糖尿病心肌组织肌浆网钙转运ATP酶小泛素样修饰的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:肌浆网钙转运ATP酶(SERCA2a)是心肌舒张期钙离子转运出细胞质最重要的离子泵,SERCA2a活性与表达下降是糖尿病导致心肌舒张功能不全以及心肌损伤的重要机制。新近研究报道了小泛素样修饰可以提高SERCA2aATP酶活性、蛋白表达及稳定性。既往研究讨论了糖尿病损伤心肌组织内SERCA2a表达及活性的众多机制,然而,糖尿病是否可以作用于SERCA2a的小泛素样修饰进而影响SERCA2a的活性与表达尚未明确。
     研究方法:使用小动物超声和左室压力测定评价糖尿病大鼠和对照组大鼠心肌收缩和舒张功能;使用Western-blot和RT-PCR等手段比较糖尿病组和对照组大鼠心肌组织内SERCA2a的表达情况,使用免疫共沉淀以及小泛素样修饰试剂盒分析糖尿病大鼠和对照组大鼠心肌组织内SERCA2a小泛素样修饰程度;同时比较在不同葡萄糖和胰岛素浓度下心肌细胞内SERCA2a小泛素样修饰程度以及SERCA2a和其他小泛素样修饰相关蛋白的表达水平。
     结果:相比于对照组大鼠,2型糖尿病大鼠心肌收缩、舒张功能均下降,尤以舒张功能下降更为明显。糖尿病大鼠心肌组织内SERCA2a蛋白水平、基因表达和小泛素样修饰程度均下降;小泛素样修饰酶E2(Ubc9)的蛋白水平在糖尿病大鼠心肌中也下降,而SUMO1和小泛素样修饰酶E1(SAE1和SAE2组成的二聚体)与对照组大鼠相比没有显著差异。高葡萄糖单独作用下,心肌细胞内SERCA2a的小泛素样修饰程度升高并随着葡萄糖浓度的提高而提高,然而在加入100mlU/L的胰岛素之后,心肌细胞内SERCA2a的小泛素样修饰程度随着葡萄糖浓度的提高而降低。Ubc9的蛋白水平变化与SERCA2a小泛素样修饰程度变化保持一致,而SUM01、SAE1和SAE2的蛋白水平在不同葡萄糖和胰岛素浓度下无明显变化。
     结论:SERCA2a小泛素样修饰程度和Ubc9蛋白水平在糖尿病心肌组织和高糖高胰岛素培养的心肌细胞中下降,这些结果提示SERCA2a小泛素样修饰和Ubc9与糖尿病的心肌损伤密切相关。
     研究背景:糖尿病是心肌梗死后发生心力衰竭和死亡的独立危险因素。肌浆网钙转运ATP酶(SERCA2a)活性和表达水平下降是糖尿病导致心肌损伤和心肌舒缩功能不全的重要机制。新近研究报道了小泛素样修饰可以提高SERCA2a的ATP酶活性、蛋白表达及稳定性。本课题第一部分研究发现糖尿病降低心肌组织内SERCA2a小泛素样修饰程度,本部分研究试图明确SERCA2a小泛素样修饰是否同样参与到糖尿病加剧心肌梗死后心功能不全以及心衰进展中。
     研究方法:2型糖尿病大鼠和对照大鼠分别被随机分为心梗手术组和假手术组,分别评估各组大鼠心功能,SERCA2a小泛素样修饰程度以及相关蛋白的表达情况。通过对原代心肌细胞氧剥夺6小时或12小时,评估缺氧预适应和长时间缺氧对心肌细胞内SERCA2a小泛素样修饰程度以及相关蛋白的表达情况的作用。
     结果:糖尿病加剧了心肌梗死后的心脏收缩功能不全。相比于假手术组心肌梗死后1周大鼠非梗死区心肌组织内SERCA2a小泛素样修饰程度显著升高,而心肌梗死后4周大鼠心肌组织内SERCA2a小泛素样修饰程度则又回落到与假手术组相似的水平。对于糖尿病大鼠而言,非梗死区心肌组织内SERCA2a小泛素样修饰程度在心肌梗死后急性期和慢性期均无显著变化。相比于对照组心肌细胞,缺氧预适应后心肌细胞内SERCA2a小泛素样修饰程度显著升高,然而长时间缺氧后心肌细胞内SERCA2a小泛素样修饰程度又显著下降。在各项试验中,小泛素样修饰酶E2(Ubc9)的表达与SERCA2a小泛素样修饰程度变化保持一致,而SUMO1和小泛素样修饰酶E1却无显著变化。
     结论:非糖尿病大鼠心肌梗死后非梗死区Ubc9和SERCA2a小泛素样修饰代偿性升高,而糖尿病大鼠则无,缺氧预适应使得心肌细胞Ubc9和SERCA2a小泛素样修饰升高,而长时间缺氧则使其降低,以上结果显示Ubc9和SERCA2a小泛素样修饰在糖尿病加剧心肌梗死后心功能不全这一过程中起到了重要作用。
Background:Sarcoplasmic Reticulum Calcium-Transporting ATPase2a(SERCA2a) is the main Ca2+pump of cardiomyocyte in diastolic period. In the condition of diabetic cardiomyopathy, the activity and expression of SERCA2a is decreased, leading to diastolic and systolic dysfunction of myocardium. It was recently reported that SUMOylation could enhance the activity and stability of SERCA2a. We assume that diabetes might bring down the intensity of SUMOylation of SERCA2a in myocardium.
     Methods:The cardiac functions of diabetic and control rats were measured by echocardiography and left ventricular pressure measurement. SUMOylation intensity was evaluated by co-immunoprecipitation and SUMOylation kit. The expressions of SUM01, SERCA2a, Ubc9and other enzymes of SUMOylation were measured by Western-blot and RT-PCR. In addition, we also test whether the SUMOylation intensity of SERCA2a can be regulated by different concentrations of glucose and insulin in vitro.
     Results:Diet-induced type2diabetic rats represented diastolic and systolic dysfunction, and the diastolic dysfunction is much more severe. The SUMOylation intensity of SERCA2a was attenuated simultaneously with the expression of Ubc9in diet-induced diabetic rats, while the expressions of SUM01, SAE1and SAE2were not changed. Interestingly, glucose alone increased Ubc9expression and the SUMOylation intensity of SERCA2a of cardiomyocytes in vitro in a concentration-dependent manner; however, with addition of100mIU/L insulin, glucose decreased Ubc9and SUMOylation intensity in a concentration-dependent manner on the contrary.
     Conclusions:SUMOylation intensity of SERCA2a decreased in diet-induced type2diabetic rats in vivo and also in cardiomyocytes with addition of high glucose and insulin in vitro. These observations provide evidence that Ubc9and SUMOylation is involved in diabetic cardiomyopathy.
     Background:Diabetes is an independent risk factor for heart failure and mortality after myocardial infarction(MI). In the condition of diabetes, the activity and expression of Sarcoplasmic Reticulum Calcium-transporting ATPase(SERCA2a) are decreased, leading to diastolic and systolic dysfunction of myocardium. It was recently reported that SUMOylation could elevate the activity and stability of SERCA2a. In the first part of this thesis, we found that diabetes attenuate SUMOylation intensity SERCA2a in myocardium.
     Methods:Diet-induced type2diabetic rats and controls were divided into suture ligation induced MI groups or sham groups. Primary cardiomyocytes were cultured in different concentrations of glucose and insulin, and underwent oxygen deprivation(OD) for6or12hours. Echocardiograph and left ventricular pressure were measured to analyze cardiac function. The intensity of SUMOylation of SERCA2a, expressions of SERCA2a, SUM01and enzymes of SUMOylation were evaluated.
     Results:Diabetes exacerbated diastolic and systolic dysfunction of myocardium after infarction. SUMOylation intensities of SERCA2a were enhanced respectively in1-week-post-MI non-diabetic rats and6-hour-OD cardiomyocytes but not in4-week-post-MI rats and12-hour-OD cardiomyocytes. This compensatory enhancement was almost completely blunted in1or4weeks post-MI diabetic rats. In all experiments, the expression of enzyme2of SUMOylation, namely Ubc9, was always in accordance with the SUMOylation intensity, while SUM01and enzyme1were not changed.
