参与休克血管反应性和钙敏感性调控的PKC亚型及其MLC_(20)磷酸化调控机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
严重创伤/休克失代偿期常出现血管低反应性,主要表现为全身血管对缩血管物质和舒血管物质的反应降低或不反应,本实验室前期研究发现,除了以往认识的血管低反应性发生的血管平滑肌细胞(vascular smooth muscle cell,VSMC)的K+和Ca2+通道功能障碍、VSMC膜超极化之外,钙失敏(Ca2+ desensitization),即血管平滑肌细胞收缩蛋白对钙的敏感性(calcium sensitivity)降低,也就是力/钙比率(Force/Ca2+ ratio)和肌肉收缩效率的降低,也是休克血管低反应性发生的重要原因;蛋白激酶C (Protein kinase C,PKC)参与了休克后血管反应性和钙敏感性的调控。PKC是一组磷脂依赖性的钙激活的蛋白丝氨酸/苏氨酸激酶,按生化性质及结构可分为三大类:传统型PKC (classic PKC, cPKC):包括PKCα、βⅡ、βⅠ、γ;新型PKC (novel PKC, nPKC):包括PKCδ、ε、η、θ;非典型PKC (atypical PKC, aPKC):包括PKCζ、ι、λ。在大鼠主动脉和肠系膜上动脉发现,主要表达PKCα、PKCδ、PKCε和PKCζ四种收缩功能相关亚型。但是哪些亚型参与失血性休克后血管反应性和钙敏感性的调节,其机制如何?尚不清楚。据此,我们利用大鼠失血性休克模型和缺氧处理体外培养血管平滑肌细胞模型,研究了参与失血性休克后钙敏感性和血管反应性调节的PKC亚型,并从MLC20磷酸化的非钙依赖性调节途径入手研究其机制,以及缺血预适应和药物预处理对其的诱导作用。主要内容包括三部分:①明确参与失血性休克后血管反应性和钙敏感性调节的PKC亚型;②研究相关PKC亚型调节休克血管钙敏感性的MLC20磷酸化机制;③观察缺血预适应和吡那地尔预处理对PKC的诱导作用及其对失血性休克大鼠血管反应性和钙敏感性的保护作用。
     主要实验方法:
     第一部分明确参与失血性休克后血管反应性和钙敏感性调节的PKC亚型
     1.采用失血性休克大鼠肠系膜上动脉(superior mesenteric artery, SMA)的一级分支血管环,测定不同休克时间点(40 mmHg,即时、30min、1 h、2 h、4 h)血管环的血管反应性(用血管环对梯度浓度NE的收缩反应反映)和钙敏感性(用血管环对梯度浓度钙离子的收缩反应反映),观察变化规律。
     2.采用失血性休克大鼠(40 mmHg, 2 h)的肠系膜上动脉的一级分支血管环,观察各亚型PKC的激动剂和抑制剂对休克2h血管反应性、钙敏感性的影响。
     3.采用失血性休克大鼠肠系膜上动脉,测定休克不同时间点(40 mmHg, ,即时、30min、1 h、2 h、4 h)相关亚型PKC的mRNA表达、在胞浆和胞膜的蛋白表达,观察变化规律。
     第二部分相关亚型PKC调控失血性休克大鼠血管钙敏感性的MLC20磷酸化机制
     1.采用失血性休克大鼠(40 mmHg, 2 h)的肠系膜上动脉一级分支血管环,观察CPI-17、ILK和ZIPK的拮抗剂(褪膜后应用CPI-17、ILK和ZIPK的中和抗体)对相关亚型PKC激动剂调节休克血管敏感性作用的影响,明确相关亚型PKC调控休克血管钙敏感性是否与CPI-17、ILK和ZIPK有关。
     2.采用缺氧培养的肠系膜上动脉VSMC (缺氧处理2h),观察相关亚型PKC激动剂对缺氧后CPI-17磷酸化和表达、以及ILK、ZIPK的活性和表达的影响,明确相关亚型PKC究竟通过是影响CPI-17、ILK和ZIPK的活性还是表达来调控钙敏感性。
     3.采用缺氧培养的肠系膜上动脉VSMC (缺氧处理2h),应用免疫共沉淀和western blot技术观察缺氧2h后,以及相关亚型PKC激动剂处理后,CPI-17、ILK、ZIPK和相关亚型PKC之间的相互作用关系,以及CPI-17、ILK和ZIPK之间的相互作用关系。
     4.采用缺氧培养的肠系膜上动脉VSMC (缺氧处理2h),观察相关亚型PKC激动剂及CPI-17、ILK和ZIPK抑制剂对缺氧血管平滑肌细胞MLCP活性的影响;采用失血性休克大鼠(40 mmHg, 2 h)的肠系膜上动脉,观察相关亚型PKC激动剂及CPI-17、ILK和ZIPK抑制剂对休克后血管MLC20磷酸化的影响,分析CPI-17、ILK和IPK调节休克后血管钙敏感性与MLCP和MLC20的关系。
     第三部分观察缺血预适应和吡那地尔预处理对PKC的诱导作用及其对失血性休克大鼠血管反应性和钙敏感性的保护作用
     1.观察不同失血量(2.5%、5%、10%)预处理不同时间(30min、1h、2h、3h)后,以及不同剂量吡那地尔(12μg/kg体重、25μg/kg体重、50μg/kg体重)预处理不同时间(30min、1h、2h、3h)对失血性休克大鼠(40 mmHg,2 h)的NE (3μg/kg体重)的升压作用和缩血管作用的影响,以及对肠系膜上动脉一级分支血管环的血管反应性和钙敏感性的影响,确定可诱导对失血性休克后血管反应性保护作用的缺血预适应和吡那地尔预处理条件。
     2.观察相关亚型PKC拮抗剂对缺血预适应和吡那地尔预处理(5%失血量以及25μg/kg体重吡那地尔预处理30min)诱导的对失血性休克大鼠(40 mmHg,2 h)血管反应性和钙敏感性保护作用的影响。以及观察缺血预适应和吡那地尔预处理对失血性休克大鼠(40 mmHg, 2 h)肠系膜上动脉相关亚型PKC胞浆和胞膜蛋白表达的影响。
     主要结果:
     一、参与失血性休克后血管反应性和钙敏感性调节的PKC亚型
     1.失血性休克后大鼠肠系膜上动脉对NE和Ca2+的收缩反应性在休克早期增高(P<0.01),从休克30min开始降低(P<0.01),并随着休克时间延长逐渐降低(P<0.01)。
     2. PKCα激动剂thymelea toxin、PKCε激动剂carbachol和PKCδ的非特异性激动剂PMA可显著增高休克2h大鼠肠系膜上动脉对NE和Ca2+的收缩反应性(P <0.01),PKCα抑制剂G?-6976和PKCε假底物抑制肽可显著降低休克大鼠肠系膜上动脉对NE和Ca2+的收缩反应性(P <0.01),但PKCζ的激动剂和抑制剂不改变休克大鼠肠系膜上动脉对NE和Ca2+的收缩反应性,PKCδ的抑制剂不能抑制PMA的增高休克大鼠肠系膜上动脉对NE和Ca2+收缩反应性的作用。
     3. PKCα和PKCε的mRNA表达在失血性休克后逐渐增高(P<0.01)。失血性休克后,PKCα和PKCε在胞浆部分的蛋白表达降低(P<0.01),而在胞膜部分的蛋白表达增高(P<0.01),呈现由胞浆向胞膜的转位。
     二、相关亚型PKC调控失血性休克大鼠血管钙敏感性的MLC20磷酸化机制
     1. PKCα激动剂thymelea toxin和PKCε激动剂carbachol可部分恢复休克大鼠肠系膜上动脉的钙敏感性(P<0.01),CPI-17、ILK和ZIPK的中和抗体可消除PKCα和ε激动剂对休克血管钙敏感性的恢复作用(P<0.01)。
     2.缺氧2h的VSMC中CPI-17、ILK和ZIPK的蛋白表达、CPI-17磷酸化、ILK和ZIPK活性均降低(P<0.01),PKCα激动剂thymelea toxin和PKCε激动剂carbachol可增高其蛋白表达,增高CPI-17磷酸化、以及ILK和ZIPK活性(P<0.01)。
     3. PKCα的免疫沉淀中可杂交出ILK和ZIPK,尤其是ILK的蛋白条带,不能杂交出CPI-17的蛋白条带,PKCε的免疫沉淀中可杂交出ILK和ZIPK的蛋白条带,也不能杂交出CPI-17的蛋白条带,CPI-17的免疫沉淀中可杂交出ILK和ZIPK的蛋白条带,ILK的免疫沉淀中可杂交出ZIPK的蛋白条带。
     4.缺氧2h的VSMC中,MLCP活性显著增高(P<0.01),休克2h的大鼠肠系膜上动脉中MLC20磷酸化显著降低(P<0.01),PKCα和PKCε激动剂可降低缺氧后的MLCP活性(P<0.01),增高休克后的MLC20磷酸化(P<0.01),CPI-17、ILK和ZIPK的中和抗体可逆转PKCα和PKCε激动剂对缺氧后MLCP活性和MLC20磷酸化的作用(P<0.01)。
     三、缺血预适应和吡那地尔预处理对PKC的诱导作用及其对失血性休克大鼠血管反应性和钙敏感性的保护作用
     1.缺血预处理和吡那地尔预处理可改善失血性休克2h后NE诱导的升压效应和缩血管效应,改善SMA的血管反应性和钙敏感性,以5%失血量预适应30min和25μg/kg吡那地尔预处理30min效果最好(P<0.01)。
     2. PKCα抑制剂G?-6976和PKCε假底物抑制肽可显著抑制缺血预适应(5%失血量预适应30min)和吡那地尔预处理(25μg/kg吡那地尔预处理30min)诱导的对失血性休克2h后SMA一级分支血管反应性和钙敏感性的保护作用(P<0.01)。缺血预适应和吡那地尔预处理可诱导失血性休克后的PKCα和PKCε由胞浆向胞膜转位(P<0.01)。
     结论:
     1. PKCα和PKCε是参与大鼠失血性休克后血管反应性和钙敏感性调节的主要PKC亚型,也是失血性休克后血管反应性的重要内源性保护分子。
     2.失血性休克后,PKCα和PKCε可直接作用于ILK和ZIPK,也可通过ILK和ZIPK间接作用于CPI-17,改变CPI-17、ILK和ZIPK的蛋白表达和活性,调节MLCP活性,进而调节MLC20磷酸化,最终调节失血性休克大鼠的血管反应性和钙敏感性。
     3.缺血预适应和吡那地尔预处理可诱导大鼠肠系膜上动脉PKCα和PKCε由胞浆向胞膜的转位和活化,从而诱导对失血性休克后血管反应性和钙敏感性的保护效应。
After severe trauma or shock, including hemorrhagic, endotoxic and septic shock, vascular reactivity to vasoconstrictors and vasodilators is greatly reduced. Our previous studies showed that the vascular hyporeactivity is not only caused by the functional disorder of the K+ and Ca2+ cannels in vascular smooth muscle cell (VSMC), the hyperpolarization of VSMC membrane, but also by the calcium desensitization (the decrease of force/Ca2+ ratio) in VSMC. Our previous study showed that calcium desensitization is one of the important mechanisms responsible for the occurrence of vascular hyporeactivity, PKC take part in the regulation of vascular reactivity and calcium sensitization following hemorrhagic shock (HS). Protein kinase C (PKC) is a widely distributed protein serine/threonine kinase with broad substrate specificity, it comprises of a family of at least 12 isozymes, which are classified into three main groups: conventional, novel and atypical PKC. Conventional PKC are the Ca2+-dependent