KIAA0280在缺氧诱导神经元凋亡中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大脑动脉阻塞引起的中风和脑梗死,因其在老年人中致残高和易引起智能缺陷,成为严重影响人们健康的世界性难题。随着人类寿命的延长,遭受这种疾病的患者数量将进一步增加。最近,人们对局部缺血引起脑损伤的分子生物学机制研究取得了突破性进展,在基础药理的动物实验中报道了很多具有很强的大脑保护作用、颇有治疗前景的药物。然而,目前,针对脑缺血性中风的治疗药物仍然有限。在近几年的实验研究中,人们相继阐明由谷氨酸、Ca~(2+)、局部脑缺血的基因差异表达、凋亡引起的神经元死亡,脑局部缺血后的炎症反应等介导的缺血性神经元死亡机制。Kitagawa等于1990年报道了短暂缺血预处理能诱导缺血性耐受,产生神经保护作用。
     有鉴于此,我们课题组的臧林泉等人研究发现急性局灶性脑缺血大鼠缺血组织与非缺血组织中存在基因差异表达,克隆出与脑缺血相关的基因KIAA0280,其在急性局灶性脑缺血大鼠中明显上调表达,该基因的功能在国内外均未见报道,其显著地差异表达提示其在脑缺血病理过程中具有重要作用。
     实验证实,缺血性神经元的死亡相当一部分是通过细胞凋亡的机制来实现。细胞凋亡过程涉及一系列基因和蛋白的表达,caspase,bcl-2等等,并在凋亡发生过程中会有新的物质来对凋亡作出调控。为此,我们研究KIAA0280在不同因素诱导神经元凋亡中的表达,将有助于明确其在凋亡中功能作用,为研究其在凋亡中的作用机制奠定基础,丰富细胞凋亡学说的内容,为临床治疗脑中风,心肌梗死,肾衰等与细胞凋亡相关的疾病提供新的治疗方法。
     目的
     通过建立原代神经元的体外培养技术和不同因素诱导的神经元凋亡模型;研究KIAA0280在不同因素诱导诱导神经元凋亡中表达情况;研究KIAA0280被特异性沉默后,基因的表达情况以及沉默KIAA0280后,对凋亡神经元的影响。
     方法
     (1)用原代分离、培养的方法,建立神经元的体外培养技术
     (2)将神经元放置于一密闭容器,然后抽真空,再充以95%N_2,5%CO_2,放入37℃培养箱中,分别缺氧不同时间,用Hoechst33258法,乳酸脱氢酶法, SRB法检测神经元的凋亡,建立缺氧诱导细胞凋亡模型
     (3)建立谷氨酸诱导神经元凋亡模型,用Hoechst33258法、乳酸脱氢酶法、SRB法检测神经元凋亡,建立脑缺血兴奋性氨基酸毒性细胞模型。
     (4)建立过氧化氢诱导神经元凋亡模型,用Hoechst33258法、乳酸脱氢酶法、SRB法检测神经元凋亡,建立脑缺血再灌注细胞模型
     (5)用RT-PCR特异性扩增出不同神经元凋亡模型中KIAA0280在神经元中的表达,观察不同因素引起的神经元凋亡中KIAA0280的表达变化。
     (6)用脂质体转染的方法,将KIAA0280基因特异性siRNA转染进神经元,观察转染前后神经元的生长变化,以及转染前后,凋亡神经元变化情况。
     结果
     (1)本实验成功建立原代神经元的体外培养技术,分离成功率高,神经元生长良好,存活率高,可存活30天以上。
     (2)用密闭容器抽真空的方法建立缺氧诱导神经元凋亡的模型。LDH,SRB的检测结果(P<0.05)表明本实验所建立细胞凋亡模型是成功的。RT-PCR结果表明在缺氧神经元中KIAA0280基因的表达明显上调,采用RNAi沉默KIAA0280的表达后,神经元的凋亡加重。
     (3)用谷氨酸诱导神经元凋亡,复制兴奋性氨基酸对神经系统的毒性作用细胞模型。结果显示,谷氨酸诱导神经元凋亡模型成功;RT-PCR结果显示,KIAA0280在谷氨酸诱导的凋亡神经元中没见明显表达,Hoechst33258和LDH结果显示,在转染KIAA0280特异性siRNA后,凋亡神经元的变化不明显。
     (4)用H_2O_2诱导神经元凋亡,复制脑缺血再灌氧自由基损伤的体外细胞模型。结果显示,H_2O_2诱导神经元凋亡模型成功;RT-PCR结果显示,KIAA0280在H_2O_2诱导的凋亡神经元中没有明显的表达,Hoechst33258和LDH结果显示,在转染KIAA0280特异性siRNA后,凋亡神经元的变化不明显。
     结论
     本实验成功建立原代神经元分离培养方法,建立不同因素诱导的神经元凋亡模型。从Hoechst33258、LDH、SRB以及RT-PCR结果,说明KIAA0280沉默后能促进缺氧引起的神经元凋亡,而在谷氨酸以及H_2O_2诱导的神经元凋亡模型中没有作用,提示KIAA0280跟缺氧诱导的神经元凋亡密切相关。
Stroke and cerebral infarction as a result of occlusion of cerebral arteries have long been a major health problem worldwide because they are major causes of disability and intellectual impairment in elderly. The number of patients suffering from these disorders will increase further in the future, as the life span of man is becoming longer. Recently, considerable advances have been made in our understanding of the molecular and biochemical mechanisms of ischemia-induced brain damage and a growing number of promising drugs with powerful cerebroprotective effects have been reported in basic pharmacology using experimental animals. However, the therapeutic efficiency of the drugs for patients with ischemic stroke is still limited at present. During the past years, a considerable amount of experimental studies have been devoted to elucidate the mechanism of ischemic neuronal death mediated by glutamate, calcium, altered gene expression after ischemia, neuronal death by apoptosis, inflammatory reactions induced in postischemic brain. In 1990 Kitagawa reported that transient ischemia preconditioning (IPC) could induce ischemic tolerance, which might produce neuroprotective effect.