     Conclusions:SUMOylation intensity of SERCA2a was compensatorily enhanced in post-MI non-diabetic rats, but not in diabetic rats. These observations provide evidence that Ubc9and SUMOylation of SERCA2a are involved in diabetes-mediated exacerbation of left ventricular dysfunction after MI.
引文
[1]Yang W, Lu J, Weng J, Jia W, Ji L, Xiao J, Shan Z, Liu J, Tian H, Ji Q, Zhu D, Ge J, Lin L, Chen L, Guo X, Zhao Z, Li Q, Zhou Z, Shan G, He J. Prevalence of diabetes among men and women in China. The New England journal of medicine.2010; 362(12):1090-101.
    [2]陈兴宝,唐玲,陈慧云,赵鲁勇,胡善联.2型糖尿病并发症对患者治疗费用的影响评估.中国糖尿病杂志.2003;11(4):238-41.
    [3]Boudina S, Abel ED. Diabetic cardiomyopathy revisited. Circulation.2007; 115(25):3213-23.
    [4]Aurigemma GP. Diastolic heart failure--a common and lethal condition by any name. The New England journal of medicine.2006; 355(3):308-10.
    [5]宋光远.糖尿病心肌病存在和机制.心血管病学进展.2011;32(4).
    [6]Choi KM, Zhong Y, Hoit BD, Grupp IL, Hahn H, Dilly KW, Guatimosim S, Lederer WJ, Matlib MA. Defective intracellular Ca(2+) signaling contributes to cardiomyopathy in Type 1 diabetic rats. American journal of physiology Heart and circulatory physiology.2002; 283(4):H1398-408.
    [7]Song GY, Yang YJ, Xu B, Li JJ, Gao RL, Qiao SB, Yuan JQ, Tang YD, You SJ, Pei HJ, Zhao ZY, Wang XM, Wu YJ. ST-elevated acute myocardial infarction happening 1 month post stent implantation:late thrombosis in-stents or new lesions? Chinese medical journal.2009; 122(14):1610-4.
    [8]裴汉军,吴永健,惠汝太,王晓建,宋光远,赵振燕,王喜梅.阿托伐他汀干预对糖尿病心肌梗死后大鼠左室重构和心功能的影响.中国分子心脏病学杂志.2010;10(1):6.
    [9]宋光远,王喜梅,杨跃进,张洪亮,裴汉军,赵振燕,吴永健.STZ诱导的糖尿病大鼠急性心肌梗死后心脏重构及相关基因的表达.中国病理生理杂志.2009;25(12):8.
    [10]Kim HW, Ch YS, Lee HR, Park SY, Kim YH. Diabetic alterations in cardiac sarcoplasmic reticulum Ca2+-ATPase and phospholamban protein expression. Life sciences.2001; 70(4):367-79.
    [11]Trost SU, Belke DD, Bluhm WF, Meyer M, Swanson E, Dillmann WH. Overexpression of the sarcoplasmic reticulum Ca(2+)-ATPase improves myocardial contractility in diabetic cardiomyopathy. Diabetes.2002; 51(4): 1166-71.
    [12]Dhalla NS, Liu X, Panagia V, Takeda N. Subcellular remodeling and heart dysfunction in chronic diabetes. Cardiovascular research.1998; 40(2):239-47.
    [13]Han X, Abendschein DR, Kelley JG, Gross RW. Diabetes-induced changes in specific lipid molecular species in rat myocardium. The Biochemical journal. 2000; 352 Pt 1:79-89.
    [14]Kranias EG, Hajjar RJ. Modulation of cardiac contractility by the phospholamban/SERCA2a regulatome. Circulation research.2012; 110(12): 1646-60.
    [15]Wuytack F, Raeymaekers L, De Smedt H, Eggermont JA, Missiaen L, Van Den Bosch L, De Jaegere S, Verboomen H, Plessers L, Casteels R. Ca(2+)-transport ATPases and their regulation in muscle and brain. Annals of the New York Academy of Sciences.1992; 671:82-91.
    [16]Hadri L, Bobe R, Kawase Y, Ladage D, Ishikawa K, Atassi F, Lebeche D, Kranias EG, Leopold JA, Lompre AM, Lipskaia L, Hajjar RJ. SERCA2a gene transfer enhances eNOS expression and activity in endothelial cells. Molecular therapy:the journal of the American Society of Gene Therapy.2010; 18(7): 1284-92.
    [17]Lipskaia L, Chemaly ER, Hadri L, Lompre AM, Hajjar RJ. Sarcoplasmic reticulum Ca(2+) ATPase as a therapeutic target for heart failure. Expert opinion on biological therapy.2010; 10(1):29-41.
    [18]Prunier F, Kawase Y, Gianni D, Scapin C, Danik SB, Ellinor PT, Hajjar RJ, Del Monte F. Prevention of ventricular arrhythmias with sarcoplasmic reticulum Ca2+ATPase pump overexpression in a porcine model of ischemia reperfusion. Circulation.2008; 118(6):614-24.
    [19]Lyon AR, Bannister ML, Collins T, Pearce E, Sepehripour AH, Dubb SS, Garcia E, O'Gara P, Liang L, Kohlbrenner E, Hajjar RJ, Peters NS, Poole-Wilson PA, Macleod KT, Harding SE. SERCA2a gene transfer decreases sarcoplasmic reticulum calcium leak and reduces ventricular arrhythmias in a model of chronic heart failure. Circulation Arrhythmia and electrophysiology.2011; 4(3) 362-72.
    [20]Hajjar RJ, Zsebo K, Deckelbaum L, Thompson C, Rudy J, Yaroshinsky A, Ly H, Kawase Y, Wagner K, Borow K, Jaski B, London B, Greenberg B, Pauly DF, Patten R, Starling R, Mancini D, Jessup M. Design of a phase 1/2 trial of intracoronary administration of AAV1/SERCA2a in patients with heart failure. Journal of cardiac failure.2008; 14(5):355-67.
    [21]Jessup M, Greenberg B, Mancini D, Cappola T, Pauly DF, Jaski B, Yaroshinsky A, Zsebo KM, Dittrich H, Hajjar RJ. Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID):a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. Circulation.2011; 124(3):304-13.
    [22]Kho C, Lee A, Jeong D, Oh JG, Chaanine AH, Kizana E, Park WJ, Hajjar RJ. SUMO1-dependent modulation of SERCA2a in heart failure. Nature.2011; 477(7366):601-5.
    [23]Mahajan R, Delphin C, Guan T, Gerace L, Melchior F. A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell.1997; 88(1):97-107.
    [24]Wang J. Cardiac function and disease:emerging role of small ubiquitin-related modifier. Wiley interdisciplinary reviews Systems biology and medicine.2011; 3(4):446-57.
    [25]Lebeche D, Davidoff AJ, Hajjar RJ. Interplay between impaired calcium regulation and insulin signaling abnormalities in diabetic cardiomyopathy. Nat Clin Pract Cardiovasc Med.2008; 5(11):715-24.
    [26]Bryant NJ, Govers R, James DE. Regulated transport of the glucose transporter GLUT4. Nature reviews Molecular cell biology.2002; 3(4):267-77.
    [27]Giorgino F, de Robertis O, Laviola L, Montrone C, Perrini S, McCowen KC, Smith RJ. The sentrin-conjugating enzyme mUbc9 interacts with GLUT4 and GLUT1 glucose transporters and regulates transporter levels in skeletal muscle cells. Proc Natl Acad Sci U S A.2000; 97(3):1125-30.
    [28]Liu LB, Omata W, Kojima I, Shibata H. The SUMO conjugating enzyme Ubc9 is a regulator of GLUT4 turnover and targeting to the insulin-responsive storage compartment in 3T3-L1 adipocytes. Diabetes.2007; 56(8):1977-85.
    [29]Kampmann U, Christensen B, Nielsen TS, Pedersen SB, Orskov L, Lund S, Moller N, Jessen N. GLUT4 and UBC9 protein expression is reduced in muscle from type 2 diabetic patients with severe insulin resistance. PloS one.2011; 6(11):e27854.