isozymesα,β?,β??,γ. Novel PKC are the Ca2+-independent isoformsδ,ε,η,θ,μ. The atypical isozymes are PKCζ,ι,λ. Among these numerous isoforms, only PKCα,ε,δandζare identified as the contraction-related PKC isoforms in aorta and superior mesenteric artery of rats, While which isoform plays an important role in the regulation of calcium desensitivity and vascular hyporeactivity following hemorrhagic shock and what is the precise mechanism is still unknown. So with hemorrhagic shock model of rats and hypoxia-treated VSMCs, we investigated the PKC isoforms responsible for the regulation of the vascular reactivity and calcium sensitivity following hemorrhagic shock and its calcium-independent regulatory mechanism through the 20kDa myosin light chain (MLC20) phosphorylation signal transduction pathway, and the induction effects by ischemia precondition and pinacidil pretreatment. The experiments were conducted in three parts:①To identify the PKC isoforms responsible for the regulation of the vascular reactivity and calcium sensitivity following hemorrhagic shock.②To investigate the regulatory mechanism of the related PKC isoforms on vascular reactivity and calcium sensitivity.③To observe the induction effects of ischemia precondition and pinacidil pretreatment on the related PKC isoforms, and their protective effects on vascular reactivity and calcium sensitivity after hemorrhagic shock.
     Methods:
     Part I. To identify the PKC isoforms responsible for the regulation of the vascular reactivity and calcium sensitivity following hemorrhagic shock.
     1. The first class arborizations of superior mesenteric artery (SMA) from normal and hemorrhagic shock rats (40mmHg) at different time after shock (immediately, 30min, 1h, 2h and 4h) were adopted to assay the vascular reactivity and calcium sensitivity via observing the contraction initiated by norepinephrine (NE) and Ca2+ with isolated organ perfusion system.
     2. The first class arborizations of SMA from hemorrhagic shock rats (40mmHg, 2h) were adopted to observe the effects of agonists and antagonists of PKCα,ε,δandζon the vascular reactivity and calcium sensitivity following HS.
     3. The SMAs from normal and hemorrhagic shock rats (40mmHg) at different time after shock (immediately, 30min, 1h, 2h and 4h) were adopted to determine the mRNA, protein expression and distribution of the related PKC isoforms using RT-PCR and western blot technique.
     Part II. To investigate the regulatory mechanism of the related PKC isoforms on vascular reactivity and calcium sensitivity through the MLC20 phosphorylation signal transduction pathway.
     1. The first class arborizations of SMA from hemorrhagic shock rats (40mmHg, 2h) were adopted to observe the influence of inhibitors of PKC–potentiated phosphatase inhibitor of 17 kDa (CPI-17), integrin-linked kinase (ILK) and zipper-interacting protein kinase (ZIPK) (using their neutralizing antibodies after permeabilization) on the effects of the related PKC isoforms agonists on calcium sensitivity after shock.
     2. Two hours hypoxia-treated vascular smooth muscle cells (VSMCs) were adopted to measure the protein expression of CPI-17, ILK and ZIPK, the phosphorylation of CPI-17, and the activity of ILK and ZIPK after applying the agonists of the related PKC isoforms following hypoxia via western blot and substrate phosphorylation.
     3. Two hours hypoxia-treated VSMCs were adopted to observe the direct effect of CPI-17, ILK and ZIPK, and their relationship to PKC isoforms via co-immunoprecipitation and immunoblot analysis.
     4. Two hours hypoxia-treated VSMCs were adopted to determine the myosin light chain phosphatase (MLCP) activity, and SMA from hemorrhagic shock rats (40mmHg, 2h) were adopted to determine the MLC20 phosphorylation after applying the agonists of the related PKC isoforms and the inhibitors of CPI-17, ILK and ZIPK via substrate phosphorylation and western blot.
     Part III. To observe the induction effects of ischemia precondition and pinacidil pretreatment on the related PKC isoforms, and their protective effects on vascular reactivity and calcium sensitivity after hemorrhagic shock.
     1. The NE-induced pressor response and vasoconstriction response, the vascular reactivity and calcium sensitivity of the first class arborization of SMA after ischemia precondition with different hemorrhage (2.5%, 5%, 10%), and pinacidil pretreatment with different dosage (12μg/kg body weight, 25μg/kg body weight, 50μg/kg body weight) implemented at different time before hemorrhagic shock (30min, 1h, 2h and 3h) were measured to determine the optimal ischemia precondition and pinacidil pretreatment which induce the protection against vascular hyporeactivity and calcium desensitization after hemorrhagic shock
     2. The SMAs tissue and the first class arborization artery rings of SMA from hemorrhagic shock (40 mmHg, 2 h), the optimal ischemia preconditioned and pinacidil pretreatmented rats were used to observe the effects of the related PKC isoforms antagonists on the protection of vascular reactivity and calcium sensitivity after hemorrhagic shock, and the effects of ischemia precondition and pinacidil pretreatment on the protein translocation of the related PKC isoforms.
