材料化荧光探针的合成及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
荧光分子探针具有高选择性、高灵敏度和快速便捷等特点,近些年被广泛应用于分子、离子的识别以及生物成像。本论文将荧光探针固载到载体材料上,成功地应用于环境和生命体系中重金属离子的检测,并提升了载体材料对环境中重金属离子的吸附能力,是合成对重金属离子等污染物具有快速检测、高效吸附以及荧光成像等多功能用途的实用型新材料的一种有效方法。
     设计合成了3种固载了荧光分子探针的SBA-15杂化材料:SBA-P1、SBA-P2和SBA-RT。SBA-P1在水体系中通过荧光淬灭的方式选择性地识别Hg2+,检测限为200ppb;而荧光材料SBA-P2在水体系中通过荧光淬灭的方式选择性地识别Cu2+,检测限为1 ppb,低于国家饮用水标准所规定的1 ppm的最高允许含量。由于受SBA-15介孔孔道内的微观尺寸空间效应的影响,Cu2+荧光探针固载到SBA-15材料后,其荧光光谱出现蓝移现象,选择性和灵敏度也有所提高;材料SBA-RT在纯水体系中可以选择性地识别Cr3+,加入20μM的Cr3+后,荧光增强了8倍,同时材料由无色变为粉红色。对Cr3+的检测限为50ppb。荧光分子探针固载到SBA-15后,表现出与有机小分子探针不同的光谱响应以及较高的选择性和灵敏度。荧光探针功能化的SBA.15材料对Hg2+、Cu2+和cr3+的吸附能力较SBA-15增强了6-7倍,且材料都具有可再生能力,并可应用于不同水源样品中。SBA-P2和SBA-RT还成功应用于活体组织和细胞内Cu2+和Cr3+的荧光成像。
     以水溶性的(L-CS)和高密度的(H-CS)壳聚糖为载体材料,设计合成了荧光分子探针改性的功能材料:H-CS-RB、L/H-CS-Fluo和L/H-CS-Cb。荧光材料H-CS-RB可以在水体系中通过荧光和“显色”的方法选择性地识别Hg2+,检测限可在10 ppb以下。水溶性的荧光材料L-CS-Fluo和L-CS-Cb则可在Tris-HCl缓冲溶液中通过荧光淬灭的方式选择性地识别Fe3+,检测限分别为0.2ppm和0.6ppm。同时为了研究荧光材料与重金属离子的作用机理,又合成了由壳聚糖单体氨基葡萄糖衍生的小分子探针:AG-RB、AG-Fluo和AG-Cb,这些小分子探针展现了与荧光材料相同的识别性能。由于氨基葡萄糖和低分子量壳聚糖(L-CS)良好的水溶性以及生物兼容性,AG-RB、L-CS-Fluo与L-CS-Cb分别成功地实现了对活体细胞内Hg2+和Fe3+的荧光成像。不溶性的荧光材料H-CS-RB,H-CS-Fluo和H-CS-Cb吸附Hg2+和Fe3+的能力相对于未经荧光探针改性的高密度壳聚糖(H-CS)均提高了近一倍,并且吸附过程中伴随着材料颜色的的明显变化。研究还发现壳聚糖荧光材料也可在不同水源样品中应用。
     设计合成了两个新型的基于罗丹明衍生物的NO荧光探针:RB-TP和RB-Py。在Cu2+存在下,两个荧光探针都能选择性地识别水中的NO。在NO的识别过程中,Cu2+不仅诱导化合物RB-TP和RB-Py水解为罗丹明水合肼(RB-NH2);而且配合物中的Cu2+作为氧化活性中心,还能将加入的NO氧化成NO+。NO+进而与RB-NH2反应生成亚硝酰化的开环罗丹明结构,从而表现为荧光和紫外的明显增强,20分钟左右达到平衡,其中探针RB-TP和RB-Py的荧光分别增加了9.5倍和6.5倍,同时溶液由无色变为红色。检测限分别为5 nM和20 nM。生物体内的其他活性物种,如1O2、NO2-、NO3-、ONOO-、H2O2和CIO-均没有明显的干扰。RB-TP和RB-Py还应用到活体细胞内NO的荧光成像。
During the past decade, fluorescent probes have become an important research field of supramolecular chemistry and have attracted great attention because of their simplicity, high selectivity and sensitivity in fluorescent assays. Furthermore, improved sensing materials can be achieved by immobilizing fluorescent probes onto carrier materials, and will have more comprehensive applications.