     Therefore LinQ, Zang screened the differential expressed gene between acute focal ischemia and non-ischemia region in rat brain, and cloned the novel ischemia associated gene KIAA0280. And found that it over-expressed in acute focal ischemia. The function of this gene has not been reported based on literatures. It obviously over-expressed in ischemia region demonstrated that KIAA0280 had a critical function in the ischemia pathology.
     Many experiments showed that nerve cells death in brain occurred partly by apoptosis. The process of apoptosis was related to the expression of many genes and proteins and regulated by some genes, such as: caspase, bcl-2 et al. It can produce some new genes to regulate apoptosis in the process of apoptosis. Therefore we studied the expression of KIAA0280 in the apoptotic neurons induced by different factor, and to understand the function of KIAA0280, to contribute foundation for the study of mechanism of action in apoptosis and apoptotic theory, to provide new method for apoptotic disease such as stroke, Myocardial Infarction, renal failure and so on.
     Objective
     To establish the separation and culture of primary neuron in vitro; To establish the model of apoptotic neurons induced by different factor; To study the KIAA0280 expression in the apoptotic neurons; To study the KIAA0280 expression after silencing KIAA0280 using the technology of RNAi, and to observe the effect on the normal neurons after silencing KIAA0280; To observe the effect of apoptotic neurons after silencing KIAA0280.
     Methods
     (1) We adopted the methods of primary separation and culture to establish neuron culture in vitro.
     (2) We established the model of neuronal apoptosis induced by hypoxia applied airtight container to evacuate and fill with 95%N_2, 5%CO_2, and then put in the cell incubator at 37℃, hypoxia at different time, then detected apoptotic neurons with Hoechst33258, LDH leakage, SRB.
     (3) Established cell model of the toxic effect of excitatory amino acid in cerebral ischemia with glutamic-induced apoptotic neurons, and then we detected apoptotic neurons with Hoechst33258, LDH leakage, SRB.
     (4) We established the cell model of cerebral ischemia-reperfusion with H_2O_2 inducing neuronal apoptosis, and then detected apoptotic neurons with Hoechst33258, LDH leakage, SRB.
     (5) Adopted RT-PCR to specificity amplify the expression of KIAA0280 in the apoptotic neurons induced by different factor, and then we observed the expression of KIAA0280 in the different apoptotic neurons.
