弱,从而导致了病窦的发生。
     综合两部分研究内容,我们通过对A型激酶锚定蛋白AKAP10的遗传分析和功能探讨,首次发现它对HCN4细胞膜表达的调控作用,提示AKAP10可能通过某种机制参与了窦房结细胞内HCN4的trafficking过程。该结果加深了我们对相关病窦综合征疾病发病机制的认识,并为病窦综合征的临床诊治提供了新的理论依据。
Bradyarrhythmia is one of the serious threat to people' s health clinic lethal diseases, including damage to the sinus node automaticity and atrial-ventricular block, both clinically often in combination. Among them, especially sick sinus syndrome is most common. Sick sinus syndrome is a cardiac arrhythmia caused by sinus rhythm dysfunction and accounts for more than a half of patients undergo pacemaker transplantation. The major clinical manifestations of sick sinus syndrome is sinus arrhythmia (including bradycardia, tachycardia, or both in combination), and its etiology is various, also pathogenesis is not clear at present. The understanding of its pathogenesis mainly focused on the following three aspects:(1) abnormal gene expression of ion channels;(2) reduction of the sinus node cells;(3) cumulative component of connective tissue. Among them, the changes in ion channel gene expression caused by genetic factors are common, which is mainly reported in foreign documents. For example, the mutations of HCN4, SCN5A, etc. However, the progress in biological pacemaker is not ideal as expected, which suggests that there are a lot of new sick sinus syndrome-related genes remain to be discovered. Therefore, the genetic research in sick sinus syndrome will contribute to reveal the pathogenesis of sinus node dysfunction and provide the basis for effective treatment of and biological pacemaker study. Our study systematically explore the role of A-kinase anchoring protein AKAP10in the pathogenesis of sick sinus syndrome, and also analyze its molecular mechanism, with the methods of molecular biology, cell biology, and genetics. Our main findings are:
     1. Genetic associaton study of AKAP10with sinus node dysfunction in Han Chinese population
     Sick sinus syndrome accounts for more than a half of the implantable cardiac pacemaker surgery, however, the mechanisms of sick sinus syndrome is still unclear. We determined based on a large number of documents retrieved arrhythmia with four closely related genes (AKAP10, Kcnj8, Cacnald, MIR-1) as candidate genes using the PCR-SSCP and direct sequencing methods and finaly determined several SNPs of AKAP10are associated with sinus arrest Firsly we collected456cases with sick sinus syndrome (which including227patients with sinus arrest) and467control. By PCR-SSCP and direct sequencing, we two novel AKAP10mutations:c.682_687delAGAACT (p. Arg228_Thr229de1) in exon4and c.1062-2A> G in intron6. And we also found two SNPs (rs203462and rs4925060) are both significantly correlated with sinus node dysfunction. In summary, we for the first time found two novel AKAP10mutations and two SNPs in sinus node dysfunction patients, which indicates that the AKAP10gene may be involved in the mechanism of sinus node dysfunction, especially in the occurrence of sinus arrest.
     The first study found that in patients with sinus arrest AKAP10multiple sites (which contains two new mutations and two SNP loci) change, suggesting that this gene may be involved in AKAP10sick sinus syndrome, especially occurrence of sinus arrest development.
     2. The Mechanism of novel mutations of AKAP10associated with sinus node dysfuntion
     We constructed the micro gene of AKAP10to prove that the novel mutation c.1062-2A> G in intron6of AKAP10can lead to abnormal RNA splicing, resulting in missing exon7, which may be the possible mechanism of sinus node dysfunction. We detected the transcrips of AKAP10in different human cell lines, including human umbilical vein endothelial cells (HUVEC), human aortic smooth muscle cells (HASMC), human monocytic cell line (THP-1) and myocardial samples from several patients. We found different transcripts of AKAP10in different cell lines (containing exon7or missing exon7),but in the myocardium we found only one transcript of AKAP10(containing exon7), which indicate that the lack of exon7in AKAP10may lead to sick sinus syndrome, and different transcripts of AKAP10may vary in function.
     To prove the novel mutation c.682_687delAGAACT (p. Arg228_Thr229de1) in exon4of AKAP10can lead to sinus node dysfunction, we established the earlier (3dpf) zebrafish electrocardiogram detection platform, by injected the RNA to overpressed p. Arg228_Thr229del and then successfully simulated the sinus arrest-like phenotype. We further overexpressed p. Arg228_Thr229del and HCN4/HCN2in HEK293A, and then using the confocol microscopy scaning. Finally we found that compared to the wild type group, the mutant group (p. Arg228_Thr229del) can reduced the expression of HCN4in membrane, which may be the mechanism of occurrence of sinus node dysfunction.
     Takern together, by genetic and functional study on AKAP10, we found its essenpial role in regulating the expression of HCN4in membrane, suggesting that AKAP10is possibly involved in the pathogenesis of sinus node dysfunction. The new discoveries would refresh our knowledge in the occurrence and development of sinus node dysfunction and provided new theoretical
     Comprehensive two-part research, we adopted the A-type kinase anchoring protein AKAP10investigate genetic and functional analysis, first found its role in regulating the expression of HCN4membrane, suggesting that AKAP10possibly through a mechanism involved in the sinoatrial node cells HCN4trafficking process. The results deepen our understanding of the pathogenesis of diseases associated with sick sinus syndrome, and for the clinical diagnosis and treatment of sick sinus syndrome provides a new theoretical basis for clinical diagnosis and treatment.