     Three fluorescent hybrid materials were synthesized by immobilization of fluorescence probes within the channels of the SBA-15. Hybrid material SBA-P2 exhibits several different properties compared to the free fluorescent probe, such as higher selectivity and blue-shift of the fluorescence spectra due to special spatial environment in the channels of the SBA-15. SBA-P2 was able to selectively detect Cu2+ with a detection limit for Cu2+ of ca.0.65 ppb under optimized conditions. The adsorption of SBA-P2 for Cu2+ was dramatically enhanced due to the introduction of the Cu2+ fluorescence probes. Preliminary fluorescence microscopy experiments show that the SBA-P2 is a useful functionalized material for studying biological processes involving Cu2+ within living cells and living organisms. SBA-P1 can recognize and absorb Hg2+ with a high degree of selectivity among heavy metal ions in natural aqueous solution. The quenching fluorescence detection is also reversible by treating with EDTA/base. SBA-RT presents Cr3+-selective fluorimetric and colorimetric responses in aqueous solution. The fluorescence responses are reversible by treating with EDTA and do not vary over a broad pH range suitable for Cr3+ bioimaging application. Through isolating the metal ions within the mesopores of the silica, SBA-RT can extract Cr3+ from solution with only trace amounts remaining. The fluorescence images experiment also demonstrated the possibility of further application in monitoring Cr3+ in living cells and organisms.
     A series of grafted-probes chitosan materials were also synthesized. Fluorescent material H-CS-RB can selectively and sensitively detect Hg2+ by spectroscopic and "naked-eye" method in suspension solution with detection limit of 10 ppb. Fluorescent materials L-CS-Fluo, L-CS-Cb feature excellent water-solubility and biocompatibility and have been applied to selectively detect Fe3+ by fluorescent quenching method in environment and biological fields. The detection limit of L-CS-Fluo and L-CS-Cb for Fe3+ were 0.2 ppm and 0.6 ppm, respectively. Fluorescent molecule probes AG-Fluo, AG-Cb and AG-RB coupling the D-Glucosamine were also synthesized and exhibited consistent recognition abilities with corresponding fluorescent materials. Adsorption abilities of H-CS-RB, H-CS-Fluo and H-CS-Cb for Hg2+ and Fe3+ were more than doubled compared to free H-CS.
     Two rhodamine-based probes were designed and synthesized. Both RB-TP and RB-Py can detect NO with high selectivity and sensitivity in water assisted by Cu2+. RB-TP and RB-Py could be degraded to RB-NH2 as a result of Cu2+-promoted hydrolysis in water. Furthermore, the presence of NO will lead to reduction of Cu2+ to Cu+, and concomitant NO+ reacted with RB-NH2 generating the N-nitroso amide, opening the spirolactam ring of rhodamine B and evoking the emission and absorption increases. Fluorescence intensities of RB-TP and RB-Py showed 9.5-fold and 6.5-fold increases in 20 min, respectively. At the same time, the solutions turned pink to achieve "nake-eyed" detection. The detedction limit of RB-TP and RB-Py for NO were 5 nM and 20 nM, respectively. Other biologically relevant reactive species such as NO2-、NO3-、ONOO-、H2O2、1O2 and Clo- did not give any interference. Both of them have been applied to detect the intracellular NO by fluorescence imaging method.
引文
[1]杨真,罗海吉.缺铁性贫血及补铁剂研究进展[J].国外医学卫生学分册,2006,33(2):90-93.
    [2]侯振江,周秀艳.微量元素与疾病[J].微量元素与健康研究,2004,2l(6):16-17.
    [3]Pulido-Tofino P, Barrero-Moreno J M, Perez-Conde M C. A flow-through sensor to determine Fe(III) and total inorganic iron [J]. Talanta,2000,51,537-545.