    [30]Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiological reviews.2005; 85(3):1093-129.
    [31]Ingwall JS. Energy metabolism in heart failure and remodelling. Cardiovasc Res.2009; 81(3):412-9.
    [32]Taegtmeyer H, McNulty P, Young ME. Adaptation and maladaptation of the heart in diabetes:Part Ⅰ:general concepts. Circulation.2002; 105(14): 1727-33.
    [33]Young ME, McNulty P, Taegtmeyer H. Adaptation and maladaptation of the heart in diabetes:Part Ⅱ:potential mechanisms. Circulation.2002; 105(15): 1861-70.
    [34]Corretti MC, Koretsune Y, Kusuoka H, Chacko VP, Zweier JL, Marban E. Glycolytic inhibition and calcium overload as consequences of exogenously generated free radicals in rabbit hearts. The Journal of clinical investigation. 1991; 88(3):1014-25.
    [35]Kagaya Y, Weinberg EO, Ito N, Mochizuki T, Barry WH, Lorell BH. Glycolytic inhibition:effects on diastolic relaxation and intracellular calcium handling in hypertrophied rat ventricular myocytes. The Journal of clinical investigation. 1995; 95(6):2766-76.
    [1]Yang W, Lu J, Weng J, Jia W, Ji L, Xiao J, Shan Z, Liu J, Tian H, Ji Q, Zhu D, Ge J, Lin L, Chen L, Guo X, Zhao Z, Li Q, Zhou Z, Shan G, He J. Prevalence of diabetes among men and women in China. The New England journal of medicine.2010; 362(12):1090-101.
    [2]陈兴宝,唐玲,陈慧云,赵鲁勇,胡善联.2型糖尿病并发症对患者治疗费用的影响评估.中国糖尿病杂志.2003;11(4):238-41.
    [3]Carrabba N, Valenti R, Parodi G, Santoro GM, Antoniucci D. Left ventricular remodeling and heart failure in diabetic patients treated with primary angioplasty for acute myocardial infarction. Circulation.2004; 110(14): 1974-9.
    [4]Boudina S, Abel ED. Diabetic cardiomyopathy revisited. Circulation.2007; 115(25):3213-23.
    [5]Aurigemma GP. Diastolic heart failure--a common and lethal condition by any name. The New England journal of medicine.2006; 355(3):308-10.
    [6]宋光远.糖尿病心肌病存在和机制.心血管病学进展.2011;32(4).
    [7]Choi KM, Zhong Y, Hoit BD, Grupp IL, Hahn H, Dilly KW, Guatimosim S, Lederer WJ, Matlib MA. Defective intracellular Ca(2+) signaling contributes to cardiomyopathy in Type 1 diabetic rats. American journal of physiology Heart and circulatory physiology.2002; 283(4):H1398-408.
    [8]Kim HW, Ch YS, Lee HR, Park SY, Kim YH. Diabetic alterations in cardiac sarcoplasmic reticulum Ca2+-ATPase and phospholamban protein expression. Life sciences.2001; 70(4):367-79.
    [9]Trost SU, Belke DD, Bluhm WF, Meyer M, Swanson E, Dillmann WH. Overexpression of the sarcoplasmic reticulum Ca(2+)-ATPase improves myocardial contractility in diabetic cardiomyopathy. Diabetes.2002; 51(4): 1166-71.
    [10]Hadri L, Bobe R, Kawase Y, Ladage D, Ishikawa K, Atassi F, Lebeche D, Kranias EG, Leopold JA, Lompre AM, Lipskaia L, Hajjar RJ. SERCA2a gene transfer enhances eNOS expression and activity in endothelial cells. Molecular therapy:the journal of the American Society of Gene Therapy.2010; 18(7): 1284-92.
    [11]Lipskaia L, Chemaly ER, Hadri L, Lompre AM, Hajjar RJ. Sarcoplasmic reticulum Ca(2+) ATPase as a therapeutic target for heart failure. Expert opinion on biological therapy.2010; 10(1):29-41.
    [12]Kho C, Lee A, Jeong D, Oh JG, Chaanine AH, Kizana E, Park WJ, Hajjar RJ. SUMO1-dependent modulation of SERCA2a in heart failure. Nature.2011; 477(7366):601-5.
    [13]Wang J. Cardiac function and disease:emerging role of small ubiquitin-related modifier. Wiley interdisciplinary reviews Systems biology and medicine.2011; 3(4):446-57.
    [14]赵振燕,吴永健,吴元,宋光远,裴汉军,王喜梅,唐熠达,徐波,杨跃进.非糖尿病患者急性心肌梗死早期胰岛素抵抗现象研究.中国循环杂志.2011;26(5).
    [15]赵振燕,吴永健,吴元,徐波,宋光远,裴汉军,王喜梅,唐熠达,杨跃进.非糖尿病患者ST段抬高急性心肌梗死胰岛素抵抗与临床预后关系.中国介入心脏病学杂志.2011;19(1).
    [16]裴汉军,宋光远,吴永健,惠汝太,王晓建.糖尿病在糖尿病大鼠心肌梗死后心力衰竭形成中的效应.中国病理生理杂志.2009;25(6):8.
    [17]裴汉军,吴永健,惠汝太,王晓建,宋光远,赵振燕,王喜梅.阿托伐他汀干预对糖尿病心肌梗死后大鼠左室重构和心功能的影响.中国分子心脏病学杂志.2010;10(1):6.
    [18]宋光远,王喜梅,杨跃进,张洪亮,裴汉军,赵振燕,吴永健.STZ诱导的糖尿病大鼠急性心肌梗死后心脏重构及相关基因的表达.中国病理生理杂志.2009;25(12):8.
    [19]Wuytack F, Raeymaekers L, De Smedt H, Eggermont JA, Missiaen L, Van Den Bosch L, De Jaegere S, Verboomen H, Plessers L, Casteels R. Ca(2+)-transport ATPases and their regulation in muscle and brain. Annals of the New York Academy of Sciences.1992; 671:82-91.
    [20]Hajjar RJ, Zsebo K, Deckelbaum L, Thompson C, Rudy J, Yaroshinsky A, Ly H, Kawase Y, Wagner K, Borow K, Jaski B, London B, Greenberg B, Pauly DF, Patten R, Starling R, Mancini D, Jessup M. Design of a phase 1/2 trial of intracoronary administration of AAV1/SERCA2a in patients with heart failure. Journal of cardiac failure.2008; 14(5):355-67.
    [21]Jessup M, Greenberg B, Mancini D, Cappola T, Pauly DF, Jaski B, Yaroshinsky A, Zsebo KM, Dittrich H, Hajjar RJ. Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID):a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. Circulation.2011; 124(3):304-13.
    [22]Dhalla NS, Liu X, Panagia V, Takeda N. Subcellular remodeling and heart dysfunction in chronic diabetes. Cardiovascular research.1998; 40(2):239-47.
    [23]Han X, Abendschein DR, Kelley JG, Gross RW. Diabetes-induced changes in specific lipid molecular species in rat myocardium. The Biochemical journal. 2000; 352 Pt 1:79-89.
    [24]Zhu QJ, Xu Y, Du CP, Hou XY. SUMOylation of the kainate receptor subunit GluK2 contributes to the activation of the MLK3-JNK3 pathway following kainate stimulation. FEBS letters.2012; 586(9):1259-64.
    [25]Datwyler AL, Lattig-Tunnemann G, Yang W, Paschen W, Lee SL, Dirnagl U, Endres M, Harms C. SUMO2/3 conjugation is an endogenous neuroprotective mechanism. Journal of cerebral blood flow and metabolism:official journal of the International Society of Cerebral Blood Flow and Metabolism.2011; 31(11):2152-9.
    [26]Lee YJ, Castri P, Bembry J, Maric D, Auh S, Hallenbeck JM. SUMOylation participates in induction of ischemic tolerance. Journal of neurochemistry. 2009; 109(1):257-67.