引文
1.吴印生,病态窦房结综合征的经典与现代观点,J Clin Cardiol(China), Mar 2009, Vol 25, No3, P238。
    2. Bernstein AD, Parsonnet V. Survey of cardiac pacing in the United States in 1989. Am J Cardiol 1992;69:331-8.
    3.王方正,张澍,华伟等.全国心脏起搏器临床应用调查(2002至2005年).中华心律失常学杂志,2006,10(6):475。
    4. Kalman JM, Lee RJ, Fisher WG. Radiof-quency catheter mod ification of sinus pacemaker function guided by intracardiac echocardiography. Circulation,1995,92:3070-3081.
    5. Keith A. An Autobiography:Sir Arthur Keith. London, UK, Watts and Co,1950.
    6. Keith A, Flack M. The form and nature of themuscular connections between the primary divisions of the vertebrate heart. J AnatPhysiol 1907; 41:172-189.
    7. Lewis T. Galvanometric curves yielded by cardiac beats generated in various areas of the auricular musculature:The pacemaker of the heart. Heart 1910; 2:23-46.
    8. Chandler NJ, Greener ID, Tellez JO, Inada S, Musa H, Molenaar P, Difrancesco D, et al. Molecular architecture of the human sinus node: Insights into the function of the cardiac pacemaker. Circulation 2009; 119:1562-1575.
    9. Boyett MR, Honjo H, Kodama I. The sinoatrial node, a heterogeneous pacemaker structure. Cardiovasc Res 2000; 47:658-687.
    10. Boineau JP, Canavan TE, Schuessler RB, Cain ME, Corr PB, Cox JL. Demonstration of a widely distributed atrial pacemaker complex in the human heart. Circulation 1988; 77:1221-1237.
    11. Mondal T. Personal Communication.2009.
    12. Saremi F, Chan nual S, MDCT of Sinoatrial Node Artery, AJR:190, June 2008, P1569-1574.
    13.姚作宾,任国良,窦房结动脉的应用解剖[J].中国临床解剖学杂志,1995,13(3):171-173.
    14. Woodbury., L. A.; Hecht, H. H.; and Christopherson, A. R.:Membrane Resting and Action Potential of Single Cardiac Muscle Fibers of Frog Ventricle, Am. J. P. hysiol.164:307-318 (Feb) 1951.
    15. West TC. Ultramicroelectrode recording from the cardiac pacemaker [j]. J Pharmacol Exp Ther,1955,115(3):283-290.
    16. Brown H, Difranceseo D. Voltage-clamp investigations of membrane currents underlying pace··mlker activity in rabbit sino··atrial node [J]. JPhysiol, 1980,308:331-351.
    17. Lazzedni PE, Capecchi PL, Guideri F, et al. Autoantibody-mediated cardiac a 盯 hythmias:mechanisms and clinical implications[J]. Basic Res Cardiol, 2008,103(1):1-11.
    18. Zipes DP. Cardiac Electrophysiology[M]. Philadelphia:W. B sunders company,1990:29-35.
    19. Boyett MR.'And the beat goes on.'The cardiac conduction system:The wiring system of the heart. Exp Physiol 2009; 94:1035-1049.
    20. Irisawa H, Brown HF, Giles W. Cardiac pacemaking in the sinoatrial node. Physiol Rev 1993; 73:197-227.
    21. Monfredi 0, Dobrzynski H et al, the anatomy and physiology of the sinoatrial node-a contemporary review, Pace Vol.33 2010 November: 1391-1406.
    22. Difrancesco D. Current if and the neuronal modulation of heart rate [M], Philadelphia:W. B sunders company,2001:56-67.
    23. Kodam a I. Nikmaram M R. Boyett M R, et al. Regional differences in the role of the Ca!— and Na currents in pacemaker activity in the sinoatrial node[J]. Am J Physiol.1997,272(6 Pt 2):H 2793-2806.
    24. Yamamoto M, Honjo H. Niwa R, etal. Low frequency extracellular potentials recorded from the sinoatrial node[J]. cardiovasc Res,1998,39(2):360-372.
    25. Dobrzynski H, Boyett MR, Anderson RH, et □f. New insights into pacem aker activity:Promoting understanding of sick sinus syndrome[J] Circulation,2007,115(14):1921-1932.
    26. Zipes DP. Cardiac Electrophysiology[M]. Philadelphia:W. B sunders company,1990:29-35.
    27. DiFrancesco D. Pacemaker mechanisms in cardiac tissue[J]. Annu Rev Physiol,1993,55:455-472.
    28. Murphy E, Eisner DA. Regulation of intraeellular and mitocbondrial sodium in healtll and disease[J]. Circ Res,2009,104 (3):292-303.
    29. Zhang YH, Hancox JC. Regulation of cardiac Na·Ca2 exchanger activity by protein kinase phosphorylation-still a paradox?[J]. Cell Calcium,2009, 45(1):1-30. Nathan RD. Two electmphysiologically distinct types of cultured pacemaker cells from rabbit sinoatrial nodef J 7. Am J Pbysiol,1986.250(2 Pt 2):H325-329.