     (6) Transfered KIAA0280 specificity siRNA into neurons with liposome lipofectamine2000, then we observed the differences of normal and apoptotic neurons after transfection.
     Results
     (1) We have successfully established the technology of primary neuron culture. The results showed that the neurodendrons and neuraxons, the feature of neuron shape, is obvious and the neurons can survive over 30d.
     (2) We adopted airtight container to evacuate and filled with 95%N_2, 5%CO_2 can reduce interference factor in the experiment, and make the result more confidence and reproducibility. The results of Hoechst33258staining, SRB, and LDH approved the neuronal apoptotic model induced by hypoxia is success. The result of RT-PCR revealed that KIAA0280 obviously over-expressed in the hypoxia-induced apoptotic neurons. And the result showed that the apoptotic neurons were aggravated after silencing KIAA0280.
     (3) We established the cell model of excitatory amino acid toxity effect of cerebral ischemia with glutamate-induced neuronal apoptosis, and the results showed that the model is success. The result of RT-PCR showed that KIAA0280 was not obviously expressed in the apoptotic neurons induced by glutamate. And the result showed that the apoptotic neurons after transferring KIAA0280 specificity siRNA were not different from those after transferring negative control siRNA.
     (4) We added H_2O_2 into medium to induce neuronal apoptosis, and established the cell model of the oxygen free radical injury in cerebral ischemia-reperfusion. The results showed that the model is success. The results of RT-PCR showed that KIAA0280 was not obviously expressed in apoptotic neurons induced by H_2O_2. And the result showed that the apoptotic neurons after transferring KIAA0280 specificity siRNA were not different from those after transferring negative control siRNA. Conclusion
     We successfully established the methods of primary neuron separation and culture in vitro and the model of neuronal apoptosis induced by different factor. The result from Hoechst33258, LDH, SRB and RT-PCR revealed that KIAA0280 had support effect on the normal neurons growth and played a positive role in protecting hypoxia-induced apoptosis neurons, rather than in the glutamic acid and H_2O_2 induced apoptotic neurons.
引文
[1] 王守春, 张昱, 常明, 等. 慢性脑缺血痴呆大鼠神经细胞凋亡的研究[J]. 中国临床康复, 2003, 7(25): 3412-3413
    [2] Sharp FR, Kinouchi H, Koistinaho J, et al. HSP70 heat shock gene regulation during ischemia[J]. Stroke, 1993, 24(12 Suppl): I72-5.
    [3] Longo FM, Wang S, Narasimhan P, et al. cDNA cloning and expression of stress-inducible rat hsp70 in normal and injured rat brain[J]. J Neurosci Res, 1993, 36(3): 325-35.
    [4] 侯德仁. 热休克蛋白和脑缺血耐受研究进展[J]. 医学综述, 2000, 6(2): 84-86.
    [5] TV Arumugam, SL Chan, DG Jo, et al. Gamma secretase–mediated Notch signaling worsens brain damage and functional outcome in ischemic stroke[J]. Nature Medicine, 2006, 12: 621 - 623
    [6] SorianoMA, FerrerI, Rodriguez-FarreE, etal. Apoptosis andc-Jun in the thalamus of the rat following cortical infarction[J]. Neuroreport, 1996, 7: 425-428.
    [7] 史为栋, 秦启生, 等. 创伤性脑损伤与细胞凋亡[J]. 法医学杂志, 2003, 19(1): 54-56.
    [8] Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death[J]. Cell, 1993 Aug 27, 74(4): 609-619
    [9] 于志君 成彩莲. 脑缺血再灌注损伤中凋亡调控基因表达的变化及意义[J]. 武汉科技大学学报自然科学版, 2006, 29(4): 425-428.
    [10] Van Lookeren, Campagne M, Gill R. Increased expression of cyclin G1 and p21WAF1/CIP1 in neurons following transient forebrain ischemia: comparison with early DNA damage[J]. J Neurosci Res, 1998, 53(3): 279-96.
    [11] Campagne M, Gill G. Cell cycle-related gene expression in the adult rat brain: selective induction of cyclin cerebral ischemia[J]. Neuroscience, 1998; 84(4): 1097-1112.