    [27]Yang W, Sheng H, Warner DS, Paschen W. Transient global cerebral ischemia induces a massive increase in protein sumoylation. Journal of cerebral blood flow and metabolism:official journal of the International Society of Cerebral Blood Flow and Metabolism.2008; 28(2):269-79.
    1. Johnson ES. Protein modification by sumo. Annual review of biochemistry. 2004;73:355-382
    2. Sarge KD, Park-Sarge OK. Sumoylation and human disease pathogenesis. Trends in biochemical sciences.2009;34:200-205
    3. Matunis MJ, Coutavas E, Blobel G. A novel ubiquitin-like modification modulates the partitioning of the ran-gtpase-activating protein rangapl between the cytosol and the nuclear pore complex. The Journal of cell biology 1996;135:1457-1470
    4. Geiss-Friedlander R, Melchior F. Concepts in sumoylation:A decade on. Nature reviews. Molecular cell biology.2007;8:947-956
    5. Owerbach D, McKay EM, Yeh ET, Gabbay KH, Bohren KM. A proline-90 residue unique to sumo-4 prevents maturation and sumoylation. Biochemical and biophysical research communications.2005;337:517-520
    6. Hayashi T, Seki M, Maeda D, Wang W, Kawabe Y, Seki T, Saitoh H, Fukagawa T, Yagi H, Enomoto T. Ubc9 is essential for viability of higher eukaryotic cells. Experimental cell research.2002;280:212-221
    7. Herrmann J, Lerman LO, Lerman A. Ubiquitin and ubiquitin-like proteins in protein regulation. Circulation research.2007;100:1276-1291
    8. Pichler A, Gast A, Seeler JS, Dejean A, Melchior F. The nucleoporin ranbp2 has sumol e3 ligase activity. Cell.2002;108:109-120
    9. Kagey MH, Melhuish TA, Wotton D. The polycomb protein pc2 is a sumo e3. Cell.2003;113:127-137
    10. Jackson PK. A new ring for sumo:Wrestling transcriptional responses into nuclear bodies with pias family e3 sumo ligases. Genes& development. 2001;15:3053-3058
    11. Yeh ET. Sumoylation and de-sumoylation:Wrestling with life's processes. The Journal of biological chemistry.2009;284:8223-8227
    12. Gong L, Millas S, Maul GG, Yeh ET. Differential regulation of sentrinized proteins by a novel sentrin-specific protease. The Journal of biological chemistry.2000;275:3355-3359
    13. Di Bacco A, Ouyang J, Lee HY, Catic A, Ploegh H, Gill G. The sumo-specific protease senp5 is required for cell division. Molecular and cellular biology. 2006;26:4489-4498
    14. Mukhopadhyay D, Ayaydin F, Kolli N, Tan SH, Anan T, Kametaka A, Azuma Y, Wilkinson KD, Dasso M. Suspl antagonizes formation of highly sumo2/3-conjugated species. The Journal of cell biology.2006;174:939-949
    15. Shen LN, Geoffroy MC, Jaffray EG, Hay RT. Characterization of senp7, a sumo-2/3-specific isopeptidase. The Biochemical journal.2009;421:223-230
    16. Guinamard R, Demion M, Chatelier A, Bois P. Calcium-activated nonselective cation channels in mammalian cardiomyocytes. Trends in cardiovascular medicine.2006; 16:245-250
    17. Liu H, El Zein L, Kruse M, Guinamard R, Beckmann A, Bozio A, Kurtbay G, Megarbane A, Ohmert I, Blaysat G, Villain E, Pongs 0, Bouvagnet P. Gain-of-function mutations in trpm4 cause autosomal dominant isolated cardiac conduction disease. Circulation. Cardiovascular genetics. 2010;3:374-385
    18. Kruse M, Schulze-Bahr E, Corfield V, Beckmann A, Stallmeyer B, Kurtbay G, Ohmert I, Brink P, Pongs 0. Impaired endocytosis of the ion channel trpm4 is associated with human progressive familial heart block type i. The Journal of clinical investigation.2009;119:2737-2744
    19. Nattel S, Yue L, Wang Z. Cardiac ultrarapid delayed rectifiers:A novel potassium current family o f functional similarity and molecular diversity. Cellular physiology and biochemistry:international journal of experimental cellular physiology, biochemistry, and pharmacology.1999;9:217-226
    20. Griffith LC. Potassium channels:The importance of transport signals. Current biology:CB.2001;11:R226-228
    21. Benson MD, Li QJ, Kieckhafer K, Dudek D, Whorton MR, Sunahara RK, Iniguez-Lluhi JA; Martens JR. Sumo modification regulates inactivation of the voltage-gated potassium channel kv1.5. Proceedings of the National Academy of Sciences of the United States of America.2007;104:1805-1810
    22. Gaborit N, Steenman M, Lamirault G, Le Meur N, Le Bouter S, Lande G, Leger J, Charpentier F, Christ T, Dobrev D, Escande D, Nattel S, Demolombe S. Human atrial ion channel and transporter subunit gene-expression remodeling associated with valvular heart disease and atrial fibrillation. Circulation. 2005;112:471-481
    23. Orias M, Velazquez H, Tung F, Lee G, Desir GV. Cloning and localization of a double-pore k channel, kcnkl:Exclusive expression in distal nephron segments. The American journal of physiology.1997;273:F663-666
    24. Rajan S, Plant LD, Rabin ML, Butler MH, Goldstein SA. Sumoylation silences the plasma membrane leak k+ channel k2p1. Cell.2005;121:37-47
    25. Feliciangeli S, Bendahhou S, Sandoz G, Gounon P, Reichold M, Warth R, Lazdunski M, Barhanin J, Lesage F. Does sumoylation control k2p1/twikl background k+ channels? Cell.2007;130:563-569
    26. Plant LD, Dementieva IS, Kollewe A, Olikara S, Marks JD, Goldstein SA. One sumo is sufficient to silence the dimeric potassium channel k2p1. Proceedings of the National Academy of Sciences of the United States of America. 2010;107:10743-10748
    27. Lee YJ, Miyake S, Wakita H, McMullen DC, Azuma Y, Auh S, Hallenbeck JM. Protein sumoylation is massively increased in hibernation torpor and is critical for the cytoprotection provided by ischemic preconditioning and hypothermia in shsy5y cells. Journal of cerebral blood flow and metabolism:official journal of the International Society of Cerebral Blood Flow and Metabolism. 2007;27:950-962
    28. Cimarosti H, Lindberg C, Bomholt SF, Ronn LC, Henley JM. Increased protein sumoylation following focal cerebral ischemia. Neuropharmacology. 2008;54:280-289
    29. Yang W, Sheng H, Warner DS, Paschen W. Transient focal cerebral ischemia induces a dramatic activation of small ubiquitin-like modifier conjugation. Journal of cerebral blood flow and metabolism:official journal of the International Society of Cerebral Blood Flow and Metabolism. 2008;28:892-896
    30. Lee YJ, Castri P, Bembry J, Maric D, Auh S, Hallenbeck JM. Sumoylation participates in induction of ischemic tolerance. Journal of neurochemistry. 2009;109:257-267
    31. Lee YJ, Mou Y, Maric D, Klimanis D, Auh S, Hallenbeck JM. Elevated global sumoylation in ubc9 transgenic mice protects their brains against focal cerebral ischemic damage. PloS one.2011;6:e25852
    32. Datwyler AL, Lattig-Tunnemann G, Yang W, Paschen W, Lee SL, Dirnagl U, Endres M, Harms C. Sumo2/3 conjugation is an endogenous neuroprotective mechanism. Journal of cerebral blood flow and metabolism:official journal of the International Society of Cerebral Blood Flow and Metabolism. 2011;31:2152-2159
    33. Berger J, Moller DE. The mechanisms of action of ppars. Annual review of medicine.2002;53:409-435
    34. Pourcet B, Pineda-Torra I, Derudas B, Staels B, Glineur C. Sumoylation of human peroxisome proliferator-activated receptor alpha inhibits its trans-activity through the recruitment of the nuclear corepressor ncor. The Journal of biological chemistry.2010;285:5983-5992