    31.张喜,张传林,李西琳,等.胚胎心肌祖细胞诱导分化心脏起搏细胞的实验 [J].解剖学杂志,2007,30(4):404.
    32. TaylorAR. A fast Na/Ca—based action potential in a marine diatom[J]. PI One,2009,4(3):e4966.
    33. Lian J, Mttssig D. Heart rh~hm and cardiac pacing:An integrated dual, chamber heart and pacer modelrj f. Ann Biomed Eng,2009,37(1):64-81.
    34. Yem L, Reddy PC. Effects of electromagnetic interference on implanted cardiac devices and their management [J]. Cardiol Rev,2007,15 (6):304-309.
    35. Barbuti A, Difraneesco D. Control of cardiac rate by" funny" channels in health and disease[J]. Ann N Y Acad Sei,2008,1123:213-223.
    36. DiFrancesco D. The pacemaker current(If)Plays an important role in regulating SA node pacemaker activity I J 1. Cardiovasc Res,1995,30(2): 307.308.
    37. Zaza A. Robinson RB. DiFrancesco D. Basal response of tile L. Type Ca and hyperpolarized activated currents to autonomic agents in the rabbit S. A nodef J]. J Physiol,1996,491:347-350.
    38. Barbuti A. Crespi A. Capilupo D, et al. Moleeular composition and functional properties off-charmels jn murine embryonic{J j. J Mol Cell Cardiol,2009,46(3):343-351.
    39.张倩,宋治远,仝识非.线粒体KATP通道开放剂与缺氧预适应对乳鼠窦房结细胞起搏离子流作用的比较[J].中国病理生理杂志,2006,22(10):1909-1912。
    40. Gauss R, Scifert R, Kaupp UB. Molecular identification of a hyperpolarization-activated channel in Sea urchin sperm [J]. Nature,1998; 393:583.
    41. Gloss B, Trost S, Bluhm W, ct al. Cardiac ion channel expression and contractile function in mice witll deletion ofthyroid hormone receptor of. or B[J]. Endocrinology,2001; 142:544.
    42. Dobrzynski H. Boyett MR, Anderson RH. New insights into pace, maker activity:promoting understanding of sick sinus syndrome [J]. Circulation, 2007c 115(14):1921-1932.
    43. Shi W, Wymore R. Yu H, et al. Distribution and prevalence of HCN mRNA expression in caIdiac ti~ue[J]. Cim Res,1999,85(1):1.6.
    44.李海玲,徐亚伟.与心律失常相关的mieroRNAs研究现状[J].国际心血管病杂志,2010,37(5):268-271.
    45. Stieber J, Herrmann S, Feil S, et al. The hyperpolarization-activated channel HCN4 is required for the generation of pacemaker action potentials in the embryonic heart [J]. Proc Nat Acad Sci USA,2003. loo (14):15235-15240.
    46. Martin Bid, Angela Schneider, Christian Wahl. Cardiac HCN Channels, Structure, Function, and Modulation [J]. Trends in Cardiovascular Medicine, 2002; 12(5):206.
    47. Accili EA, Proenza C, Baruseotti M, d al. From Funny Current to HCN Channels:20 Years of Excitation[J]. News Physiol SCi,2002; 17:32-37.
    48. zagOtta WN, Olivier NB, BLack KD, etal. Structural basis for modulation and agon ist specificity of HCN pacemaker channels[J]. Nature,2003; 425(6954):200.
    49. Jun Chert, David R. Piper and Michsel C. Voltage Sensing and Activation Gating of HCN Pacemaker Channds[J]. Trends in Cardiovascular Medicine, 2002; 12(1)42.
    50. Hofmann F. Biel M. Kanpp UB. Internation81 Union of Pharmacology. LI Nomenclature and structure. function relationships of cyclic nucleotide-regulated channels[J].Pharmacol Rev,2005,57(4):455-462.
    51. Stieber J,11lomer A, Much B, et al. Moleeular basis for the diferent activation kinetics of the pacemaker ehan nels HCN2 and HCN4 [J]. J Biol Chem,2003,278(36):33672-33680.
    52. Tsang SY, Lesso H, Li RA. Dissecting the structural and functional roles of the S3. S4 linker of pacemaker(hyperpolarization-activated cyclic nucleotide. modulated) ehannels by systematic length alterations [J]. J Biol Chem,2004,279(42):4375243759.
    53. Bell DC, Yao H, Saenger RC, et al. Changes in local S4 environment provide a voltage——sensing mechanism for mammalian hyperpolarization -activated HCN channels[J]j Gen Physiol,2004; 123(1):5.
    54. Yu H, Wu J, Potapova I, et al. MinK-related pepfidel:A B-subunit for the HCN ion channel subunit family enhances expression and speeds activation U]. Circ Res,2001; 88(12):E84-7.
    55. Richard RB, Siegelbaum SA. Hyperpolariz. ation-activated cation currents:From Molecules to Physiological Function[J]. Annual Review ofPhysiology,2003; 65:453.
    56. zagOtta WN, Olivier NB, BLack KD, etal. Structural basis for modulation and agon ist specificity of HCN pacemaker channels[J]. Nature,2003; 425(6954):2.57. Jun Chert, David R. Piper and Michsel C. Voltage Sensing and Activation Gating of HCN Pacemaker Channds[J]. Trends in Cardiovascular Medicine,2002; 12(1):42.