    [12] H Kawada, S Takizawa, T Takanashi et al. Administration of Hematopoietic Cytokines in the Subacute Phase After Cerebral Infarction Is Effective forFunctional Recovery Facilitating Proliferation of Intrinsic Neural Stem/Progenitor Cells and Transition of Bone Marrow-Derived Neuronal Cells[J]. Circulation, 2006, 113: 701-710.
    [13] 胡中波. Fas 在人体的表达及其意义[J]. 国外医学免疫学分册, 2000, 23(1): 8-11.
    [14] Nicholas J, SantosAS, Eric D, et al. Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death[J]. Nature, 2001, 410 (6828): 549-554.
    [15] Loeffler M, Daugas E, Susin SA, et al. Dominant cell death induction by extra mitochondrially targeted apoptosis-inducing factor[J]. FASEB J, 2001, 15 (3): 758-767.
    [16] Susin SA, Lorenao HK, Zamzami N, et al. Molecular characterization of mitochondrial apoptosis-inducing factor[J]. Nature, 1999, 67 (18): 441 - 446.
    [17] Céline C, Isabelle C, Eric D, et al. Apoptosis–inducing factor (AIF): a novel caspase-independent death effector released from mitochondria[J]. Biochimie, 2002, 84 (2 - 3): 215 - 222.
    [18] Lorenzo HK, Susin SA, Penninger J , et al. Apoptosis-inducing factor (AIF): a phylogenetically old, caspase-independent effector of cell death[J]. Cell Death Differ, 1999, 6 (6) : 516 - 524.
    [19] Maria JM, Miguel OL, Brigette B, et al. The crystal structure of the mouse apoptosis-inducing factor(AIF) [J]. Nature, 2002, 9 (6): 442 - 446.
    [20] 陈 默, 潘敏慧, 周恩昆等. 凋亡诱导因子的研究进展[J]. 细胞生物学杂志, 2007, 29: 791-794.
    [21] Susin SA, Daugas E, Ravagnan L, et al. Two distinct pathways leading to nuclear apoptosis[J]. J Exp Med, 2000, 192 (4): 571 - 579.
    [22] Loeffler M, Daugas E, Susin SA, et al. Dominant cell death induction by extra mitochondrially targeted apoptosis inducing factor[J]. FASEB J, 2001, 15(3): 758 - 767.
    [23] Wang X, Yang C, Chai J, et al. Mechanisms of AIF mediated apoptotic DNA degradation in Caenorhabditis elegans[J]. Science, 2002, 298(5598): 1587- 1591.
    [24] Ferri KF, Jacotot E, Blanco J, et al. Apoptosis control in syncytia induced by the HIV-1-envelope glycoprotein complex. Role of mitochondria and caspases[J]. J Exp Med, 2000, 261 (1): 119 - 126.
    [25] Zou H, L i YC, L iu X, et al. An APAF-1-cytochrome C multimeric comp lex is a functional apoptosome that activates procaspase-9 [J]. J Biol Chem, 1999, 274 (17) : 11549 - 11556.
    [26] Yu SW, Wang H, PoitrasMF, et al. Mediation of poly (ADP-ribose) polymerase- 1-dependent cell death by apoptosis-inducing factor[J]. Science, 2002, 297(5579): 259 - 263.
    [27] Alberto C, MichaelAM. PARP-1-a perpetrator of apoptotic cell death? [J]. Science, 2002, 297 ( 5579 ) : 200 - 201.
    [28] Ferrer I, FrigulsB, Dalfo E, et al. Caspase-dependent and caspase-independent signalling of apoptosis in the penumbra following middle cerebral artery occlusion in the adult rat[J]. Neuropatho App l Neurobiol, 2003; 29 (5): 472-811.
    [29] Johann S, Braun, RodgerNovak, et al. Apoptosis-inducing factor mediates microglial and neuronal apoptosis caused by pneumococcus[J]. J Infect Dis, 2001, 184(10): 1300 - 1309.
    [30] 李启芳, 戴爱国. 低氧诱导因子家族研究进展[J]. 国外医学分子生物学分册2003, 25(4): 219-222.
    [31] Semenza GL. Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1[J]. Annu Rev Cell Biol, 1999, 15: 551-578.