    35. Leuenberger N, Pradervand S, Wahli W. Sumoylated pparalpha mediates sex-specific gene repression and protects the liver from estrogen-induced toxicity in mice. The Journal of clinical investigation.2009;119:3138-3148
    36. Floyd ZE, Stephens JM. Controlling a master switch of adipocyte development and insulin sensitivity:Covalent modifications of ppargamma. Biochimica et biophysica acta.2012;1822:1090-1095
    37. Floyd ZE, Stephens JM. Control of peroxisome proliferator-activated receptor gamma2 stability and activity by sumoylation. Obesity research. 2004;12:921-928
    38. Ohshima T, Koga H, Shimotohno K. Transcriptional activity of peroxisome proliferator-activated receptor gamma is modulated by sumo-1 modification. The Journal of biological chemistry.2004;279:29551-29557
    39. Pascual G, Fong AL, Ogawa S, Gamliel A, Li AC, Perissi V, Rose DW, Willson TM, Rosenfeld MG, Glass CK. A sumoylation-dependent pathway mediates transrepression of inflammatory response genes by ppar-gamma. Nature. 2005;437:759-763
    40. Jennewein C, Kuhn AM, Schmidt MV, Meilladec-Jullig V, von Knethen A, Gonzalez FJ, Brune B. Sumoylation of peroxisome proliferator-activated receptor gamma by apoptotic cells prevents lipopolysaccharide-induced ncor removal from kappab binding sites mediating transrepression of proinflammatory cytokines. J Immunol.2008;181:5646-5652
    41. Yamashita D, Yamaguchi T, Shimizu M, Nakata N, Hirose F, Osumi T. The transactivating function of peroxisome proliferator-activated receptor gamma is negatively regulated by sumo conjugation in the amino-terminal domain. Genes to cells:devoted to molecular & cellular mechanisms. 2004;9:1017-1029
    42. Mikkonen L, Hirvonen J, Janne OA. Sumo-1 regulates body weight and adipogenesis via ppargamma in male and female mice. Endocrinology. 2013;154:698-708
    43. Chung SS, Ahn BY, Kim M, Kho JH, Jung HS, Park KS. Sumo modification selectively regulates transcriptional activity of peroxisome-proliferator-activated receptor gamma in c2c12 myotubes. The Biochemical journal.2011;433:155-161
    44. Shimizu M, Yamashita D, Yamaguchi T, Hirose F, Osumi T. Aspects of the regulatory mechanisms of ppar functions:Analysis of a bidirectional response element and regulation by sumoylation. Molecular and cellular biochemistry. 2006;286:33-42
    45. Phillips JW, Barringhaus KG, Sanders JM, Yang Z, Chen M, Hesselbacher S, Czarnik AC, Ley K, Nadler J, Sarembock IJ. Rosiglitazone reduces the accelerated neointima formation after arterial injury in a mouse injury model of type 2 diabetes. Circulation.2003;108:1994-1999
    46. Choi D; Kim SK, Choi SH, Ko YG, Ahn CW, Jang Y, Lim SK, Lee HC, Cha BS. Preventative effects of rosiglitazone on restenosis after coronary stent implantation in patients with type 2 diabetes. Diabetes care. 2004;27:2654-2660
    47. Ghisletti S, Huang W, Ogawa S, Pascual G, Lin ME, Willson TM, Rosenfeld MG, Glass CK. Parallel sumoylation-dependent pathways mediate gene-and signal-specific transrepression by Ixrs and ppargamma. Molecular cell. 2007;25:57-70
    48. Haschemi A, Chin BY, Jeitler M, Esterbauer H, Wagner O, Bilban M, Otterbein LE. Carbon monoxide induced ppargamma sumoylation and ucp2 block inflammatory gene expression in macrophages. PloS one.2011;6:e26376
    49. Bloch M, Prock A, Paonessa F, Benz V, Bahr IN, Herbst L, Witt H, Kappert K, Spranger J, Stawowy P, Unger T, Fusco A, Sedding D, Brunetti A, Foryst-Ludwig A, Kintscher U. High-mobility group a1 protein:A new coregulator of peroxisome proliferator-activated receptor-gamma-mediated transrepression in the vasculature. Circulation research.2012;110:394-405
    50. Lim S, Ahn BY,Chung SS, Park HS, Cho BJ, Kim M, Choi SH, Lee IK, Lee SW, Choi SJ, Chung CH, Cho YM, Lee HK, Park KS. Effect of a peroxisome proliferator-activated receptor gamma sumoylation mutant on neointimal formation after balloon injury in rats. Atherosclerosis.2009;206:411-417
    51. Elgass K, Pakay J, Ryan MT, Palmer CS. Recent advances into the understanding of mitochondrial fission. Biochimica et biophysica acta. 2013;1833:150-161
    52. Mears JA, Lackner LL, Fang S, Ingerman E, Nunnari J, Hinshaw JE. Conformational changes in dnml support a contractile mechanism for mitochondrial fission. Nature structural & molecular biology.2011;18:20-26
    53. Ingerman E, Perkins EM, Marino M, Mears JA, McCaffery JM, Hinshaw JE, Nunnari J. Dnml forms spirals that are structurally tailored to fit mitochondria. The Journal of cell biology.2005;170:1021-1027
    54. Smirnova E, Griparic L, Shurland DL, van der Bliek AM. Dynamin-related protein drpl is required for mitochondrial division in mammalian cells. Molecular biology of the cell.2001;12:2245-2256
    55. Zunino R, Schauss A, Rippstein P, Andrade-Navarro M, McBride HM. The sumo protease senp5 is required to maintain mitochondrial morphology and function. Journal of cell science.2007;120:1178-1188
    56. Harder Z, Zunino R, McBride H. Sumol conjugates mitochondrial substrates and participates in mitochondrial fission. Current biology:CB. 2004;14:340-345
    57. Figueroa-Romero C, Iniguez-Lluhi JA, Stadler J, Chang CR, Arnoult D, Keller PJ, Hong Y, Blackstone C, Feldman EL. Sumoylation of the mitochondrial fission protein drpl occurs at multiple nonconsensus sites within the b domain and is linked to its activity cycle. FASEB journal:official publication of the Federation of American Societies for Experimental Biology. 2009;23:3917-3927
    58. Hayashi M, Lee JD. Role of the bmkl/erk5 signaling pathway:Lessons from knockout mice. J Mol Med (Berl).2004;82:800-808
    59. Hayashi M, Kim SW, Imanaka-Yoshida K, Yoshida T, Abel ED; Eliceiri B, Yang Y, Ulevitch RJ, Lee JD. Targeted deletion of bmkl/erk5 in adult mice perturbs vascular integrity and leads to endothelial failure. The Journal of clinical investigation.2004;113:1138-1148
    60. Nicol RL, Frey N, Pearson G, Cobb M, Richardson J, Olson EN. Activated mek5 induces serial assembly of sarcomeres and eccentric cardiac hypertrophy. The EMBO journal.2001;20:2757-2767
    61. Kimura TE, Jin J, Zi M, Prehar S, Liu W, Oceandy D, Abe J, Neyses L, Weston AH, Cartwright EJ, Wang X. Targeted deletion of the extracellular signal-regulated protein kinase 5 attenuates hypertrophic response and promotes pressure overload-induced apoptosis in the heart. Circulation research. 2010;106:961-970
    62. Woo CH, Shishido T, McClain C, Lim JH, Li JD; Yang J, Yan C, Abe J. Extracellular signal-regulated kinase 5 sumoylation antagonizes shear stress-induced antiinflammatory response and endothelial nitric oxide synthase expression in endothelial cells. Circulation research.2008;102:538-545
    63. Pi X, Garin G, Xie L, Zheng Q, Wei H, Abe J, Yan C, Berk BC. Bmk1/erk5 is a novel regulator of angiogenesis by destabilizing hypoxia inducible factor lalpha. Circulation research.2005;96:1145-1151