     Results:
     1. The PKC isoforms responsible for the regulation of the vascular reactivity and calcium sensitivity following HS
     (1) The contractile response of SMA to NE and Ca2+ were increased at the early stage of shock (P<0.01), and decreased since 30min after shock (P<0.01), and continued to decrease at the late stage of shock (P<0.01).
     (2) PKCαagonist thymelea toxin, PKCεagonist carbachol, and PKC nonselective agonist PMA significantly restored the contractile response to NE and Ca2+ as compared with shock group (P<0.01 or P<0.05), PKCαantagonist, G?-6976, and PKCεantagonist, PKCεpseudosubstrate inhibition peptide, further decreased the contractility to NE and Ca2+ as compared with shock group or permeabilized shock group (P<0.01 or P<0.05). While PKCζantagonist did not change the contractility to NE and Ca2+ after shock, and PKCδantagonist did not inhibit PMA induced increase of contractile response of SMA to NE and Ca2+.
     (3) The mRNA expression of PKCαand PKCεexhibited a time-dependent increase following HS as compared with normal control (P<0.01). The protein expression of PKCαand PKCεincreased in membrane fraction and decrease in cytosolic fraction following HS as compared with normal control (P<0.01), and exhibited a time-dependent translocation from cytoplasm to membrane fraction following HS as compared with normal control.
     2. The regulatory mechanism of the related PKC isoforms on vascular reactivity and calcium sensitivity through the MLC20 phosphorylation signal transduction pathway.
     (1) The contractile response of SMA to Ca2+ decreased after 2h shock was restored by PKCαagonist, thymelea toxin, and PKCεagonist, carbachol. The neutralizing antibodies of CPI-17, ILK and ZIPK abolished the increase of calcium sensitivity induced by the agonists of PKCαandε(P<0.01).
     (2) The protein expression of CPI-17, ILK and ZIPK after 2h hypoxia was decreased obviously as compared with normal control, and restored by PKCαagonist, thymelea toxin, and PKCεagonist, carbachol (P<0.01). The CPI-17 phosphorylation and the activity of ILK and ZIPK were also decreased in VSMC after 2h hypoxia as compared with normal control, and restored by PKCαagonist, thymelea toxin, and PKCεagonist, carbachol (P<0.01).
     (3) ILK and ZIPK, especially ILK was present in the immunoprecipitates of PKCα, while CPI-17 was not, ILK and ZIPK were both present in the immunoprecipitates of PKCε, while CPI-17 was not either. ILK and ZIPK were both presented in the immunoprecipitates of CPI-17, ZIPK was presented in the immunoprecipitates of ILK.
     (4) MLCP activity was significantly increased after 2h hypoxia as compared with the normal control (P<0.01), MLC20 phosphorylation was significantly decreased after 2h shock as compared with normal control (P<0.01). The agonists of PKCαand PKCεdecreased the MLCP activity and increased the MLC20 phosphorylation after 2h hypoxia or shock (P<0.01). The neutralizing antibodies of CPI-17, ILK and ZIPK obviously reversed the effects of the PKCαandεagonists on MLCP activity and MLC20 phosphorylation (P<0.01).
     3. The induction effects of ischemia precondition and pinacidil pretreatment on the related PKC isoforms, and their protective effects on vascular reactivity and calcium sensitivity after hemorrhagic shock.
     (1) Ischemia precondition, especially 5% hemorrhage precondition, and pinacidil pretreatment, especially 25μg/kg pinacidil pretreatment, implemented at 30min before shock, improved the decreased NE-induced pressor response and vasoconstriction response, and improved the decreased vascular reactivity and calcium sensitivity after hemorrhagic shock (P<0.01).
     (2) The inhibitor of PKCα, G?-6976, and the inhibitor of PKCε, PKCεpseudosubstrate inhibitory peptidee, could significantly suppress the protection effects of ischemia precondition (5% hemorrhage precondition implemented at 30min before shock) and pinacidil pretreatment (25μg/kg pinacidil pretreatment also implemented at 30min before shock) on the vascular reactivity and calcium sensitivity after hemorrhagic shock (P<0.01).The ischemia precondition and pinacidil pretreatment could further promote shock induced PKCαand PKCεtranslocation from cytosolic to membrane fraction (P<0.01).
     Conclusions:
     1. PKCαand PKCεmay be the main isoforms of PKC responsible for the regulation of the vascular reactivity and calcium sensitivity following hemorrhagic shock, and they may be the important endogenous protective molecule of vascular reactivity.
     2. The regulatory effects of PKCαand PKCεon vascular reactivity and calcium sensitivity may be through altering the protein expression and activity of CPI-17, ILK and ZIPK. PKCαandεmay directly act on ILK and ZIPK. ILK and ZIPK may directly alter or via CPI-17 to alter MLCP activity and MLC20 phosphorylation to regulate the vascular calcium sensitivity.
     3. Ischemia precondition and pinacidil pretreatment may induce the translocation and activation of PKCαand PKCε, leading to the protection against vascular hyporeactivity and calcium desensitization after hemorrhagic shock.
引文
1 Baker CH, Sutton ET, Price JM. Arteriolar reactivity of endotoxin-tolerant rats after hemorrhage and reinfusion. Shock, 1995, 4: 455-460.
    2 Szabo C, Farago M, Horvath I, et al. Hemorrhagic hypotension impairs endothelium-dependent relaxations in the renal artery of the cat. Circ Shock, 1992, 36: 238-241.
    3 Scalia R, Pearlman S, Campbell B, et al. Time course of endothelial dysfunction and neutrophil adherence and infiltration during murine traumatic shock. Shock. 1996; 6(3): 177-182.
    4江其生,胡德耀,肖南,等.失血性休克大鼠血管平滑肌收缩功能变化研究.中国病理生理杂志, 2002; 18(11): 1425-1426.
    5 Jing Xu, Liangmin Liu. The role of calcium desensitization in vascular hyporeactivity and its regulation following hemorrhagic shock. Shock, 2005; 23(6): 576-581.
    6余刚,罗勇. PKC同工酶研究进展.重庆医科大学学报. 2001; 26(1): 103-105.
    7 Kanashiro CA, Khalil RA. Signal transduction by protein kinase C in mammalian cells. Clin Exp Pharmacol Physiol. 1998; 25(12): 974-985.
    8 Giardina JB, Tanner DJ, Khalil RA. Oxidized-LDL enhances coronary vasoconstriction by increasing the activity of protein kinase C isoforms alpha and epsilon. Hypertension. 2001; 37(2 Part 2): 561-8.
    9 Kitazawa T, Eto M, Woodsome TP, et al. Agonists trigger G protein-mediated activation of the CPI-17 inhibitor phosphoprotein of myosin light chain phosphatase to enhance vascular smooth muscle contractility. J Biol Chem. 2000; 275(14): 9897-900.
    10 Weber LP, Van-Lierop JE, Walsh MP, et al. Ca2+-independent phosphorylation of myosin in rat caudal artery and chicken gizzard myofilaments. J Physiol. 1999; 516 ( Pt 3): 805-24.
    11 Deng JT, Van-Lierop JE, Sutherland C, et al. Ca2+-independent smooth muscle contraction. a novel function for integrin-linked kinase. J Biol Chem. 2001; 276(19): 16365-73.
    12 Deng JT, Sutherland C, Brautigan DL, et al. Phosphorylation of the myosin phosphatase inhibitors, CPI-17 and PHI-1, by integrin-linked kinase. Biochem J. 2002;367(Pt 2): 517-24.
    13 Muranyi A, MacDonald JA, Deng JT, et al. Phosphorylation of the myosin phosphatase target subunit by integrin-linked kinase. Biochem J. 2002; 366(Pt 1): 211-6.