    58. Vasilyev DV, Barish ME. Posmatal development ofthe hyperpoLarization-activated excitatory current Ih in nlouse hippompa pyramidal n~u. rons[J]. J Neuro-i,2002; 15; 22(20):8992.
    59. KimIB, LeeFJ, KangTH, et al. Morphologicalanalysis of the hyperpolarization-activated cyclic nucleotide-gated cation channel 1 (HCN1) immunoreactive bipolar cells in the tabbit retina[J]. J Comp Neurol, 2003; 467(3):389.
    60. Muller F, Sehohen A, Ivanova E. HCN channels are expressed diferentially in retinal bipolar cells and concentrated at synaptic terminals[J]. Eur J Neurosci,2003; 17(10):2084.
    61. Bender RA, Seleynmni SV, Brewster AL, et al. Mathem GW, Baram TZ. Enhanced expression of a specific hyperpolarization-activated cyclic nucleotide-gated cation channd (HCN) in surviving dentate gyrus granule cdls of human and experimental epileptic hippocampus [J]. J Neurosci,2003; 23(17): 6826.
    62. M nnjkko 1k, Pandey S, Larsson HP, et al. Hysteresis in the voltage dependence of HCN channel:conversion between two modes afects pacema ker properties[J]. J Gen Physiol,2005; 125(3):305.
    63. Juliane S, Franz H. Pacemaker channels and sinus node arrhythmia[J]. Trends Cardiovasc Med,2004,14(1):23.
    64. Juliane S, Karen W. Bradycardic and proarrhythmic properties of sinus node inhibitorsrJ]. Mol Pharmacol,2006,69(4):1328.
    65. Ludwig A, Budde T, Stieber J, et al. Absence epilepsy and sinus dysrhythmia in mice lacking the pacemaker channel HCN2rJ]. EMBO J,2003,22(2):216.
    66. Milanesi R, Baruscotti M, Gnecchi-Ruscone T, et al. Familial sinus bradycardia associated with a mutation in the cardiac pacemaker channel[J]. Nen England J Med,2006,354(2):151.
    67. Robinson RB, Siegelbaum SA. Hyperpolarization-activated cation currents:from molecules to physiological function [J]. Ann Rev Physiol, 2003,65(5):453.
    68. Fernandez-Velasco M, Goren N, Benito G, et al. Regional distribution of hyperpolarization activated current (if) and hyperpolarization-activated cyclic nucleotide-gated channel m RNA expression in ventricular cells from control and hypertrophied rat hearts[J]. J Physiol(Lond),2003,553(2): 395.
    69. Cerbai E, MugelliA. I (f) in non-pacemaker cells:Role and pharmacological implications[J]. Pharmacol Res,2006,53(5):416.
    70. Cerbai E, Sartiani L, Depaoli P, et al. The properties of the pacemaker current if in human ventricular myocytes are modulated by cardiac disease[J]. J Mol Cell Cardiol,2001,33(3):441.
    71. Barbuti A, Baruscotti M, Difrancesco D. The pacemaker current:from basics to the clinics[J]. J Cardiovasc Electrophysiol,2007,18(3):342.
    72. DiFrancesco D. Funny channels in the control of cardiac rhythm and mode of action of selective blockers[J]. Pharmacol Res,2006,53(5):399.
    73. DiFrancesco D, Camm JA. Heart rate lowering by specific and selective I(f) current inhibition with ivabradine:a new therapeutic perspective in cardiovascular disease[J]. Drugs,2004,64(16):1757.
    74. Borer JS, Fox K, Jaillon P, et al. Antianginal and antiischemic effects of ivabradine, an I (f) inhibitor, in stable angina:a randomized, doubl-blind, multicentered, placebo-controlled trial[J]. Circulation,2003,107(6): 817.
    75. Lai LP, Su MJ, Lin JL, et al. Measurement of funny current (If) channel mRNA in human artial tissue:correlation with left atrial filling bressure and atrial fibrillation [J]. J Cardiovasc Electrophysiol,1999,1(7):947.
    76. Chen YJ, Chen SA, Chen YC, et al. Effects of rapid atrial pacing on the arrhythmo genie activity of single cardiomyocytes from pulmonary veins: implication in initiationof atrial fibrillation[J]. Circulation,2001, 104(23):2849.
    77. Michels G, Er F, Khan I, et al. Single-channel properties support a potential contribution of hyperpolarization-activated cyclic nucleotide-gated channels and if to cardioc arrtythmias[J]. Circulation, 2005,111(4):399.
    78. Xiao YF, Sigg DC. Biological approaches to generating cardiac biopacemaker for bradyeardia[J]Sheng Li Xue Ban,2007,59(5):562-570.
    79. Matsuura H, Ehara T, Fing WG, et al. Rapidly and slowly activating components of delayed rectifier K current inguineapig sinoatrial node pacemaker cells[J]. J Physiol,2002,540(3):815·830.
    80. Miake J, Marban E, Nuss HB. Biological pacemaker created by gene transfer [J]. Nature,2002,419(6903):132-133
    81. Lalevee N, Monier B, Senatore S, et al. Contml of cardiac rh~hm by ORK1, a Drosophila two-pore domain potassium channel [J]. Curt Biol,2006,16(15): 1502-1508.