    64. zawa Y, Yoshizumi M, Ishizawa K, Fujita Y, Kondo S, Kagami S, Kawazoe K, Tsuchiya K, Tomita S, Tamaki T. Big mitogen-activated protein kinase 1 (bmkl)/extracellular signal regulated kinase 5 (erk5) is involved in platelet-derived growth factor (pdgf)-induced vascular smooth muscle cell migration. Hypertension research:official journal of the Japanese Society of Hypertension.2007;30:1107-1117
    65. Heo KS, Chang E, Le NT, Cushman H, Yeh ET, Fujiwara K, Abe J. De-sumoylation enzyme of sentrin/sumo-specific protease 2 regulates disturbed flow-induced sumoylation of erk5 and p53 that leads to endothelial dysfunction and atherosclerosis. Circulation research.2013;112:911-923
    66. Shishido T, Woo CH, Ding B, McClain C, Molina CA, Yan C, Yang J, Abe J. Effects of mek5/erk5 association on small ubiquitin-related modification of erk5: Implications for diabetic ventricular dysfunction after myocardial infarction. Circulation research.2008;102:1416-1425
    67. Malhotra R, Mason PK. Lamin a/c deficiency as a cause of familial dilated cardiomyopathy. Current opinion in cardiology.2009;24:203-208
    68. Zhang YQ., Sarge KD. Sumoylation regulates lamin a function and is lost in lamin a mutants associated with familial cardiomyopathies. The Journal of cell biology.2008;182:35-39
    69. Sylvius N, Bilinska ZT, Veinot JP, Fidzianska A; Bolongo PM, Poon S, McKeown P, Davies RA, Chan KL, Tang AS, Dyack S, Grzybowski J, Ruzyllo W, McBride H, Tesson F. In vivo and in vitro examination of the functional significances of novel lamin gene mutations in heart failure patients. Journal of medical genetics.2005;42:639-647
    70. Lipskaia L, Chemaly ER, Hadri L, Lompre AM, Hajjar RJ. Sarcoplasmic reticulum ca(2+) atpase as a therapeutic target for heart failure. Expert opinion on biological therapy.2010; 10:29-41
    71. Prunier F, Kawase Y, Gianni D, Scapin C, Danik SB, Ellinor PT, Hajjar RJ, Del Monte F. Prevention of ventricular arrhythmias with sarcoplasmic reticulum ca2+ atpase pump overexpression in a porcine model of ischemia reperfusion. Circulation.2008; 118:614-624
    72. Lyon AR, Bannister ML, Collins T, Pearce E, Sepehripour AH, Dubb SS, Garcia E, O'Gara P, Liang L, Kohlbrenner E, Hajjar RJ, Peters NS, Poole-Wilson PA, Macleod KT, Harding SE. Serca2a gene transfer decreases sarcoplasmic reticulum calcium leak and reduces ventricular arrhythmias in a model of chronic heart failure. Circulation. Arrhythmia and electrophysiology. 2011;4:362-372
    73. Jessup M, Greenberg B, Mancini D, Cappola T, Pauly DF, Jaski B, Yaroshinsky A, Zsebo KM, Dittrich H, Hajjar RJ. Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (cupid):A phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum ca2+-atpase in patients with advanced heart failure. Circulation.2011;124:304-313
    74. Kho C, Lee A, Jeong D, Oh JG, Chaanine AH, Kizana E, Park WJ, Hajjar RJ. Sumo1-dependent modulation of serca2a in heart failure. Nature. 2011;477:601-605
    [1]Johnson ES. Protein modification by SUMO. Annual review of biochemistry. 2004; 73:355-82.
    [2]Sarge KD, Park-Sarge OK. Sumoylation and human disease pathogenesis. Trends in biochemical sciences.2009; 34(4):200-5.
    [3]Matunis MJ, Coutavas E, Blobel G. A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. The Journal of cell biology. 1996; 135(6 Pt 1):1457-70.
    [4]Geiss-Friedlander R, Melchior F. Concepts in sumoylation:a decade on. Nature reviews Molecular cell biology.2007; 8(12):947-56.
    [5]Owerbach D, McKay EM, Yeh ET, Gabbay KH, Bohren KM. A proline-90 residue unique to SUMO-4 prevents maturation and sumoylation. Biochemical and biophysical research communications.2005; 337(2):517-20.
    [6]Hayashi T, Seki M, Maeda D, Wang W, Kawabe Y, Seki T, Saitoh H, Fukagawa T, Yagi H, Enomoto T. Ubc9 is essential for viability of higher eukaryotic cells. Experimental cell research.2002; 280(2):212-21.
    [7]Herrmann J, Lerman LO, Lerman A. Ubiquitin and ubiquitin-like proteins in protein regulation. Circulation research.2007; 100(9):1276-91.
    [8]Pichler A, Gast A, Seeler JS, Dejean A, Melchior F. The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell.2002; 108(1):109-20.
    [9]Kagey MH, Melhuish TA, Wotton D. The polycomb protein Pc2 is a SUMO E3. Cell.2003; 113(1):127-37.
    [10]Jackson PK. A new RING for SUMO:wrestling transcriptional responses into nuclear bodies with PIAS family E3 SUMO ligases. Genes & development. 2001; 15(23):3053-8.
    [11]Yeh ET. SUMOylation and De-SUMOylation:wrestling with life's processes. The Journal of biological chemistry.2009; 284(13):8223-7.
    [12]Gong L, Millas S, Maul GG, Yeh ET. Differential regulation of sentrinized proteins by a novel sentrin-specific protease. The Journal of biological chemistry.2000; 275(5):3355-9.
    [13]Di Bacco A, Ouyang J, Lee HY, Catic A, Ploegh H, Gill G. The SUMO-specific protease SENP5 is required for cell division. Molecular and cellular biology. 2006; 26(12):4489-98.
    [14]Mukhopadhyay D; Ayaydin F, Kolli N, Tan SH, Anan T, Kametaka A, Azuma Y, Wilkinson KD, Dasso M. SUSP1 antagonizes formation of highly SUMO2/3-conjugated species. The Journal of cell biology.2006; 174(7): 939-49.
    [15]Shen LN, Geoffroy MC; Jaffray EG, Hay RT. Characterization of SENP7, a SUMO-2/3-specific isopeptidase. The Biochemical journal.2009; 421(2): 223-30.
    [16]Guinamard R, Demion M, Chatelier A, Bois P. Calcium-activated nonselective cation channels in mammalian cardiomyocytes. Trends in cardiovascular medicine.2006; 16(7):245-50.
    [17]Liu H, El Zein L, Kruse M, Guinamard R, Beckmann A, Bozio A, Kurtbay G, Megarbane A, Ohmert I, Blaysat G, Villain E, Pongs O, Bouvagnet P. Gain-of-function mutations in TRPM4 cause autosomal dominant isolated cardiac conduction disease. Circulation Cardiovascular genetics.2010; 3(4): 374-85.
    [18]Kruse M, Schulze-Bahr E, Corfield V, Beckmann A, Stallmeyer B, Kurtbay G, Ohmert I, Brink P, Pongs O. Impaired endocytosis of the ion channel TRPM4 is associated with human progressive familial heart block type I. The Journal of clinical investigation.2009; 119(9):2737-44.
    [19]Nattel S, Yue L, Wang Z. Cardiac ultrarapid delayed rectifiers:a novel potassium current family o f functional similarity and molecular diversity. Cellular physiology and biochemistry:international journal of experimental cellular physiology, biochemistry, and pharmacology.1999; 9(4-5):217-26.
    [20]Griffith LC. Potassium channels:the importance of transport signals. Current biology:CB.2001; 11(6):R226-8.
    [21]Benson MD, Li QJ, Kieckhafer K, Dudek D, Whorton MR, Sunahara RK, Iniguez-Lluhi JA, Martens JR. SUMO modification regulates inactivation of the voltage-gated potassium channel Kv1.5. Proceedings of the National Academy of Sciences of the United States of America.2007; 104(6):1805-10.
    [22]Gaborit N, Steenman M, Lamirault G, Le Meur N, Le Bouter S, Lande G, Leger J, Charpentier F, Christ T, Dobrev D, Escande D, Nattel S, Demolombe S. Human atrial ion channel and transporter subunit gene-expression remodeling associated with valvular heart disease and atrial fibrillation. Circulation.2005; 112(4):471-81.