    [4]Llobat J M, Falco G, Casas C, et al. Coneentrations of Arsenic, Cadmium, Mercuy, and Lead in Common Foods and Estimated Daily Intake by Children, Adoleseents, Adults, and Seniors of Catalonia, Spain [J]. Journal of Agricultural and Food Chemistry,2003,51,838-842.
    [5]Renzoni A, Zino F, Franehi E. Mereury levels along the food chain and risk for exposed Populations [J].Environmental Research,1998,77,68-72.
    [6]Emons H, Sehladot J D, Sehwuger M D. Potential for seeondary poisoning and biomagnifieation in marine organisms [J]. Chemosphere,1997,35,187-1885.
    [7]Kageyama K, Onoyama Y, Kano E et al. Effeets of methylmercuric chloride and sulfhydryl in hibitors on phospholipids synthetic activity of lymPhoeytes [J]. Journal of Applied Toxieology, 1986,6,49-53.
    [8]Clarkson T W, Magoss L, Myers N, et al. The toxicology of mercury-current exposures and clinical manifestations [J]. New England Journal of Medieine,2003,349,731-1737.
    [9]Butler O T, Cook J M, Harrington C F, et al. Atomies Spectrometry update. Environmentalanalysis [J]. Journal of Analytical Atomic SPectrometry,2006,21,217-243.
    [10]Li Y F, Chen C Y, Li B, et al. Elimination efficiency of different reagents for the memory effect Of mercury using ICP-MS [J]. Journal of Analytical Atomic Spectrometry,2006,21,94-96.
    [11]Walker G S, Ridd M J, Brunskill G J. A comparison of induetively coupled Plasma atomic emission spectrometry and inductively coupled Plasmamass spectrometry for determination of mercury in Great Barrier Reef sediments [J]. RaPid Communications in Mass Spectrometry,1996, 10,96-99.
    [12]Yoon S, Albers A E, Wong A P, et al. Screening Mereury Levels in Fish with a Selective Fluorescent Chemosensor [J]. J. Am. Chem. Soc.,2005,12,16030-16031.
    [13]Moon S Y, Youn N J, Park S M, et al. Diametrically Disubstituted Cyclam Derivative Having Hg-Selective Fluoroionophoric Behaviors [J]. Journal of Organic 2005,70,2394-2397.
    [14]A thioether-rich crown-based highly selective fluorescent sensor for Hg2+ and Ag+ in aqueous solution [J]. Chen T, Zhu W P, Xu Y F, et al. Dalton Trans.,2010,39,1316-1320.
    [15]Zhang X L, Xiao Y, Qian X H. A Ratiometric Fluorescent Probe Based on FRET for Imaging Hg2+ Ions in Living Cells [J]. Angew. Chem. Int. Ed.,2008,47,8025-8029.
    [16]Zhang X, Chi L N, Ji S M, et al. Rational Design of d-PeT Phenylethynylated-Carbazole Monoboronic Acid Fluorescent Sensors for the Selective Detection of a-Hydroxyl Carboxylic Acids and Monosaccharides [J]. J. Am. Chem. Soc,2009.131,17452-17463.
    [17]杜建军.Ⅱ B族离子荧光探针的研究与细胞成像的应用[D].博十学位论文,大连理工大学,大连,2009.
    [18]吕国军.基于罗丹明衍生物的Hg~(2+)离子识别变色荧光探针的研究[D].博士学位论文,大连理工大学,大连,2007.
    [19]李宏林.基于罗丹明螺环隐色体的荧光增强型分子探针的研究[D].博十学位论文,大连理工大学,大连,2010.
    [20]Tang B, Cui L J, et al. A Sensitive and Selective Near-Infrared Fluorescent Probe for Mercuric Ions and Its Biological Imaging Applications [J]. J. Am. Chem. Soc.,2008,130,16460-16461.
    [21]Yang Y-K, Yook K-J, Tae J. A Rhodamine-Based Fluorescent and Colorimetric Chemodosimeter for the Rapid Detection of Hg2+ Ions in Aqueous Media [J]. J. Am. Chem. Soc., 2005,127,16760-16761.