    14 Kim N, Cao W, Song IS, et al. Distinct kinases are involved in contraction of cat esophageal and lower esophageal sphincter smooth muscles. Am J Physiol Cell Physiol. 2004; 287(2): C384-94.
    15 Murata HM, Suizu F, Iwasaki T, et al. ZIP kinase identified as a novel myosin regulatory light chain kinase in HeLa cells. FEBS Lett. 1999; 451(1): 81-4.
    16 Niiro N, Ikebe M. Zipper-interacting protein kinase induces Ca2+-free smooth muscle contraction via myosin light chain phosphorylation. J Biol Chem. 2001; 276(31): 29567-74.
    17 Karim SM, Rhee AY, Given AM, et al. Vascular reactivity in heart failure: role of myosin light chain phosphatase. Circ Res. 2004; 95(6): 612-618.
    18 Endo A, Surks HK, Mochizuki S, et al. Identification and characterization of zipper- interacting protein kinase as the unique vascular smooth muscle myosin phosphatase- associated kinase. J Biol Chem. 2004; 279(40): 42055-61.
    19 Toshio K, Sei K, Keisuke H, et al. Receptor-coupled, permeabilized smooth muscle. J Biol Chem. 264: 5339-42, 1989.
    20 Li PF, Maasch C, Haller H, et al. Requirement for protein kinase C in reactive oxygen species-induced apoptosis of vascular smooth muscle cells. Circulation. 1999; 100(9): 967-73.
    21 Johnson JA, Adak S, Mochly-Rosen D. Prolonged phorbol ester treatment down-regulates protein kinase C isozymes and increases contraction rate in neonatal cardiac myocytes. Life Sci. 1995; 57: 1027–1038.
    22 Ishimaru S, Shichiri M, Mineshita S, et al. Role of endothelin-1/endothelin receptor system in endotoxic shock rats. Hypertens Res. 2001; 24(2): 119- 126.
    23 David PW, Cindy S, Meredith AB, et al. Integrin-linked kinase is responsible for Ca2+- independent myosin diphosphorylation and contraction of vascular smooth muscle. Biochem J. 392: 641–648, 2005.
    24 Sergey EA, Lubo Z, William JP. Physiological variations in ovine cerebrovascular calcium sensitivity. Am J Physiol. 272: H2271-81, 1997.
    25 Suba EA, Mckenna TM, Williams TJ, et al. In vivo and in vitro effects of endotoxin on vascular responsiveness to norepinephrine and signal transduction in the rat. Circ Shock, 1992; 36: 127-133.
    26 Martiny BG, Kazanietz MG, Mischak H, et al. Selective inhibition of protein kinase C isozymes by the indolocarbazole Go 6976. J Biol Chem. 1993; 268: 9194– 9197.
    27 Gschwendt M, Dieterich S, Rennecke J, et al. Inhibition of protein kinase C mu by various inhibitors. Differentiation from protein kinase c isoenzymes. FEBS Lett. 1996; 392: 77–80.
    28 Gschwendt M, Muller HJ, Kielbassa K, et al. Rottlerin, a novel protein kinase inhibitor. Biochem Biophys Res Commun. 1994; 199: 93–98.
    29 Kitazawa T, Eto M, Woodsome TP, et al. Agonists trigger G protein-mediated activation of the CPI-17 inhibitor phosphoprotein of myosin light chain phosphatase to enhance vascular smooth muscle contractility. J Biol Chem. 2000; 275(14): 9897-900.
    30 Eto M, Kitazawa T, Yazawa M, et al. Histamine-induced vasoconstriction involves phosphorylation of a specific inhibitor protein for myosin phosphatase by protein kinase C alpha and delta isoforms. J Biol Chem. 2001; 276(31): 29072-8.
    31 Horowitz A, Clement CO, Walsh MP, et al. Epsilon-isoenzyme of protein kinase C induces a Ca2+-independent contraction in vascular smooth muscle. Am J Physiol. 1996; 271(2 Pt 1): C589-94.
    32 Tao Li, Liangming Liu, Jing Xu, et al. Changes of rho kinase activity after hemorrhagic shock and its role in shock-induced biphasic response of vascular reactivity and calcium sensitivity. Shock. 2006; 26(5): 504-509.
    33 McKenna TM, Clegg JM, Williams TJ. Protein kinase C is a mediator of lipopolysaccharide- induced vascular suppression in the rat aorta. Shock, 1994; 2(2): 84-89.
    34 Shimizu Y, Minatoguchi S, Hashimoto K, et al. The role of serotonin in ischemic cellular damage and the infarct size-reducing effect of sarpogrelate, a 5-hydroxytryptamine-2 receptor blocker, in rabbit hearts. J Am Coll Cardiol. 2002; 40(7): 1347-55.
    35 Littler CM, Morris KG Jr, Fagan KA, et al. Protein kinase C-epsilon-null mice have decreased hypoxic pulmonary vasoconstriction. Am J Physiol Heart Circ Physiol. 2003;284(4): H1321-31.
    36刘宏雁,谢湘林,吕国蔚,等. PKCα、β1、ε、ζ表达在缺氧预适应中的变化.中国老年学杂志. 2001; 5(21): 213-214.
    37 Hempel A, Lindschau C, Maasch C, et al. Calcium antagonists ameliorate ischemia-induced endothelial cell permeability by inhibiting protein kinase C. Circulation. 1999; 99(19): 2523-9.
    38王月刚,金春华,黄海潇,等.虎杖甙对缺血缺氧下平滑肌细胞蛋白激酶C的影响.中国药理学通报. 2005; 21(4): 461-464.
    39 Gabriele P. Signal transduction in smooth muscle invited review: regulation of myosin phosphorylation in smooth muscle. J Appl Physiol, 2001; 91: 497- 503.
    40 Cain AE, Tanner DM, Khalil RA. Endothelin-1--induced enhancement of coronary smooth muscle contraction via MAPK-dependent and MAPK- independent [Ca2+]i sensitization pathways. Hypertension, 2002; 39(2 Pt 2): 543-549.
    41 Je HD, Gangopadhyay SS, Ashworth TD, et al. Calponin is required for agonist-induced signal transduction--evidence from an antisense approach in ferret smooth muscle. J Physiol, 2001; 537(Pt 2): 567-577.
    42 Leinweber B, Parissenti AM, Gallant C, et al. Regulation of protein kinase C by the cytoskeletal protein calponin. J Biol Chem, 2000; 275(51): 40329- 40336.
    43 Walsh MP, Horowitz A, Clement CO, et al. Protein kinase C mediation of Ca2+-independent contractions of vascular smooth muscle. Biochem Cell Biol, 1996; 74(4): 485-502.
    44 Jin JP, Walsh MP, Sutherland C, et al. A role for serine -175 in modulating the molecular conformation of calponin. Biochem J, 2000; 350(Pt 2): 579- 588.
    45卢中举,唐大椿,向继洲.平滑肌收缩调节的信号转导.生理科学进展, 1997; 28(4): 337-341.
    46 Kim J, Lee YR, Lee CH, et al. Mitogen-activated protein kinase contributes to elevated basal tone in aortic smooth muscle from hypertensive rats. Eur J Pharmacol. 2005; 514(2-3): 209-15.
    47 D'Angelo G, Graceffa P, Wang CA, et al. Mammal-specific, ERK-dependent, caldesmon phosphorylation in smooth muscle. Quantitation using novel anti-phosphopeptidee antibodies. J Biol Chem. 1999; 274(42): 30115-21.
    48 Knoepp L, Beall A, Woodrum D, et al. Cellular stress inhibits vascular smooth muscle relaxation. J Vasc Surg, 2000; 31(2): 343-353.
    49 Tasaki K, Hori M, Ozaki H, et al. Difference in signal transduction mechanisms involved in 5-hydroxytryptamine and U46619-induced vasoconstrictions. J Smooth Muscle Res. 2003; 39(5): 107-17.
    50 Yamboliev IA, Hedges JC, Mutnick JL, et al. Evidence for modulation of smooth muscle force by the p38 MAP kinase/HSP27 pathway. Am J Physiol Heart Circ Physiol. 2000; 278(6): H1899-907.
    51 Sward K, Mita M, Wilson DP, et al. The role of RhoA and Rho-associated kinase in vascular smooth muscle contraction. Curr Hypertens Rep. 2003; 5(1): 66-72.