    82. Miake, J., Marbon, E.& Nuss, H. B. Functional role of inward rectifier current in heart probed by Kir2.1 overexpression and dominant-negative- suppression. J. Clin. Invest. 111,1529-1536 (2003).
    83. Cingolani, E. et al. Biological pacemaker created by percutaneous gene delivery via venous catheters in a porcine model of complete heart block [poster P0 01-25]. Heart Rhythm 8, S112 (2011).
    84. Dobrzynski H, Boyett MR, Anderson RH. New insights into pacemaker activity:Promoting understanding of sick sinus syndrome. Circulation 2007; 115:1921-1932.
    85. Lei M, Jones SA, Liu J, Lancaster MK, Fung SS, Dobrzynski H, Camelliti P, et al. Requirement of neuronal-and cardiac-type sodium channels formurine sinoatrial node pacemaking. J Physiol 2004; 559:835-848.
    86. Maier SK, Westenbroek RE, Yamanushi TT, Dobrzynski H, Boyett MR, Catterall WA, Scheuer T. An unexpected requirement for brain-type sodium channels for control of heart rate in the mouse sinoatrial node. Proc Natl Acad Sci USA 2003; 100:3507-3512.
    87. Lei M, Goddard C, Huang CL, et al. Sinus node dysfunction following targeted disruption of the murlne cardiac sodium channel gene Sen5a[J]. J Physiol 2005,567(2):387-400.
    88. Milanesi R, Baruscotti M, DiFrancesco D, et al. Familial sinus bradycardia associatedwith a mutation in the cardiac pacemaker channel [J]. N Engl J Med, 2006,354(2):151-157.
    89. Tan BH. Iturralde TOFEes P, Mak ielski JC, et al. A novel C-terminal truncation SCN5A mutation from a patient with sick sinus syndrome, conduction disorder and ventricular tachycardia[J]. Cardiovasc Res,2007,76(3): 409-417.
    90. Du Y, Huang X, Ma A, et al. Downregulation of neuronal sodium channel subunits Navl.1 and Navl.6 in the sinoatrial node from volume-overloaded heart failure rat[J]. Pflugers Arch,2007,454(3):451-459.
    91. Mangoni ME, Traboulsie A, Lory P, et al. Bradycardia and slowing of the atrioventrieular conduction in mice lacking Cav3.1 -/-1G T-type calcium channels [J]. Circ Res,2006,98(11):1422-1430.
    92. Tellez JO, Dobrzynski H, Billeter R, et al. Diferential expression of ion channel transcripts in atrial muscle and sinoatrial node in rabbit[J]Circ Res,2006,99(12):1384-1393.
    93. Dobrzynski H, Boyett MR, Anderson RH New insights,into pacemaker activity:promoting understanding of sick sinus syndrome [J]. Circulation, 2007,115(14):1921-1932.
    94. Platzer J, Engel J, Striessnig J, et al. Congenital deafness and sinoatrlal node dysfunction in mice lacking class D L-type Ca channels [J]. Cell,2000, 102 (1):89-97.
    95. Janes SA, Boyett MR, Lancaster MK Declining into failure:the age-dependent loss of the L-type calcium channel within the sinoatrial node[J]. Circulation,2007, "5(10):1183-1190.
    96. Ju YK, Chu Y, Allen DG, et al. Store-operated Ca influx and expression of TRPC genes in mouse sinoatrial node [J].Circ Res,2007,100(11):1543-1545.
    97. Maltsev VA, Lakatta EG. Dynamic interactions of an intracellular Ca2+ clock and membrane ion channel clock underlie robust initiation and regulation of cardiac pacemaker function. Cardiovasc Res 2008; 77:274-284.
    98. Bogdanov KY, Vinagradova TM, Lakatta EG, et al Membrane potential fluctuations resulting from submenthrane Ca2 releases in rabbit sinoatrlal nodal cells impart an exponential phase to the late diastolic depolarization that controls their chronotropic state[J]. Circ Res,2006,99(9):979-987.
    99. Bogdanov KY, Vinogradova TM, Lakatta EG. Sinoatrial nodal cel ryanodine receptor and Na-Ca2 exchanger:molecular partners in pacemaker regulation [J]. Circ Res,2001,88(12):1254-1258
    100. Mahsev VA, Lakatta EG. Normal heart rhythm is initiated and regulated by an intracellular calcium clock within pacemaker cells [J]. Heart Lung Circ, 2007,16(5):335-348.
    101. Mohler PJ, Bennett V. Ankyrin-based cardiac arhythmias: a new class of chanelopathies due to loss of cellular targeting[J]. Curt"Opin Cardiol, 2005,20 (3):189-193.
    102. Traford AW, Diaz ME, Eisner DA. Ca-activated chloride current an d Na-Ca exchange have diferent time courses during sarcoplasmic reticulum Ca release inferret ventricular myocytes[J]. Pflugers Arch,1998,435(5): 743-745.
    103. Demion M, Launay P, Guinamard R, et al. TRPM4, a Ca2+— activated nonselective cation channel in mouse slno. atrial node cells [J]. Cardiovasc Res,2007,73(3):531-538.
    104. Jongsma, Wilder B. GOp junctions in cardiovascular disease. Circ Res,2000,86:1 193.
    105. Dermietzel R, Spray DC. Gap junctions in the brain:Where, what type, how many and why [J]?Trends Neurosci,1993,16(5):186.