    [32] Semenza GL. Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology[J]. Trends Mol Med, 2001, 7(8):345-350.
    [33] Bergeron M, Gidday JM, Yu AY, et al. Role of hypoxia-inducible factor-1 in hypoxia-induced ischemic tolence in neonatal rat brain[J]. Ann Neurol, 2000, 48(3): 285-296.
    [34] Zaman K, Ryu H, et al. protection from oxidative stress-induced apoptosis in cortical neuronal cultures by iron chelators is associated with enhanced DNA binding of hypoxia-inducible factor-1 and ATF-1/CREB and increased expression of glycolytic enzymes, p21(waf1/cip1), and erythropoietin[J]. J Neurosi,1999,19(22): 9821-9830.
    [35] Helton R, Cui J, Scheel JR, et al. rain-specific knock-out of hypoxia-inducible factor-1alpha reduces rather than increases hypoxic-ischemic damage[J]. J Neurosci, 2005, 25 ( 16 ): 4099-4107.
    [36] Ravi R, Mookerjee B, bhujwalla ZM et al. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1α[J]. Genes Dev, 2001, 4(1): 34-44
    [37] Bruick RK. Expression of the gene encoding the proapoptotic nip3 protein is indeuced by hypoxia[J]. ProeNatl Acad Sci USA, 2000, 97(16): 9082-9087
    [38] Ema M, Taya S, Yokotani N, et al . A novel bHL H-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development[J]. Proc Natl Acad Sci USA, 1997, 94 (9): 4273-4278.
    [39] Tian H, McKnight SL , Russell DW. Endot helial PAS domain protein 1 ( EPAS1) , a transcription factor selectively expressed in endot helial cells[J]. Genes Dev, 1997, 11(1): 72-82.
    [40] Talks KL, Turley H, Gatter KC, et al . The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2 alpha in normal human tissues , cancers, and tumor-associated macrophages[J]. Am J Pathol, 2000, 157 (2) :411-421.
    [41] Wiesener MS, Turley H, Allen WE, et al . Induction of endothelial PAS domain protein-1 by hypoxia: characterization and comparison wit h hypoxia-inducible factor-1alpha[J]. Blood, 1998, 92 (7): 2260-2268.
    [42] Heidbreder M, Frohlich F, Johren O, et al. Hypoxia rapidly activates HIF-3 alpha mRNA expression[J]. FASEB J, 2003, 17(11): 1541-1543.
    [43] Hara S, Hamada J, Kobayashi C, et al. Expression and characterization of hypoxia-inducible factor (HIF)-3 alpha in human kidney: suppression of HIF- mediated gene expression by HIF-3 alpha[J]. Biochem Biophys Res Commun, 2001, 287:808- 813.
    [44] Toyoda T, Kassell NF, Lee KS. Induction of ischemic tolerance and antioxidantactivity by brief focal ischemia[J]. Neuroreport, 1997, 8(4): 847-851.
    [45] Nawashiro H, Tasaki K, Ruetzler CA, et al. TNF-alpha pretreatment induces protective effects against focal cerebral ischemia in mice[J]. J Cereb Blood Flow Metab, 1997 May, 17(5): 483-490.
    [46] JM Simard, O Tsymbalyuk, A Ivanov, et al. Newly expressed SUR1-regulated NCCa-ATP channel mediates cerebral edema after ischemic stroke[J]. Neurosci, 2006, 9(2): 60-67.
    [47] 臧林泉, 邱鹏新, 颜光美. 限制性差异显示RT-PCR技术对大鼠脑缺血相关基因表达的研究[J]. 中国神经精神疾病杂志, 2006,32 (3): 232-234.
    [48] Liang P, Pardee AB. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction[J]. Science, 1992, 257(5072): 967-971.
    [49] Liang P, Zhu W, Zhang X, et al. Differential display using one-base anchored oligo(dT) primers[J]. Nucleic Acids Res, 1994, 22(25): 5763-5764.
    [50] Wang X, Ruffolo RR Jr, Feuerstein GZ. mRNA differential display: application in the discovery of novel pharmacological targets[J]. Trends Pharmacol Sci, 2003, 17(8): 276-279.