    [22]Huang W, Song C X, He C, et al. Recognition Preference of Rhodamine-Thiospirolactams for Mercury(Ⅱ) in Aqueous Solution [J]. Inorg. Chem.,2009,48,5061-5072.
    [23]Lee M H, Cho B-K, Yoon J, et al. Selectively Chemodosimetric Detection of Hg(Ⅱ) in Aqueous Media [J]. Org. Lett.,2007,9,4515-4518.
    [24]Choi M G, Cha S, Lee H, et al. Sulfide-selective chemosignaling by a Cu2+ complex of dipicolylamine appended fluorescein [J]. Chem. Commun.,2009,7390-7392.
    [25]Xiang Y, Tong A J, Jin P, et al. New Fluorescent Rhodamine Hydrazone Chemosensor for Cu(Ⅱ) with High Selectivity and Sensitivity [J]. Org. Lett.,2006,8,2863-2866.
    [26]Huang J H, Xu Y F, Qian X H, A colorimetric sensor for Cu2+ in aqueous solution based on metal ion-induced deprotonation:deprotonation/protonation mediated by Cu2+-ligand interactions [J]. Dalton Trans.,2009,10,1761-1766]
    [27]Ko K C, Wu J-S, Kim H J, et al. Rationally designed fluorescence'turn-on'sensor for Cu2+[J]. Chem. Commun.,2011,47,3165-3167.
    [28]Sarkar M, Banthia S, Samanta A. A highly selective'off-on'fluorescence chemosensor for Cr(Ⅲ) [J]. Tetrahedron Lett.,2006,47,7575-7578.
    [29]Huang K W, Yang H, Zhou Z G, et al. Multisignal Chemosensor for Cr3+and Its Application in Bioimaging [J]. Org. Lett.,2008,10,2557-2560.
    [30]黎俊波,李楠楠,余响林,等.高选择性铁离子荧光探针的合成及性质研究[J].武汉工程大学学报,2010,32(5):11-14.
    [31]Lin W Y, Yuan L, Feng J B, et al. A Fluorescence-Enhanced Chemodosimeter for Fe3+ Based on Hydrolysis of Bis(coumarinyl)Schiff Base [J]. Eur. J. Org. Chem.,2008,2689-2692.
    [32]Lee M H, Giap T V, Kim S H, et al. A novel strategy to selectively detect Fe(Ⅲ) in aqueous media driven by hydrolysis of a rhodamine 6G Schiff base [J]. Chem. Commun.,2010,46, 1407-1409.
    [33]Seo S, Lee H Y, Park M, et al. Fluorescein-Functionalized Silica Nanoparticles as a Selective Fluorogenic Chemosensor for Cu2+ in Living Cells [J]. Eur. J. Inorg. Chem.2010,843-847.
    [34]Guo Z Q, Zhu W H, Tian H, Hydrophilic Copolymer Bearing Dicyanomethylene-4H-pyran Moiety As Fluorescent Film Sensor for Cu2+ and Pyrophosphate Anion [J]. Macromolecules, 2010,43,739-744.
    [35]Erbas S, Gorgulu A, Kocakusakogullari M, et al. Non-covalent functionalized SWNTs as delivery agents for novel Bodipy-based potential PDT sensitizers [J]. Chem. Commun.,2009, 4956-4958.
    [36]Mu L X, Shi W S, She G W, et al. Fluorescent Logic Gates Chemically Attached to Silicon Nanowires [J]. Angew. Chem. Int. Ed.,2009,48,3469-3472.
    [37]Hu M, Chen J Y, Li Z Y, et al. Gold nanostructures:engineering their plasmonic properties for biomedical applications [J]. Chem. Soc. Rev.,2006,35,1084-1094.