    52 Seko T, Ito M, Kureishi Y, et al. Activation of RhoA and inhibition of myosin phosphatase as important components in hypertension in vascular smooth muscle. Circ Res. 2003; 92(4): 411-8.
    53 Kolosova IA, Ma SF, Adyshev DM, et al. Role of CPI-17 in the regulation of endothelial cytoskeleton. Am J Physiol Lung Cell Mol Physiol. 2004; 287(5): L970-80.
    54 Graves PR, Winkfield KM, Haystead TA, et al. Regulation of zipper-interacting protein kinase activity in vitro and in vivo by multisite phosphorylation. J Biol Chem. 2005; 280(10): 9363-74.
    55 MacDonald JA, Eto M, Borman MA, et al. Dual Ser and Thr phosphorylation of CPI-17, an inhibitor of myosin phosphatase, by MYPT associated kinase. FEBS Lett; 2001; 493: 91-4.
    56 Murry CE, Jennings RB, Reimer KA. Preconditioning withischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986; 74: 1124-36.
    57 Marber MS, Latchman DS, Walker JM, et al. Cardiac stress protein elevation 24 h after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation. 1993; 88: 1264-72.
    58 Kuzuya T, Hoshida S, Yamashita N, et al. Delayed effects of sublethal ischemia on the acquisition of tolerance to ischemia. Circ Res. 1993; 72: 1293-9.
    59 Cohen MV, Philipp S, Krieg T, et al. Preconditioning-mimetics bradykinin and DADLE activate PI3-kinase through divergent pathways. J Mol Cell Cardiol. 2007; 42:842–851.
    60 Qin Q, Downey JM, Cohen MV. Acetylcholine but not adenosine triggerspreconditioning through PI3-kinase and a tyrosine kinase. Am J Physiol. 2003; 284: H727–H734.
    61 Costa ADT, Garlid KD, West IC, et al. Protein kinase G transmits the cardioprotective signal from cytosol to mitochondria. Circ Res. 2005; 97: 329–336.
    62 Zaugg M, Lucchinetti E, Uecker M, et al. Anaesthetics and cardiac preconditioning. Part I. Signalling and cytoprotective mechanisms. Br J Anaesth. 2003; 91 (4): 551-65.
    63 Baxter GF, Goma FM, Yellon D M. Involvement of PKC in the delayed cytoprotection following sublethal ischemia in rabbit myocardium. Br J Pharmacol. 1995; 115: 222–224.
    64 James MD, Amanda MD, Michael VC. Signaling pathways in ischemic preconditioning. Heart Fail Rev.2007; 12:181–188.
    65赵桂玲,潘秉兴,黄绪亮,等.平滑肌大电导钙激活钾通道在重症失血性休克细胞膜超极化中的作用.中华创伤杂志. 2003; 19(6 ): 329-332.
    66刘杰,赵克森,金春华.重症休克时细动脉平滑肌细胞膜ATP敏感钾通道的变化.中华创伤杂志. 1998; 14: 10-12.
    67周逸,唐其柱. ATP敏感性钾通道在缺血预适应中的作用.心脏杂志. 2005; 17 (1): 83-87.
    68 Jernej Ku?ner, Gorazd Dreven?ek, Borut Ger?ak, et al. Hypoxic and pharmacological preconditioning preserves vasomotor response of porcine coronary artery. Pol J Pharmacol. 2004; 56:789-797.
    69刘秀华,武旭东,王述,等.蛋白激酶C参与缺血预处理的血管平滑肌细胞保护.中国应用生理学杂志. 1997; 13(3): 213-215.
    70史道华,郭兆贵.吡那地尔、尼可地尔、来马卡林和RP49356对血管平滑肌细胞缺氧损伤的保护作用.中国药理学与毒理学杂志. 1995; 9(3): 167-170.
    71 Yoshito O, Tetsuji M, Takayuki M, et al. Opening of mitochondrial KATP channel occurs downstream of PKC-εactivation in the mechanism of preconditioning. Am J Physiol Heart Circ Physiol. 2002; 283: H440–H447.
    72 Vivek G, Keli Hu. Protein kinase C isoform-dependent modulation of ATP-sensitive K+ channels in mitochondrial inner membrane. Am J Physiol Heart Circ Physiol. 2007; 293: H322–H332.
    73 Costa ADT, Garlid KD, West IC, et al. Protein kinase G transmits the cardioprotectivesignal from cytosol to mitochondria. Circ Res. 2005; 97: 329–336
    74 Baines CP, Zhang J, Wang GW, et al. Mitochondrial PKC and MAPK form signaling modules in the murine heart: enhanced mitochondrial PKC-MAPK interactions and differential MAPK activation in PKC-induced cardioprotection. Circ Res. 2002; 90: 390–397.
    75 Hassouna A, Matata BM, Galinanes M. PKC-epsilon is upstream and PKC-alpha is downstream of mitoKATP channels in the signal transduction pathway of ischemic preconditioning of human myocardium. Am J Physiol Cell Physiol. 2004; 287(5): C1418-25.
    76 Tsouka V, Markou T, Lazou A. Differential effect of ischemic and pharmacological preconditioning on PKC isoform translocation in adult rat cardiac myocytes. Cell Physiol Biochem. 2002; 12(5-6): 315-24.
    77 Kurkinen K, Busto R, Goldsteins G, et al. Isoform-specific membrane translocation of protein kinase C after ischemic preconditioning. Neurochem Res. 2001; 26(10): 1139-44.
    78 Fryer RM, Wang Y, Hsu AK, et al. Essential activation of PKC-delta in opioid-initiated cardioprotection. Am J Physiol Heart Circ Physiol. 2001; 280(3): H1346-53.
    79 Churchill EN, Mochly RD. The roles of PKCδandεisoenzymes in the regulation of myocardial ischaemia/reperfusion injury. Biochem Soc Trans, 2007;35(5): 1040-1042.
    80 Boris ZS, Karin P, Robert AK. Role of protein kinase C as a cellular mediator of ischemic preconditioning: a critical review. Cardiovasc Res.1998;40 (1):9–22.
    81 Krenz M, Oldenburg O, Wimpee H, et al. Opening of ATP-sensitive potassium channels causes generation of free radicals in vascular smooth muscle cells. Basic Res Cardiol.2002;97:365–373.
    82 Forbes RA, Steenbergen C, Murphy E. Diazoxide-induced cardioprotection requires signaling through a redox-sensitive mechanism. Circ Res. 2001; 88: 802-9.
    83 Lebuffe G, Schumacker PT, Shao ZH, et al. ROS and NO trigger early preconditioning: relationship to mitochondrial KATP channel. Am J Physiol Heart Circ Physiol. 2003;284: H299–H308.
    84 Juhaszova M, Zorov DB, Kim S-H, et al. Glycogen synthase kinase-3b mediates convergence of protection signaling to inhibit the mitochondrial permeability transitionpore. J Clin Invest.2004; 113:1535–1549.
    85 Guo D, Nguyen T, Ogbi M, et al. Protein kinase C-epsilon coimmunoprecipitates with cytochrome oxidase subunit IV and is associated with improved cytochrome-c oxidase activity and cardioprotection. Am J Physiol Heart Circ Physiol. 2007; 293(4): H2219-30.
    86 James MD, Amanda MD, Michael VC. Signaling pathways in ischemic preconditioning. Heart Fail Rev.2007; 12:181–188.
    87 Cohen MV, Philipp S, Krieg T, et al. Preconditioning-mimetics bradykinin and DADLE activate PI3-kinase through divergent pathways. J Mol Cell Cardiol. 2007; 42: 842–851.
    88 Cohen MV, Downey JM. Adenosine: trigger and mediator of cardioprotection. Basic Res Cardiol, 2008; 103: 203–215.
    1吴洁,倪沛洲,凌霞.蛋白激酶C的研究进展.中国药物化学杂志. 2001; 11(3): 182-186.
    2程坚,陈宝安,戴梅美. PKC在肿瘤细胞调亡研究中的新进展.临床肿瘤学杂志. 1999; 4(4): 67-70.