    [51] 臧林泉, 银 魏, 皮荣标, 等. 荧光差异显示 PCR 克隆大鼠脑缺血相关基因KIAA0280[J].中山大学学报(医学科学版)2004, 25(2): 97-101.
    [52] 臧林泉, 邱鹏新, 肖茹, 等. YZ-2 蛋白的生物信息学分析及其多克隆抗体制备[J]. 细胞与分子免疫学杂志. 2006, 22(2): 205-207.
    [53] 臧林泉, 苏兴文, 苏 涛, 等. KIAA0280的亚细胞定位及在缺血脑组织中的表达[J]. 解剖学研究, 2006, 28 (2):86-89.
    [54] 石东乔.“基因敲除”研究进展[J] . 自然杂志, 2000, 18 (1): 33-36.
    [55] 兰小平. 功能基因组学研究方法[J] . 生物学教学, 2004 , 29 (8): 7-8.
    [56] Inder M , Verma , Nlkun J Somla. Gene theraphy promise , problem and prospects[J] . Nature, 1997, 389 (18): 239-242.
    [57] CAI Wenqin, LI Haibiao. Developmental Neurobiology [M]. Beijing: Science Press, 1996. 55-92.
    [58] 邓小云, 杨 眉, 蔡 芳, 等.一种改进的原代神经元的制备方法[J]. 激光生物学报, 2005, 14 (2): 145-149
    [59] ZHENG Zhihong , LIN Ling. The theoretics and practice of the neurocyte culture [M] . Beijing : Science Press , 2002. 12-104.
    [60] PASANTES MORALES H, AARTE, MORAN J. Cell volume regulation in cultured cerebellar granule neurons [J] . J Neurosci Res , 1993 , 34 : 219-224.
    [61] Lan J, Henshall DC, Simon RP . Formation of the base modification 8-Hydroxyl-2'-deoxyguanosine and DNA fragmentation following seizures induced by systemic kainic acid in the rat[J].J Neurochem,2000,74:3022-3030.
    [62] SU Xing Wen, PI Rong Biao, LIN Sui Zhen, et al. Protection of caffeine against neuronal apoptosis induced by glutamate[J]. Chinese Pharmacological Bulletin, 1999,15 (6): 509-512.
    [63] WANG Qing qing; YU Hai. Studies on Application of SRB Cytotoxicity Assay in Evaluating Anticancer Drugs[J]. Bulletin of science and technology, 2000, 16(2): 104-107.
    [64] 臧林泉, 苏兴文, 邱鹏新, 等. 一种神经元体外缺氧诱导凋亡模型的建立[J]. 中国病理生理杂志, 2007, 23 (6): 1244 - 1245、1248
    [65] KrichevskyAM, Kosik KS. RNAi functions in cultured mammalian neurons [J]. Proc. Natl Acad. Sci, 2002, 99: 11926 - 9.
    [66] 邹东霆, 李 冰. 脂质体介导转染培养细胞的基因表达及转染程序的简化[J].广州医学院学报,2005,33(5): 50-52.
    [67] Chapman AG. Glutamate and glutamine in the brain[J]. J Nutr, 2000, 130: 1043-1045.
    [68] 王晓玲, 钱亦华, 朱淑娟. 谷氨酸对原代培养的 SD 大鼠皮层神经元毒性作用量效关系研究[J]. 中国老年学杂志, 2005,25: 1380-82.
    [69] 陈应柱, 顾永健, 包仕尧. 刺五加皂甙对谷氨酸毒性神经元凋亡的保护作用[J]. 中风与神经疾病杂志, 2004, 21(6): 533-535.
    [70] Wakabayshi T, Spodnik JH. Structural changs of mitochondria during free radical-induced apoptosis[J]. FoliaMorphol, 2000, 59 (2) : 61-75.
    [71] 迟先煊,冯鉴强,陈培熹. 过氧化氢诱发的小脑皮质凋亡神经元膜 K+通道电流的变化[J]. 生理学报, 1998, 50(2): 222-226.
    [72] 邹明, 高静, 张婷婷等. H2O2 诱导的线粒体损伤神经元内硫氧还蛋白 mRNA水平的变化[J]. 实验生物学报, 2004, 37(1): 15-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700