    [23]Orias M, Velazquez H, Tung F, Lee G, Desir GV. Cloning and localization of a double-pore K channel, KCNK1:exclusive expression in distal nephron segments. The American journal of physiology.1997; 273(4 Pt 2):F663-6.
    [24]Rajan S, Plant LD, Rabin ML, Butler MH, Goldstein SA. Sumoylation silences the plasma membrane leak K+ channel K2P1. Cell.2005; 121(1):37-47.
    [25]Feliciangeli S, Bendahhou S, Sandoz G, Gounon P, Reichold M, Warth R, Lazdunski M, Barhanin J, Lesage F. Does sumoylation control K2P1/TWIK1 background K+ channels? Cell.2007; 130(3):563-9.
    [26]Plant LD, Dementieva IS, Kollewe A, Olikara S, Marks JD, Goldstein SA. One SUMO is sufficient to silence the dimeric potassium channel K2P1. Proceedings of the National Academy of Sciences of the United States of America.2010; 107(23):10743-8.
    [27]Lee YJ, Miyake S, Wakita H, McMullen DC, Azuma Y, Auh S, Hallenbeck JM. Protein SUMOylation is massively increased in hibernation torpor and is critical for the cytoprotection provided by ischemic preconditioning and hypothermia in SHSY5Y cells. Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism.2007; 27(5):950-62.
    [28]Cimarosti H, Lindberg C, Bomholt SF, Ronn LC, Henley JM. Increased protein SUMOylation following focal cerebral ischemia. Neuropharmacology.2008; 54(2):280-9.
    [29]Yang W, Sheng H, Warner DS, Paschen W. Transient focal cerebral ischemia induces a dramatic activation of small ubiquitin-like modifier conjugation. Journal of cerebral blood flow and metabolism:official journal of the International Society of Cerebral Blood Flow and Metabolism.2008; 28(5): 892-6.
    [30]Lee YJ, Castri P, Bembry J, Maric D, Auh S, Hallenbeck JM. SUMOylation participates in induction of ischemic tolerance. Journal of neurochemistry. 2009; 109(1):257-67.
    [31]Lee YJ, Mou Y, Maric D, Klimanis D, Auh S, Hallenbeck JM. Elevated global SUMOylation in Ubc9 transgenic mice protects their brains against focal cerebral ischemic damage. PloS one.2011; 6(10):e25852.
    [32]Datwyler AL, Lattig-Tunnemann G, Yang W, Paschen W, Lee SL, Dirnagl U, Endres M, Harms C. SUMO2/3 conjugation is an endogenous neuroprotective mechanism. Journal of cerebral blood flow and metabolism:official journal of the International Society of Cerebral Blood Flow and Metabolism.2011; 31(11):2152-9.
    [33]Berger J, Moller DE. The mechanisms of action of PPARs. Annual review of medicine.2002; 53:409-35.
    [34]Pourcet B, Pineda-Torra I, Derudas B, Staels B; Glineur C. SUMOylation of human peroxisome proliferator-activated receptor alpha inhibits its trans-activity through the recruitment of the nuclear corepressor NCoR. The Journal of biological chemistry.2010; 285(9):5983-92.
    [35]Leuenberger N, Pradervand S, Wahli W. Sumoylated PPARalpha mediates sex-specific gene repression and protects the liver from estrogen-induced toxicity in mice. The Journal of clinical investigation.2009; 119(10):3138-48.
    [36]Floyd ZE, Stephens JM. Controlling a master switch of adipocyte development and insulin sensitivity:covalent modifications of PPARgamma. Biochimica et biophysica acta.2012; 1822(7):1090-5.
    [37]Floyd ZE, Stephens JM. Control of peroxisome proliferator-activated receptor gamma2 stability and activity by SUMOylation. Obesity research.2004; 12(6): 921-8.
    [38]Ohshima T, Koga H, Shimotohno K. Transcriptional activity of peroxisome proliferator-activated receptor gamma is modulated by SUMO-1 modification. The Journal of biological chemistry.2004; 279(28):29551-7.
    [39]Pascual G, Fong AL, Ogawa S, Gamliel A, Li AC, Perissi V, Rose DW, Willson TM, Rosenfeld MG, Glass CK. A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma. Nature. 2005; 437(7059):759-63.
    [40]Jennewein C, Kuhn AM, Schmidt MV, Meilladec-Jullig V, von Knethen A, Gonzalez FJ, Brune B. Sumoylation of peroxisome proliferator-activated receptor gamma by apoptotic cells prevents lipopolysaccharide-induced NCoR removal from kappaB binding sites mediating transrepression of proinflammatory cytokines. J Immunol.2008; 181(8):5646-52.
    [41]Yamashita D, Yamaguchi T, Shimizu M, Nakata N, Hirose F, Osumi T. The transactivating function of peroxisome proliferator-activated receptor gamma is negatively regulated by SUMO conjugation in the amino-terminal domain. Genes to cells:devoted to molecular & cellular mechanisms.2004; 9(11): 1017-29.
    [42]Mikkonen L, Hirvonen J, Janne OA. SUMO-1 regulates body weight and adipogenesis via PPARgamma in male and female mice. Endocrinology.2013; 154(2):698-708.
    [43]Chung SS, Ahn BY, Kim M, Kho JH, Jung HS, Park KS. SUMO modification selectively regulates transcriptional activity of peroxisome-proliferator-activated receptor gamma in C2C12 myotubes. The Biochemical journal.2011; 433(1):155-61.
    [44]Shimizu M, Yamashita D, Yamaguchi T, Hirose F, Osumi T. Aspects of the regulatory mechanisms of PPAR functions:analysis of a bidirectional response element and regulation by sumoylation. Molecular and cellular biochemistry. 2006; 286(1-2):33-42.
    [45]Phillips JW, Barringhaus KG, Sanders JM, Yang Z, Chen M, Hesselbacher S, Czarnik AC, Ley K, Nadler J, Sarembock IJ. Rosiglitazone reduces the accelerated neointima formation after arterial,injury in a mouse injury model of type 2 diabetes. Circulation.2003; 108(16):1994-9.
    [46]Choi D, Kim SK, Choi SH, Ko YG; Ahn CW, Jang Y, Lim SK, Lee HC, Cha BS. Preventative effects of rosiglitazone on restenosis after coronary stent implantation in patients with type 2 diabetes. Diabetes care.2004; 27(11): 2654-60.
    [47]Ghisletti S, Huang W, Ogawa S, Pascual G, Lin ME, Willson TM, Rosenfeld MG, Glass CK. Parallel SUMOylation-dependent pathways mediate gene-and signal-specific transrepression by LXRs and PPARgamma. Molecular cell.2007; 25(1):57-70.
    [48]Haschemi A, Chin BY, Jeitler M, Esterbauer H, Wagner O, Bilban M, Otterbein LE. Carbon monoxide induced PPARgamma SUMOylation and UCP2 block inflammatory gene expression in macrophages. PloS one.2011; 6(10): e26376.
    [49]Bloch M, Prock A, Paonessa F, Benz V, Bahr IN, Herbst L, Witt H, Kappert K, Spranger J, Stawowy P, Unger T, Fusco A, Sedding D, Brunetti A, Foryst-Ludwig A, Kintscher U. High-mobility group A1 protein:a new coregulator of peroxisome proliferator-activated receptor-gamma-mediated transrepression in the vasculature. Circulation research.2012; 110(3):394-405.
    [50]Lim S, Ahn BY, Chung SS, Park HS, Cho BJ, Kim M, Choi SH, Lee IK, Lee SW, Choi SJ, Chung CH, Cho YM, Lee HK, Park KS. Effect of a peroxisome proliferator-activated receptor gamma sumoylation mutant on neointimal formation after balloon injury in rats. Atherosclerosis.2009; 206(2):411-7.
    [51]Elgass K, Pakay J, Ryan MT, Palmer CS. Recent advances into the understanding of mitochondrial fission. Biochimica et biophysica acta.2013; 1833(1):150-61.