    3杨彧,于秉治.蛋白激酶C研究的最新进展.生物化学与生物物理进展. 1994; 21(4):308-312.
    4余刚,罗勇,彭国光,董为伟. PKC同工酶与脑缺血关系研究进展.国外医学神经病学神经外科学分册. 2000; 27(2): 63-65.
    5 Li PF, Maasch C, Haller H, et al. Requirement for protein kinase C in reactive oxygen species-induced apoptosis of vascular smooth muscle cells. Circulation. 1999; 100(9): 967-73.
    6 Johnson JA, Adak S, Mochly RD. Prolonged phorbol ester treatment down-regulates protein kinase C isozymes and increases contraction rate in neonatal cardiac myocytes. Life Sci. 1995; 57: 1027–1038.
    7 Nishizuka Y. Protein kinase C and lipid signaling for sustained cellular responses. FASEB J. 1995; 9 (4): 484-496.
    8 Davies SP, Reddy H, Caivano M, et al. Specificity andmechanism of action of some commonly used protein kinase inhibitors.Biochem J. 2000; 351: 95– 105.
    9 Martiny BG, Kazanietz MG, Mischak H, et al. Selective inhibition of protein kinase C isozymes by the indolocarbazole G? 6976. J Biol Chem. 1993; 268: 9194– 9197.
    10 Gschwendt M, Dieterich S, Rennecke J, et al. Inhibition of protein kinase C mu by various inhibitors. Differentiation from protein kinase c isoenzymes. FEBS Lett. 1996; 392: 77–80.
    11 Clement-Chomienne O, Walsh MP. Identification of protein kinase C isoenzymes in smooth muscle: partial purification and characterization of chicken gizzard PKC zeta. Biochem Cell Biol. 1996; 74: 51–65.
    12 Gschwendt M, Muller HJ., Kielbassa K, et al. Rottlerin, a novel protein kinase inhibitor. Biochem Biophys Res Commun. 1994; 199: 93–98.
    13 Jirousek MR, Gillig JR, Gonzalez CM, et al. (S)-13-[(Dimethylamino)methyl]-10,11,14,15-tetrahydro-4,9:16,21-dimetheno-1H,13H-dibenzo[e,k]pyrrolo[3,4-h] [1,4,13] oxadiazacyclohexadecene-1,3(2H)-dione (LY333531)and related analogues: isozyme selective inhibitors of protein kinase C beta. J Med Chem. 1996; 39: 2664–2671.
    14 Saraiva L, Fresco P, Pinto E, et al. Inhibition of alpha, betaI, delta, eta, and zeta protein kinase C isoforms by xanthonolignoids. J Enzyme Inhib Med Chem. 2003; 18: 357–370.
    15 Zhu S, White RE, Barman SA. Effect of PKC isozyme inhibition on forskolin-induced activation of BKCa channels in rat pulmonary arterial smooth muscle. Lung. 2006; 184(2): 89-97.
    16 Barman SA, Zhu S, White RE. Protein kinase C inhibits BKCa channel activity in pulmonary arterial smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2004; 286(1): L149-55.
    17 Isacson CK, Lu Q, Karas RH, et al. RACK1 is a BKCa channel binding protein. Am J Physiol Cell Physiol. 2007 ; 292(4): C1459-66.
    18 Park WS, Ko EA, Han J, et al. Endothelin-1 acts via protein kinase C to block KATP channels in rabbit coronary and pulmonary arterial smooth muscle cells. J Cardiovasc Pharmacol. 2005; 45(2): 99-108.
    19 Hayabuchi Y, Davies NW, Standen NB. Angiotensin II inhibits rat arterial KATP channels by inhibiting steady-state protein kinase A activity and activating protein kinase Cε. J Physiol. 2001; 530(2): 193-205.
    20 Isomoto S , Kondo C , Yamada M, et al . A novel sulfonylurea receptor forms with BIR (Kir6.2) a smooth muscle type ATP-sensitive K+ channel. J Biol Chem.1996; 271(40) : 24321-4.
    21 Shimoda LA , Sylvester J T , Sham J K. Inhibition of voltage-gated K+ current in rat intrapulmonary artery myocytes by endothelin-1. Am J Physiol. 1998; 274: L842-L853.
    22 Brueggemann LI, Moran CJ, Barakat JA, et al. Vasopressin stimulates action potential firing by protein kinase C-dependent inhibition of KCNQ5 in A7r5 rat aortic smooth muscle cells. Am J Physiol Heart Circ Physiol. 2007; 292(3): H1352-63.
    23 Peretz T, Levin G, Moran O, et al. Modulation by protein kinase C activation of rat brain delayed rectifier K+ channel expressed in Xenopus oocytes. FEBS Lett. 1996; 381: 71-76.
    24 Cole WC, Clement-Chomienne O, Aiello EA. Regulation of 4-aminopyridine-sensitive, delayed rectifier K+ channels in vascular smooth muscle by phosphorylation. Biochem Cell Biol. 1996; 74(4): 439-47.
    25 Park WS, Han J, Kim N, et al. Endothelin-1 inhibits inward rectifier K+ channels in rabbit coronary arterial smooth muscle cells through protein kinase C. J Cardiovasc Pharmacol. 2005; 46(5): 681-9.
    26 Won SP, Nari K, Jae BY, et al. Angiotensin II inhibits inward rectifier K+ channels in rabbit coronary arterial smooth muscle cells through protein kinase Ca. Biochem Biophys Res Commun. 2006; 341: 728–735.
    27 Cobine CA, Callaghan BP, Keef KD. Role of L-type calcium channels and PKC in active tone development in rabbit coronary artery. Am J Physiol Heart Circ Physiol. 2007; 292(6): H3079-88.
    28 Kamp TJ, Hell JW. Regulation of cardiac L-type calcium channels by protein kinase A and protein kinase C. Circ Res. 2000; 87(12): 1095-102.
    29 Ko EA, Park WS, Earm YE. Extracellular Mg2+ blocks endothelin-1-induced contraction through the inhibition of non-selective cation channels in coronary smooth muscle. Pflugers Arch. 2004; 449(2): 195-204.
    30 Albert AP, Large WA. Store-operated Ca2+-permeable non-selective cation channels in smooth muscle cells. Cell Calcium. 2003; 33(5-6): 345-56.
    31 Woodsome TP, Eto M, Everett A, et al. Expression of CPI-17 and myosin phosphatase correlates with Ca2+ sensitivity of protein kinase C-induced contraction in rabbit smooth muscle. J Physiol. 2001; 535(Pt 2): 553-564.
    32 Ohki S, Eto M, Kariya E, et al.S olution NMR structure of the myosin phosphatase inhibitor protein CPI-17 shows phosphorylation-induced conformational changes responsible for activation. J Mol Biol. 2001; 314(4): 839-849.
    33 Kitazawa T, Eto M, Woodsome TP,et al. Agonists trigger G protein-mediated activation of the CPI-17 inhibitor phosphoprotein of myosin light chain phosphatase to enhance vascular smooth muscle contractility. J Biol Chem. 2000; 275(14): 9897-900.
    34 Kitazawa T, Eto M, Woodsome TP, et al. Phosphorylation of the myosin phosphatase targeting subunit and CPI-17 during Ca2+ sensitization in rabbit smooth muscle. J Physiol. 2003; 546(Pt 3): 879-89
    35 Sward K, Mita M, Wilson DP, et al. The role of RhoA and Rho-associated kinase in vascular smooth muscle contraction. Curr Hypertens Rep. 2003; 5(1): 66-72.
    36 Seko T, Ito M, Kureishi Y, et al. Activation of RhoA and inhibition of myosin phosphatase as important components in hypertension in vascular smooth muscle. Circ Res. 2003; 92(4): 411-8.
    37 Kolosova IA, Ma SF, Adyshev DM, et al. Role of CPI-17 in the regulation of endothelial cytoskeleton. Am J Physiol Lung Cell Mol Physiol. 2004; 287(5): L970-80.
    38 Bonnevier J, Arner A. Actions downstream of cyclic GMP/protein kinase G can reverse protein kinase C-mediated phosphorylation of CPI-17 and Ca2+ sensitization in smooth muscle. J Biol Chem. 2004; 279(28): 28998-9003.