    106. Davis LM, Rodefeld ME, Green K, et al. Gap junction protein phenotypes of the human heart and conduction system[J]. J Cardiovasc Electrophysiol, 1995,6(10):813.
    107. Goodenouge DA,. Gollger JA. Paul DL, et al. Counexins, Connexons and Intercellular Communication. Annu Rev Biochen-1996.65:475.
    108. Coppen SR, Kodama I, Boyett MR, et al. Connefin45, a major connexin of the rabbit sinoatrial node, is co-expressed wi 山 connex-in43 in a restricted zone at the nodal-crista terminalis border[J]. Histochem Cytochem,1999,47(7):907.
    109. Coppen SR, Severs NJ, Gourdic RG. Connexin45 (~t6) expression del ineates an extended conduction system in the embryonic and mature rodent heart[J]. Dev Genet,1999,24:82.
    110. Trabka-Jan ik E, Coombs W, Lemanski LF, etal. ImmunohistochemicM locMization of gap junction protein channels in hamster sinoatrial node in correlation with electrophysiologic mapping of the pacemaker region[J]. J Cardiovasc Electrophysiol,1994,5(2):125.
    111. Davis LM, Kanter HL, Beyer EC, et al. Distinct gap junction protein phenotypes in cardiac tissues with disparate conduction properties[J]. J Am Coll Cardiol,1994,24(4):112.
    112. Oosthoek PW, Viragh S, Mayen AE, etal. Immunohistochemical delineation of the conduction system. I:The sinoatrial node [J]. Circ Res,1993,73(3): 473.
    113. Boyett MR, Inoda S, Yoo S. et al. Connexlm in tile sinoatrial and atrioventricular nodes. Adv Cardiol,2006,42:175.
    114. Patrizia Camelliti, Colin R Green, Lan le griee, et al. Fibroblast network in rabbit sinoatrial node:structural and functional identification of homogeneous and geterogeneous cell coupling[J]. Circulation Research, 2004,94:828.
    115. Marian JA Van Kempen, Jacqueline LM Vermeulen, Antoon FM M oorman, et al. Developmental changesof connexin40 and connexin43 mRNA distribution patterns in the rat heartl, J]. Cardiovascular Research,1996,32 (5):886-900.
    116. Sebastien Alcol6a, Magali Thbveniau-Ruissy, Theresejarry-Guichard, et al. Downregulation of connexin 45 gene products during mouse geart development [J]. Cire Res,1999,84:1365-1379.
    117. Mathilda TM Mommersteeg, W|llem M H Hoogaars, Owen WJ, etal. Molecu lar Pathway for the localizedformation of sinoatrial node[J]. Circ Res, 2007,100:354 362.
    118. Beardslee MA, Lalng JG. Beyer EC et al. Rapid turnover of eonnexin43 in tile addt rut heart. Cite Res,1998,83:629.
    119. Eloff BC. Lemer DL, Yamada KA, et al. HiSh resolution optical mapping reveals conduction slowing in cormexin43 deficient mice. Cardiovase Res, 2001.51:681
    120. Thomas SA, Schuessler RB, Bend CB. et al. Disparate efects of deficient expression of connexin43 on atrial and ventricular conduction. Evidence for chamber-specific molecular determinants of conduction. Cite Res.1998,97: 686.
    121. Alings AMW, Bouman LN. Electrophysiology of the ageing rabbit andcat sinoatrial node-a comparative study. Eur Heart J.1993.14:1278.
    122. Baruseotti M, Difrancesco D. Robinson RB. A TTX -sensitive inward sodium current contributes to s ntanco us activity in newborn rabbit sino-atrial node eels. Physiol. 1996,492:21.
    123. Zhan g H, Boyett MR, Holden AV, et al. A hypothesis to explain the decline of sinoatrial node function with age. Physiol,1998,511:76.
    124. Petrich BG, Gong) ('Lerner DLet al. c-Jun N-terminal kinase activation mediates downregulation of connexin43 in cardiomyocytes. Circ Re.2002, 91:640.
    125. Muller A, Gottwald M, Tudyka T, et al. Increase in gap junction conductance by an antiarrhythmic peptide[J]. Eur J Pharmalol,1997,327(1):55. Ebert SN,126. Thompson RP. Embryonic epinephrine synthesis in the rat heart before innervation:association with pacemaking and conduction tissue development [J]. Circ Res,2001,88(2):117-124.
    127. Mangoni ME, Nargeot J. Genesis and regulation of the heart automatieity[J]. Physiol Rev,2008,88(8):919-982.
    128. Dobrzynski H, Boyett MR, Anderson RH. New insights into pacemaker activity:promoting understanding of sick sinus syndrome [J]. Circulation, 2007,115(12):1921-1932.
    129. Tellez JO, Dobrzynski H. Greener ID. Diferential expression of ion channel transcripts in atrial muscle and sinoatrial node in rabbit 1 J f. Cire Res,2006,99(12):1384-1393.
    130. Mommersteeg MTM, Hoogaars MH, Prall OJ, et al. Molecular pathwayforthelocalizedformation of the sinoatrial node[J]. CircRes.2007. loo(2):354-362.