    [38]Li Z Y, Zhang H N, Zheng W, et al. Highly Sensitive and Stable Humidity Nanosensors Based on LiCl Doped TiO2 Electrospun Nanofibers [J]. J. Am. Chem. Soc.,2008,130,5036-5037
    [39]Wang B D, Hai J, Liu Z C, et al. Selective Detection of Iron(Ⅲ) by Rhodamine-Modified Fe3O4 Nanoparticles [J]. Angew. Chem. Int. Ed.,2010,49,4576-4579.
    [40]Kresge C T, Luonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquidcrystal template mechanism, Nature,1992,359,710-712.
    [41]Zhao D Y, Fong J L, Huo Q S, et al. Triblock copolymer synthesis of mesoporous silica with periodic 50 to 300 angstrom pores, Science,1998,279,548-552.
    [42]Andreas S, Brian J. Melde, Rick C. Schroden, Hybrid Inorganic-Organic Mesoporous Silicates-Nanoscopic Reactors Coming of Age [J]. Adv. Mater.2000,12,1403-1419.
    [43]Kado S, Sekine Y, Fujimoto K. Direct synthesis of acetylene from methane by direct current pulse discharge [J]. Chem. Commun.1996,21,2485-2486.
    [44]Melero J A, Iglesias J, Aisuaga J M, et al. Synthesis and catalytic activity of organic-inorganic hybrid T-SBA-15 materials [J]. J. Mater. Chem.,2007,17,377-385.
    [45]Minoru S, Yoshiyuki S, Makoto O. Luminescence of ris(2,2-bipyridine) ruthenium(Ⅱ) cations ([Ru(bpy)32+ adsorbed in mesoporous silicas modified with sulfonated phenethyl group [J]. J. Phys. Chem. B,2007,111,8836-8841.
    [46]Gai S L, Yang P P, Li C X, et al. Synthesis of Magnetic, Up-Conversion Luminescent, and Mesoporous Core-Shell-Structured Nanocompo-sites as Drug Carriers[J]. Adv. Funct. Mater., 2010,20,1166-1172.
    [47]徐红霞,陈彬,吴骊珠,等.SBA-15负载多毗啶铂(Ⅱ)配合物光催化1,4一二氢吡啶衍生物的芳香化反应[J].影像科学与光化学,2009,27,321-324.
    [48]Zeidan R K, Hwang S J, Davis M E. Multifunctional Heterogeneous Catalysts: SBA-15-Containing Primary Amines and Sulfonic Acids [J]. Angew. Chem. Int. Ed.,2006,45, 6332-6335..
    [49]Yang H, Xu R, Xue X M, et al. Hybrid surfactant-templated mesoporous silica formed in ethanol and its application for heavy metal removal [J]. J. Hazard. Mater.,2008,152,690-698.
    [50]Jiang Y J, Gao Q M, Yu H G, et al. Intensively competitive adsorption for heavy metal ions by PAMAM-SBA-15 and EDTA-PAMAM-SBA-15 [J]. Microporous Mesoporous Mater.,2007, 103,316-324.
    [51]Mureseanu M, Reiss A, Stefanescu I, et al. Modified SBA-15 mesoporous silica for heavy metal ions remediation [J]. Chemosphere,2008,73,1499-1504.
    [52]姚超英,田晖.土壤重金属离子污染的植物修复技术[J].浙江化工,2006,37(10):17-19.
    [53]Kalyania S. Ajitha Priyaa J, Srinivasa Raoa P, et al. Removal of Copper and Nickel from Aqueous Solutions Using Chitosan Coated on Perlite as Biosorbent [J]. Sep. Sci. Technol.,2005, 40,1483-1495.
    [54]李海虹.壳聚糖与正丁醛缩合反应的研究[J].化学研究与应用,2007,12(2):230-232.
    [55]马建国,刘淑娟,王达成.基于壳聚糖席夫碱衍生物的修饰电极对抗坏血栓化学行为的研究[J].食品工业科技,2006,12,175-177.
    [56]霍美蓉,周建平, 张勇,等.N-辛基-O,N-羧甲基壳聚糖自组装纳米粒的制备、理化性质及安全性评价[J].中国药科大学学报,2007,38(6),512-515
    [57]Wang R M, He N P, Peng-Fei Song P F, et al. Preparation of nano-chitosan Schiff-base copper complexes and their anticancer activity [J]. Polym. Adv. Technol.,2009,20 959-964.