    39 Weber LP, Van-Lierop JE, Walsh MP, et al. Ca2+-independent phosphorylation of myosin in rat caudal artery and chicken gizzard myofilaments. J Physiol. 1999; 516 ( Pt 3): 805-24.
    40 Deng JT, Van-Lierop JE, Sutherland C, et al. Ca2+-independent smooth muscle contraction. a novel function for integrin-linked kinase. J Biol Chem. 2001; 276(19): 16365-73.
    41 Muranyi A, MacDonald JA, Deng JT, et al. Phosphorylation of the myosin phosphatase target subunit by integrin-linked kinase. Biochem J. 2002; 366(Pt 1): 211-6.
    42 Deng JT, Sutherland C, Brautigan DL, et al. Phosphorylation of the myosin phosphatase inhibitors, CPI-17 and PHI-1, by integrin-linked kinase. Biochem J. 2002; 367(Pt 2): 517-24.
    43 Ihara E, Moffat L, Ostrander J,et al. Characterization of protein kinase pathways responsible for Ca2+ sensitization in rat ileal longitudinal smooth muscle. Am J Physiol Gastrointest Liver Physiol. 2007; 293(4): G699-710.
    44 Kim N, Cao W, Song IS, et al. Distinct kinases are involved in contraction of cat esophageal and lower esophageal sphincter smooth muscles. Am J Physiol Cell Physiol. 2004; 287(2): C384-94.
    45 Murata HM, Suizu F, Iwasaki T, et al. ZIP kinase identified as a novel myosin regulatory light chain kinase in HeLa cells. FEBS Lett. 1999; 451(1): 81-4.
    46 Niiro N, Ikebe M. Zipper-interacting protein kinase induces Ca2+-free smooth muscle contraction via myosin light chain phosphorylation. J Biol Chem. 2001; 276(31):29567-74.
    47 Karim SM, Rhee AY, Given AM, et al. Vascular reactivity in heart failure: role of myosin light chain phosphatase. Circ Res. 2004; 95(6): 612-618.
    48 Endo A, Surks HK, Mochizuki S, et al. Identification and characterization of zipper- interacting protein kinase as the unique vascular smooth muscle myosin phosphatase-associated kinase. J Biol Chem. 2004; 279(40): 42055-61.
    49 Graves PR, Winkfield KM, Haystead TA, et al. Regulation of zipper-interacting protein kinase activity in vitro and in vivo by multisite phosphorylation. J Biol Chem. 2005; 280(10): 9363-74.
    50 Hiroki J, Shimokawa H, Higashim M, et al. Inflammatory stimuli upregulate Rho-kinase in human coronary vascular smooth muscle cells. J Mol Cell Cardiol. 2004; 37(2): 537-46.
    51 Shimomura E, Shiraishi M, Iwanaga T, et al. Inhibition of protein kinase C-mediated contraction by Rho kinase inhibitor fasudil in rabbit aorta. Naunyn Schmiedebergs Arch Pharmacol. 2004; 370(5): 414-22.
    52 Kandabashi T, Shimokawa H, Miyata K, et al. Evidence for protein kinase C-mediated activation of Rho-kinase in a porcine model of coronary artery spasm. Arterioscler Thromb Vasc Biol. 2003; 23(12): 2209-14.
    53 Winder SJ, Allen BG, Clement CO, et al. Regulation of smooth muscle actin-myosin interaction and force by calponin. Acta Physiol Scand. 1998; 164(4): 415-426.
    54 Je HD, Gangopadhyay SS, Ashworth TD, et al. Calponin is required for agonist-induced signal transduction--evidence from an antisense approach in ferret smooth muscle. J Physiol. 2001; 537(Pt 2): 567-577.
    55 Leinweber B, Parissenti AM, Gallant C, et al. Regulation of protein kinase C by the cytoskeletal protein calponin. J Biol Chem. 2000; 275(51): 40329- 40336.
    56 Walsh MP, Horowitz A, Clement CO, et al. Protein kinase C mediation of Ca2+-independent contractions of vascular smooth muscle. Biochem Cell Biol. 1996; 74(4):485-502.
    57 Jin JP, Walsh MP, Sutherland C, et al. A role for serine -175 in modulating the molecular conformation of calponin. Biochem J. 2000; 350(Pt 2):579- 588.
    58 Kitazawa T, Takizawa N, Ikebe M, et al. Reconstitution of protein kinase C-inducedcontractile Ca2+ sensitization in triton X-100-demembranated rabbit arterial smooth muscle. J Physiol. 1999; 520 Pt 1: 139-52
    59 Throckmorton DC, Packer CS, Brophy CM. Protein kinase C activation during Ca2+-independent vascular smooth muscle contraction. J Surg Res. 1998; 78(1): 48-53.
    60 Lee YR, Lee CK, Park HJ, et al. c-Jun N-terminal kinase contributes to norepinephrine- induced contraction through phosphorylation of caldesmon in rat aortic smooth muscle. J Pharmacol Sci. 2006; 100(2): 119-25.
    61 Zhao Y, Zhang L, Longo LD. PKC-induced ERK1/2 interactions and downstream effectors in ovine cerebral arteries. Am J Physiol Regul Integr Comp Physiol. 2005; 289(1): R164-71.
    62 Gangopadhyay SS, Takizawa N, Gallant C, et al. Smooth muscle archvillin: a novel regulator of signaling and contractility in vascular smooth muscle. J Cell Sci. 2004; 117(Pt 21): 5043-57.
    63 Knoepp L, Beall A, Woodrum D, et al. Cellular stress inhibits vascular smooth muscle relaxation. J Vasc Surg. 2000; 31(2): 343-353.
    64 Kwon S, Lee WJ, Fang LH, et al. Mitogen-activated protein kinases partially regulate endothelin-1-induced contractions through a myosin light chain phosphorylation- independent pathway. J Vet Med Sci. 2003; 65(2): 225-230.
    65 Meloche S, Landry J, Huot J, et al. p38 MAP kinase pathway regulates angiotensin Ⅱ-induced contraction of rat vascular smooth muscle. Am J Physiol Heart Circ Physiol. 2000; 279(2): H741-751.
    66 Yamboliev IA, Hedges JC, Mutnick JL, et al. Evidence for modulation of smooth muscle force by the p38 MAP kinase/HSP27 pathway. Am J Physiol Heart Circ Physiol. 2000; 278(6): H1899-1907.
    67 Bitar KN. HSP27 phosphorylation and interaction with actin-myosin in smooth muscle contraction. Am J Physiol Gastrointest Liver Physiol. 2002; 282(5): G894-903.
    68 Brophy CM, Molinaro JR, Dickinson M.The macromolecular associations of heat shock protein-27 in vascular smooth muscle. Surgery. 2000; 128(2): 320-326.
    69 Hirade K, Tanabe K, Niwa M, et al. Adenylyl cyclase-cAMP system inhibits thrombin-induced HSP27 in vascular smooth muscle cells. J Cell Biochem. 2005; 94(3): 573-84.
    1 Murry CE, Jennings RB, Reimer KA. Preconditioning withischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986; 74: 1124-36.
    2 Marber MS, Latchman DS, Walker JM, et al. Cardiac stress protein elevation 24 h after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation. 1993; 88: 1264-72.
    3 Kuzuya T, Hoshida S, Yamashita N, et al. Delayed effects of sublethal ischemia on the acquisition of tolerance to ischemia. Circ Res. 1993; 72: 1293-9.
    4 James MD, Amanda MD, Michael VC. Signaling pathways in ischemic preconditioning. Heart Fail Rev. 2007; 12:181–188.
    5 Cohen MV, Philipp S, Krieg T, et al. Preconditioning-mimetics bradykinin and DADLE activate PI3-kinase through divergent pathways. J Mol Cell Cardiol. 2007; 42:842–851.
    6 Qin Q, Downey JM, Cohen MV. Acetylcholine but not adenosine triggers preconditioning through PI3-kinase and a tyrosine kinase. Am J Physiol. 2003; 284: H727–H734.
    7 Lochner A, Marais E, Genade S, et al. Nitric oxide: a trigger for classic preconditioning? Am J Physiol. 2000; 279: H2752–H2765.