    131. Wiese C, GrieskampT, Airik R. Formation of the sinus node head and differentiation of sinus node myocardium are independently regulated by tbx18 and tbx3[J]. Circ Res,2009,104(3):388-397.
    132. Christofels VM. Mommersteeg MTM. Trowe MO. Formation of the venous pole of the heart from an Nkx2-5. negative precursor population requires Tbxl8[J]. Circ Res,2006,98(14):1555-1563.
    133. Stieber J, Herrmann S, Feil S, et al. The hyperpolarization-activated channel HCN4 is required for the generation of pacemaker action potentials in the embryonic heart [J]. Proc Nat Acad Sci USA,2003. loo (14):15235-15240.
    134. Schweizer PA, Yampolsky P, Malik R. Transcription profiling of HCN-channel isotypes throughout mouse cardiac development[J]. Basic Res Cardiolo 2009,104(5):621-629.
    135. Ector H, Van Der Hauwaert LG. Sick sinus syndrome in childhood. Br Heart J 1980; 44:684-691.
    136. Beder SD, Gillette PC, Garson AJr, Porter CB, McNamara DG. Symptomatic sick sinus syndrome in children and adolescents as the only manifestation of cardiac abnormality or associated with unoperated congenital heart disease. Am J Cardiol 1983; 51:1133-1136.
    137. Nordenberg A, Varghese PJ, Nugent EW. Spectrum of sinus node dysfunction in two siblings. Am Heart J 1976; 91:507-512.
    138. Benson DW, Wang DW, Dyment M, Knilans TK, Fish FA, Strieper MJ, Rhodes TH, et al. Congenital sick sinus syndrome caused by recessive mutations in the cardiac sodium channel gene (SCN5A). J Clin Invest 2003; 112:1019-1028.
    139. Schulze-Bahr E, Neu A, Friederich P, Kaupp UB, Breithardt G, Pongs 0, Isbrandt D, et al. Pacemaker channel dysfunction in a patient with sinus node disease. J Clin Invest 2003; 111:1537-1545.
    140. Ueda K, Nakamura K, Hayashi T, Inagaki N, Takahashi M, Arimura T, Morita H, et al. Functional characterization of a trafficking-defective HCN4 mutation, D553N, associated with cardiac arrhythmia. J Biol Chem 2004; 279:27194-27198.
    141. Dobrzynski H, Boyett MR, Anderson RH. New insights into pacemaker activity:Promoting understanding of sick sinus syndrome. Circulation 2007; 115:1921-1932.
    142. Zipes DP, Jalife J. Sinus node dysfunction:Pathophysiology, clinical features, evaluation and treatment. In:Zipes DP and Jalife J, eds. Cardiac Electrophysiology:From Cell to Bedside,5th Ed. Philadelphia, PA, Saunders, 2009.
    143. Yanni J, Tellez JO, Sutyagin PV, Boyett MR, Dobrzynski H. Structural remodelling of the sinoatrial node in obese old rats. J Mol Cell Cardiol 2010; 48:653-662.
    144. Kistler PM, Sanders P, Fynn SP, Stevenson IH, Spence SJ, Vohra JK, Sparks PB,. et al. Electrophysiologic and electroanatomic changes in the human atrium associated with age. J Am Coll Cardiol 2004; 44:109-116.
    145. Alings AM, Bouman LN. Electrophysiology of the ageing rabbit and cat sinoatrial node-a comparative study. Eur Heart J 1993; 14:1278-1288.
    146. Lev M. Aging changes in the human sinoatrial node. J Gerontol 1954; 9:1-9.
    147. Davies MJ, Pomerance A. Quantitative study of ageing changes in the human sinoatrial node and internodal tracts. Br Heart J 1972; 34:150-152.
    148. Alings AMW, Abbas RF, Bouman LN. Age-related changes in structure and relative collagen content of the human and feline sinoatrial node:A comparative study. Eur Heart J 1995; 16:1655-1667.
    149. Yang NC, Lee MJ, Chao CC, Chuang YT, Lin WM, Chang MF, Hsieh PC, Kan HW, Lin YH, Yang CC, Chiu MJ, Liou HH, Hsieh ST. Clinical presentations and skin denervation in amyloid neuropathy due to transthyretin Ala97Ser. Neurology 2010; in press.
    150. of aging on gene expression in the rat sinoatrial node. J Mol Cell Cardiol 2006; 40:982-982.
    151. Jones SA, Lancaster MK, Boyett MR. Ageing-related changes of connexins and conduction within the sinoatrial node. J Physiol 2004; 560:429-437.
    152. Jones SA, Boyett MR, Lancaster MK. Declining into failure:The age-dependent loss of the L-type calcium channel within the sinoatrial node. Circulation 2007; 115:1183-1190.
    153. Shaw DB, Linker NJ, Heaver PA, Evans R. Chronic sinoatrial disorder (sick sinus syndrome):A possible result of cardiac ischaemia. Br Heart J 1987; 58:598-607.
    154. Rokseth R, Hatle L. Sinus arrest in acute myocardial infarction. Br Heart J 1971; 33:639-642.
    154. Sanders P, Kistler PM, Morton JB, Spence SJ, Kalman JM. Remodeling of sinus node function in patients with congestive heart failure:Reduction in sinus node reserve. Circulation 2004; 110:897-903.