    [52]Mears JA, Lackner LL, Fang S, Ingerman E, Nunnari J, Hinshaw JE. Conformational changes in Dnml support a contractile mechanism for mitochondrial fission. Nature structural & molecular biology.2011; 18(1): 20-6.
    [53]Ingerman E, Perkins EM, Marino M, Mears JA, McCaffery JM, Hinshaw JE, Nunnari J. Dnml forms spirals that are structurally tailored to fit mitochondria The Journal of cell biology.2005; 170(7):1021-7.
    [54]Smirnova E, Griparic L, Shurland DL, van der Bliek AM. Dynamin-related protein Drpl is required for mitochondrial division in mammalian cells. Molecular biology of the cell.2001; 12(8):2245-56.
    [55]Zunino R, Schauss A, Rippstein P, Andrade-Navarro M, McBride HM. The SUMO protease SENP5 is required to maintain mitochondrial morphology and function. Journal of cell science.2007; 120(Pt 7):1178-88.
    [56]Harder Z, Zunino R, McBride H. Sumol conjugates mitochondrial substrates and participates in mitochondrial fission. Current biology:CB.2004; 14(4): 340-5.
    [57]Figueroa-Romero C, Iniguez-Lluhi JA, Stadler J, Chang CR, Arnoult D, Keller PJ, Hong Y, Blackstone C, Feldman EL. SUMOylation of the mitochondrial fission protein Drp1 occurs at multiple nonconsensus sites within the B domain and is linked to its activity cycle. FASEB journal:official publication of the Federation of American Societies for Experimental Biology.2009; 23(11): 3917-27.
    [58]Hayashi M, Lee JD. Role of the BMK1/ERK5 signaling pathway:lessons from knockout mice. J Mol Med (Berl).2004; 82(12):800-8.
    [59]Hayashi M, Kim SW, Imanaka-Yoshida K, Yoshida T, Abel ED, Eliceiri B, Yang Y, Ulevitch RJ, Lee JD. Targeted deletion of BMK1/ERK5 in adult mice perturbs vascular integrity and leads to endothelial failure. The Journal of clinical investigation.2004; 113(8):1138-48.
    [60]Nicol RL, Frey N, Pearson G, Cobb M, Richardson J, Olson EN. Activated MEK5 induces serial assembly of sarcomeres and eccentric cardiac hypertrophy. The EMBO journal.2001; 20(11):2757-67.
    [61]Kimura TE, Jin J, Zi M, Prehar S, Liu W, Oceandy D, Abe J, Neyses L, Weston AH, Cartwright EJ, Wang X. Targeted deletion of the extracellular signal-regulated protein kinase 5 attenuates hypertrophic response and promotes pressure overload-induced apoptosis in the heart. Circulation research.2010; 106(5): 961-70.
    [62]Woo CH, Shishido T, McClain C, Lim JH, Li JD, Yang J, Yan C, Abe J. Extracellular signal-regulated kinase 5 SUMOylation antagonizes shear stress-induced antiinflammatory response and endothelial nitric oxide synthase expression in endothelial cells. Circulation research.2008; 102(5):538-45.
    [63]Pi X, Garin G, Xie L, Zheng Q, Wei H, Abe J, Yan C, Berk BC. BMK1/ERK5 is a novel regulator of angiogenesis by destabilizing hypoxia inducible factor lalpha. Circulation research.2005; 96(11):1145-51.
    [64]Izawa Y, Yoshizumi M, Ishizawa K, Fujita Y, Kondo S, Kagami S, Kawazoe K, Tsuchiya K, Tomita S, Tamaki T. Big mitogen-activated protein kinase 1 (BMK1)/extracellular signal regulated kinase 5 (ERK5) is involved in platelet-derived growth factor (PDGF)-induced vascular smooth muscle cell migration. Hypertension research:official journal of the Japanese Society of Hypertension.2007; 30(11):1107-17.
    [65]Heo KS, Chang E, Le NT, Cushman H, Yeh ET, Fujiwara K, Abe J. De-SUMOylation enzyme of sentrin/SUMO-specific protease 2 regulates disturbed flow-induced SUMOylation of ERK5 and p53 that leads to endothelial dysfunction and atherosclerosis. Circulation research.2013; 112(6):911-23.
    [66]Shishido T, Woo CH, Ding B, McClain C, Molina CA, Yan C, Yang J, Abe J. Effects of MEK5/ERK5 association on small ubiquitin-related modification of ERK5: implications for diabetic ventricular dysfunction after myocardial infarction. Circulation research.2008; 102(11):1416-25.
    [67]Malhotra R, Mason PK. Lamin A/C deficiency as a cause of familial dilated cardiomyopathy. Current opinion in cardiology.2009; 24(3):203-8.
    [68]Zhang YQ, Sarge KD. Sumoylation regulates lamin A function and is lost in lamin A mutants associated with familial cardiomyopathies. The Journal of cell biology.2008; 182(1):35-9.
    [69]Sylvius N, Bilinska ZT, Veinot JP, Fidzianska A, Bolongo PM, Poon S, McKeown P, Davies RA, Chan KL, Tang AS, Dyack S, Grzybowski J, Ruzyllo W, McBride H, Tesson F. In vivo and in vitro examination of the functional significances of novel lamin gene mutations in heart failure patients. Journal of medical genetics.2005; 42(8):639-47.
    [70]Kranias EG, Hajjar RJ. Modulation of cardiac contractility by the phospholamban/SERCA2a regulatome. Circulation research.2012; 110(12): 1646-60.
    [71]Hadri L, Bobe R, Kawase Y, Ladage D, Ishikawa K, Atassi F, Lebeche D, Kranias EG, Leopold JA, Lompre AM, Lipskaia L, Hajjar RJ. SERCA2a gene transfer enhances eNOS expression and activity in endothelial cells. Molecular therapy:the journal of the American Society of Gene Therapy.2010; 18(7): 1284-92.
    [72]Lipskaia L, Chemaly ER, Hadri L, Lompre AM, Hajjar RJ. Sarcoplasmic reticulum Ca(2+) ATPase as a therapeutic target for heart failure. Expert opinion on biological therapy.2010; 10(1):29-41.
    [73]Prunier F, Kawase Y, Gianni D, Scapin C, Danik SB, Ellinor PT, Hajjar RJ, Del Monte F. Prevention of ventricular arrhythmias with sarcoplasmic reticulum Ca2+ATPase pump overexpression in a porcine model of ischemia reperfusion Circulation.2008; 118(6):614-24.
    [74]Lyon AR, Bannister ML, Collins T, Pearce E, Sepehripour AH, Dubb SS, Garcia E, O'Gara P, Liang L, Kohlbrenner E, Hajjar RJ, Peters NS, Poole-Wilson PA, Macleod KT, Harding SE. SERCA2a gene transfer decreases sarcoplasmic reticulum calcium leak and reduces ventricular arrhythmias in a model of chronic heart failure. Circulation Arrhythmia and electrophysiology.2011; 4(3) 362-72.
    [75]Trost SU, Belke DD, Bluhm WF, Meyer M, Swanson E, Dillmann WH. Overexpression of the sarcoplasmic reticulum Ca(2+)-ATPase improves myocardial contractility in diabetic cardiomyopathy. Diabetes.2002; 51(4): 1166-71.
    [76]Hajjar RJ, Zsebo K, Deckelbaum L, Thompson C, Rudy J, Yaroshinsky A, Ly H, Kawase Y, Wagner K, Borow K, Jaski B, London B, Greenberg B; Pauly DF, Patten R, Starling R, Mancini D, Jessup M. Design of a phase 1/2 trial of intracoronary administration of AAVl/SERCA2a in patients with heart failure. Journal of cardiac failure.2008; 14(5):355-67.
    [77]Jessup M, Greenberg B, Mancini D, Cappola T, Pauly DF, Jaski B, Yaroshinsky A, Zsebo KM, Dittrich H, Hajjar RJ. Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID):a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. Circulation.2011; 124(3):304-13.
    [78]Kho C, Lee A, Jeong D, Oh JG, Chaanine AH, Kizana E, Park WJ, Hajjar RJ. SUMO1-dependent modulation of SERCA2a in heart failure. Nature.2011; 477(7366):601-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700