    8 Burwell LS, Brookes PS. Mitochondria as a target for the cardioprotective effects of nitric oxide in ischemia–reperfusion injury. Antioxid Redox Signal. 2008; 10(3):579-99.
    9 Costa ADT, Garlid KD, West IC, et al. Protein kinase G transmits the cardioprotective signal from cytosol to mitochondria. Circ Res.2005; 97: 329–336.
    10 Boris ZS, Karin P, Robert AK. Role of protein kinase C as a cellular mediator of ischemic preconditioning: a critical review. Cardiovasc Res. 1998; 40 (1): 9–22.
    11 Turner LA, Fujimoto K, Suzuki A, et al. The interaction of isoflurane and protein kinase C-activators on sarcolemmal KATP channels. Anesth Analg. 2005; 100(6): 1680-6.
    12 Yoshito O, Tetsuji M, Takayuki M, et al. Opening of mitochondrial KATP channel occurs downstream of PKC-εactivation in the mechanism of preconditioning. Am JPhysiol Heart Circ Physiol. 2002; 283: H440–H447.
    13 Vivek G, Keli Hu. Protein kinase C isoform-dependent modulation of ATP-sensitive K+ channels in mitochondrial inner membrane. Am J Physiol Heart Circ Physiol. 2007; 293: H322–H332.
    14 Hassouna A, Matata BM, Galinanes M. PKC-epsilon is upstream and PKC-alpha is downstream of mitoKATP channels in the signal transduction pathway of ischemic preconditioning of human myocardium. Am J Physiol Cell Physiol. 2004; 287(5): C1418-25.
    15 Baines CP, Zhang J, Wang GW, et al. Mitochondrial PKC and MAPK form signaling modules in the murine heart: enhanced mitochondrial PKC-MAPK interactions and differential MAPK activation in PKC-induced cardioprotection. Circ Res. 2002; 90: 390–397.
    16 Churchill EN, Mochly RD.The roles of PKCδandεisoenzymes in the regulation of myocardial ischaemia/reperfusion injury. Biochem Soc Trans, 2007; 35(5): 1040-1042.
    17 Fryer RM, Wang Y, Hsu AK, et al. Essential activation of PKC-delta in opioid-initiated cardioprotection. Am J Physiol Heart Circ Physiol. 2001; 280(3): H1346-53.
    18 Tsouka V, Markou T, Lazou A. Differential effect of ischemic and pharmacological preconditioning on PKC isoform translocation in adult rat cardiac myocytes. Cell Physiol Biochem. 2002; 12(5-6): 315-24.
    19 Kurkinen K, Busto R, Goldsteins G, et al.Isoform-specific membrane translocation of protein kinase C after ischemic preconditioning. Neurochem Res. 2001; 26(10): 1139-44.
    20 Zaugg M, Lucchinetti E, Uecker M, et al. Anaesthetics and cardiac preconditioning. Part I.Signalling and cytoprotective mechanisms. Br J Anaesth. 2003; 91 (4): 551-65.
    21 Krenz M, Oldenburg O, Wimpee H, et al. Opening of ATP-sensitive potassium channels causes generation of free radicals in vascular smooth muscle cells. Basic Res Cardiol. 2002; 97: 365–373.
    22 Forbes RA, Steenbergen C, Murphy E. Diazoxide-induced cardioprotection requires signaling through a redox-sensitive mechanism. Circ Res. 2001; 88: 802-9.
    23 Heinzel FR, Luo Y, Li X, et al. Impairment of diazoxide-induced formation of reactive oxygen species and loss of cardioprotection in connexin 43 deficient mice. Circ Res.2005; 97: 583–586.
    24 Lebuffe G, Schumacker PT, Shao ZH, et al. ROS and NO trigger early preconditioning: relationship to mitochondrial KATP channel. Am J Physiol Heart Circ Physiol. 2003; 284: H299–H308.
    25 Juhaszova M, Zorov DB, Kim S-H, et al. Glycogen synthase kinase-3b mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest. 2004; 113:1535–1549.
    26 Guo D, Nguyen T,Ogbi M, et al. Protein kinase C-epsilon coimmunoprecipitates with cytochrome oxidase subunit IV and is associated with improved cytochrome-c oxidase activity and cardioprotection. Am J Physiol Heart Circ Physiol. 2007; 293(4): H2219-30.
    27 Toyoda Y, Friehs I, Parker RA, et al. Differential role of sarcolemmal and mitochondrial KATP channels in adenosine-enhanced ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2000; 279: H2694-703.
    28 Peter EL, Hussein DK, Jocelyn EM, et al. Distinct myoprotective roles of cardiac sarcolemmal and mitochondrial KATP channels during metabolic inhibition and recovery. FASEB.2001; 15: 2586-2594.
    29 Baxter GF, Goma FM, Yellon D M. Involvement of PKC in the delayed cytoprotection following sublethal ischemia in rabbit myocardium. Br J Pharmacol. 1995; 115: 222–224.
    30 Guo Y, Jones WK, Xuan YT, et al. The late phase of ischemic preconditioning is abrogated by targeted disruption of the inducible NO synthase gene. Proc Natl Acad Sci USA, 1999; 96: 11507-12.
    31 Wang Y, Kudo M, Xu M, et al. Mitochondrial KATP channel as an end effector of cardioprotection during late preconditioning: triggering role of nitric oxide. J Mol Cell Cardiol. 2001; 33(11): 2037-46.
    32 Patel H H, Gross E R, Peart JN, et al. Sarcolemmal KATP channel triggers delayed ischemic preconditioning in rats. Am J Physiol Heart Circ Physiol. 2005; 288: H445–H447.
    33 McLeod CJ, Jeyabalan AP, Minners JO, et al. Delayed ischemic preconditioning activates nuclear-encoded electron-transfer-chain gene expression in parallel withenhanced postanoxic mitochondrial respiratory recovery. Circulation. 2004; 110: 534-539.
    34 Hofmann PA, Israel M, Koseki Y, et al. N-Benzyladriamycin-14-valerate (AD 198): a non-cardiotoxic anthracycline that is cardioprotective through PKC-epsilon activation. J Pharmacol Exp Ther. 2007; 323(2): 658-64.
    35 Bouwman RA, Musters RJ, van-Beek-Harmsen BJ, et al. Sevoflurane-induced cardioprotection depends on PKC-alpha activation via production of reactive oxygen species. Br J Anaesth. 2007; 99(5): 639-45.
    36 Xu Z, Downey JM, Cohen MV. Timing and duration of administration are crucial for antiinfarct effect of AMP 579 infused at reperfusion in rabbit heart. Heart Dis. 2003; 5: 368–371.
    37 Yang XM, Philipp S, Downey JM, et al. Atrial natriuretic peptidee administered just prior to reperfusion limits infarction in rabbit hearts. Basic Res Cardiol. 2006; 101: 311–318.
    38 Bullard AJ, Govewalla P, Yellon DM. Erythropoietin protects the myocardium against reperfusion injury in vitro and in vivo. Basic Res Cardiol, 2005; 100: 397–403.
    39 Salloum FN, Takenoshita Y, Ockaili RA, et al. Sildenafil and vardenafil but not nitroglycerin limit myocardial infarction through opening of mitochondrial KATP channels when administered at reperfusion following ischemia in rabbits. J Mol Cell Cardiol, 2007; 42: 453–458.
    40 Asakura M, Jiyoong K, Minamino T, et al. Rationale and design of a large-scale trial using atrial natriuretic peptide (ANP) as an adjunct to percutaneous coronary intervention for ST-segment elevation acute myocardial infarction: Japan-Working groups of acute myocardial Infarction for the reduction of Necrotic Damage by ANP (JWIND-ANP). Circ J, 2004; 68: 95–100.
    41 Minamino T, Jiyoong K, Asakura M, et al . Rationale and design of a large-scale trial using nicorandil as an adjunct to percutaneous coronary intervention for ST-segment elevation acute myocardial infarction: Japan-Working groups of acute myocardial Infarction for the reduction of Necrotic Damage by a KATP channel opener (JWIND- KATP). Circ J,2004; 68: 101–106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700