    [58]刘蒲,刘晔,李晶玉,等.壳聚糖亚胺环钯化合物的合成及其催化性能研究[J].有机化学,2007,27(1):87-91.
    [59]Boddu V M, Abburi K, Talbott O L, et al. Removal of Hexavalent Chromium from Wastewater Using a New Composite Chitosan Biosorbent [J]. Environ. Sci. Technol.,2003,37,4449-4456.
    [60]宋庆平,王崇侠,高建纲.N-甲基壳聚糖的制备及其对重金属离子吸附研究[J].离子交换与吸附,2010,26(6):559-564.
    [61]丁萍,黄可龙,李桂银,等.化工学报[J].2006,57(11):2652-2656.
    [62]任建敏,吴四维.天然吸附材料在废水重金属离子处理中的应用[J].重庆工商大学学报(自然科学版),22(6):537-540.
    [63]Tanjia B, Schlaak M, Strasdeit H, Adsorption of nickel(Ⅱ), zinc(Ⅱ) and cadmium(Ⅱ) by new chitosan derivatives[J]. Reactive Functional Polym.,2000,44,289-298.
    [64]Yang Z k. Wang Y T, Tang Y R. Preparation and Adsorption Properties of Metal Ions of Crosslinked Chitosan Azacrown Ethers [J]. J. Appl. Polym. Sci.,1999,74,3053-3058.
    [65]Mereer J F B. The moleeula rbasis of copper-transport diseases [J]. Trends Mol. Med.,2001,7, 64-69.
    [66]Harrison M D, Dameron C T. Molecular mechanisms of copper metabolism and the role of the Menkes disease protein [J]. J. Bioehem. Mol. Toxieol.,1999,13,93-96.
    [67]Strausak D, Mereer J F B, Dieter H H, et al. Copper in disorders with neurological symptoms: Alzheimer's, Menkes, and Wilson diseases [J]. Brain Res. Bull.,2001,55,175-185.
    [68]Waggoner D J, Bartnikas T B, Gitlin J D. The role of copper in neurodegenerative disease [J]. Neurobiol. Dis.,1999,6,22-230.
    [69]Anderson R, Chromium R A. Trace Elements in Human and Animal Nutrition, Academic Press, New York,1987.
    [70]Sarkar M, Banthia S, Samanta A, A highly selective'off-on'fluorescence chemosensor for Cr(Ⅲ) [J]. Tetrahedron Lett.,2006,47,7575-7578.
    [71]Zayed M, Norman T. Chromium in the environment:factors affecting biological remediation [J]. Plant and Soil.,249,139-156.
    [72]Shiraishi Y, Sumiya S, Kohno Y, et al. Rhodamine-Cyclen Conjugate as a Highly Sensitive and Selective Fluorescent Chemosensor for Hg(Ⅱ) [J]. J. Org. Chem.,2008,73,8571-8574.
    [73]Chen T, Zhu W P, Xu Y F, et al. A thioether-rich crown-based highly selective fluorescent sensor for Hg+ and Ag+ in aqueous solution [J]. Dalton Trans.,2010,39,1316-1320.
    [74]Jung H S, Kwon P S, Lee J W, et al. Coumarin-Derived Cu2+-Selective Fluorescence Sensor: Synthesis, Mechanisms, and Applications in Living Cells [J]. J. Am. Chem. Soc.,2009,131, 2008-2012.
    [75]Mao J, He Q, Liu W SH, An "off-on" fluorescence probe for chromium(Ⅲ) ion determination in aqueous solution[J]. Anal Bioanal Chem 2010,396,1197-1203.
    [76]Mureseanu M, Reiss A, Stefanescu I, Modified SBA-15 mesoporous silica for heavy metal ions remediation [J]. Chemosphere,2008,73,1499-1504.
    [77]Kim H J, Lee S J, Park S Y, et al. Detection of CuⅡ by a Chemodosimeter-Functionalized Monolayer on Mesoporous Silica [J]. Adv. Mater.,2008,20,3229-3234.