    155. Stevenson WG, Stevenson LW, Middlekauff HR, Saxon LA. Sudden death prevention in patients with advanced ventricular dysfunction. Circulation 1993; 88:2953-2961.
    156. Muir-Nisbet A. The electrophysiology of the atrioventricular node in normal and failing rabbit hearts-PhD Thesis. University of Glasgow, Glasgow, Scotland,2008.
    157. Dobrzynski H, Boyett MR, Anderson RH. New insights into pacemaker activity:Promoting understanding of sick sinus syndrome. Circulation 2007; 115:1921-1932.
    158. El van A, Wylie K, Zipes DP. Pacing-induced chronic atrial fibrillation impairs sinus node function in dogs. Electrophysiological remodeling. Circulation 1996; 94:2953-2960.
    159. Kumagai K, Akimitsu S, Kawahira K, Kawanami F, Yamanouchi Y, Hiroki T, Arakawa K. Electrophysiological properties in chronic lone atrial fibrillation. Circulation 1991; 84:1662-1668.
    160. Manios EG, Kanoupakis EM, Mavrakis HE, Kallergis EM, Dermitzaki DN, Vardas PE. Sinus pacemaker function after cardioversion of chronic atrial fibrillation:Is sinus node remodeling related with recurrence? J Cardiovasc Electrophysiol 2001; 12:800-806.
    161. Sparks PB, Mond HG, Vohra JK, Jayaprakash S, Kalman JM. Electrical remodeling of the atria following loss of atrioventricular synchrony:A long-term study in humans. Circulation 1999; 100:1894-1900.
    162. Park HW, Cho JG, Yum JH, Hong YJ, Lim JH, Kim HG, Kim JH, et al. Clinical characteristics of hypervagotonic sinus node dysfunction.
    163. Korean J Intern Med 2004; 19:155-159.106. Podlaha R, Falk A. The prevalence of diabetes mellitus and other risk factors of atherosclerosis in bradycardia requiring pacemakertreatment. Horm Metab Res Suppl 1992; 26:84-87.
    164. Wasada T, Katsumori K, Hasumi S, Kasanuki H, Arii H, Saeki A, Kuroki H, et al. Association of sick sinus syndrome with hyperinsulinemia and insulin resistance in patients with noninsulin-dependent diabetes mellitus: Report of four cases. Intern Med 1995; 34:1174-1177.
    165. Howarth FC, Jacobson M, Shafiullah M, Adeghate E. Effects of insulin treatment on heart rhythm, body temperature and physical activity in streptozotocin-induced diabetic rat. Clin Exp Pharmacol Physiol 2006; 33:327-331.
    166. Howarth FC, Jacobson M, Shafiullah M, Adeghate E. Long-term effects of streptozotocin-induced diabetes on the electrocardiogram, physical activity and body temperature in rats. Exp Physiol 2005; 90:827-835.
    167. Hicks KK, Seifen E, Stimers JR, Kennedy RH. Effects of streptozotocin-induced diabetes on heart rate, blood pressure and cardiac autonomic nervous control. J AutonNerv Syst 1998; 69:21-30.
    168. Estes NA 3rd, Link MS, Cannom D, Naccarelli GV, PrystowskyEN, Maron BJ, Olshansky B, Expert Consensus Conference onArrhythmias in the Athlete of the North American Society of P, Electrophysiololgy. Report of the NASPE policy conference on arrhythmias and the athlete. J Cardiovasc Electrophysiol 2001;12:1208-1219.
    169. Boyett MR.'And the beat goes on.'The cardiac conduction system: The wiring system of the heart. Exp Physiol 2009; 94:1035-1049.
    170. Baldesberger S, Bauersfeld U, Candinas R, Seifert B, Zuber M, Ritter M, Jenni R, et al. Sinus node disease and arrhythmias in the long-term follow-up of former professional cyclists. Eur Heart J 2008; 29:71-78.
    171. Mont L, Elosua R, Brugada J. Endurance sport practice as a risk factor for atrial fibrillation and atrial flutter. Europace 2009; 11:11-17.
    172. Stein R, Medeiros CM, Rosito GA, Zimerman LI, Ribeiro JP. Intrinsic sinus and atrioventricular node electrophysiologic adaptations in endurance athletes. J Am Coll Cardiol 2002; 39:1033-1038.
    173. Sigvardsson K, Svanfeldt E, Kilbom A. Role of the adrenergic nervous system in development of training-induced bradycardia. Acta Physiol Scand 1977; 101:481-488.
    174. Ordway GA, Charles JB, Randall DC, Billman GE, Wekstein DR. Heart rate adaptation to exercise training in cardiac-denervated dogs. J Appl Physiol Respir Environ Exerc Physiol 1982; 52:1586-1590.
    175. Pare GC Pf al. Exp CPff Res,2005,303(2):388-399
    176. Dodge-Kafka KL Pf al. Eur J CPff Biol,2006,85(7):593-602
    177. Dodge-Kafka KL Pf al. Nature,2005,437:574-578
    178.Pare GC Pf□f. J Cell Sci,2005,118(Pt23):5637-5646
    179.Marks AR. J Mol CPff Cardiol,2001,33(4):615-624
    180.Kapilof MS Pf□f. CPff Sci,2001,114:3167-3176
    181.Steen RL et al. J Cell Sci,2003,116(ptl 1):2237-2246

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700