    [78]Lee M H, Lee S J, Jung J H, et al. Luminophore-immobilized mesoporous silica for selective Hg2+ sensing [J]. Tetrahedron,2007,63,12087-12092.
    [79]Sarkar K, Dhara K, Nandi M, Selective Zinc(Ⅱ)-Ion Fluorescence Sensing by a Functionalized Mesoporous Material Covalently Grafted with a Fluorescent Chromophore and Consequent Biological Applications [J]. Adv. Funct. Mater.,2009,19,223-234.
    [80]Newalkar B L, Komarneni S, Katsukih, Rapid synthesis of mesoporous SBA-15 molecular sieve by a microwave-hydrothennal process [J]. Chem. Commun.,2000,2389-2390.
    [81]Peters A T, Behesti Y S S, Benzo[k,1], Xanthene-3,4-Dicarboximides and Benzimidazoxanthenoisoquinolinones-Yellow and Orange Dyes for Synthetic-Polymer Fibres [J]. J. Soc. Dyes Colour,1989,105,29-35.
    [82]Kim E, Kim H E, Lee S J, et al. Reversible solid optical sensor based on acyclic-type receptor immobilized SBA-15 for the highly selective detection and separation of Hg(Ⅱ) ion in aqueous media [J]. Chem. Commun.,2008,3921-3923.
    [83]Mao J, Wang L N, Dou W, et al. Tuning the Selectivity of Two Chemosensors to Fe(Ⅲ) and Cr(III) [J]. Org. Lett.,2007,9,4567-4570.
    [84]Gao L, Wang Y, Wang J Q, et al. Novel ZnⅡ-Sensitive Fluorescent Chemosensor Assembled within Aminopropyl-Functionalized Mesoporous SBA-15 [J]. Inorg. Chem.,2006,45, 6844-6850.
    [85]Li L L, Sun H, Fang C J, et al. Optical sensors based on functionalized mesoporous silica SBA-15 for the detection of multianalytes (H+ and Cu2+ in water [J]. J. Mater. Chem.,2007,17. 4492-4498.
    [86]Peirez-Quintanilla. D. Hierro. I. Fajardo, et al. Adsorption of cadmium(Ⅱ) from aqueous media onto a mesoporous silica chemically modified with 2-mercaptopyrimidine [J]. J. Mater. Chem., 2006,16.1757-1764.
    [87]Liu G Y, Guo J, Yang W L, et al. Magnetic mesoporous silica microspheres with thermo-sensitive polymer shell for controlled drug release [J]. J. Mater. Chem.,2009,19, 4764-4770
    [88]Song C X, Zhang X L, Jia C Y, et al. Highly sensitive and selective fluorescence sensor based on functional SBA-15 for detection of Hg2+ in Aqueous Media [J].Talanta,2010,81,643-649.
    [89]Wang J, Huang L, Xue M, et al. Architecture of a Hybrid Mesoporous Chemosensor for Fe3+ by Covalent Coupling Bis-Schiff Base PMBA onto the CPTES-Functionalized SBA-15 [J]. J. Phys. Chem. C,2008,112,5014-5022.
    [90]Nolan E M, Racine M E, Selective Hg(Ⅱ) Detection in Aqueous Solution with Thiol Derivatized Fluoresceins [J]. Lippard S J, Inorg. Chem.,2006,45,2742-2749.
    [91]Varnes A W, Dodson R B, Wehry E L. Interactions of transition-metal ions with photoexcited states of flavines. Fluorescence quenching studies [J]. J. Am. Chem. Soc.,1972,9460-950.
    [92]Kramer R, Fluorescent Chemosensors for Cu2+ Ions:Fast, Selective, and Highly Sensitive [J]. Angew. Chem. Int. Ed.,1998,37,772-773.
    [93]M. E. P. of, P. R. China, National Standards for the Daily Drinking Water Quality 2007.
    [94]Zhang L Z, Xiong Y, Cheng P, et al. Molecular orbital confinement of a Schiff base molecule in the nanoporous channels of MCM-41 host [J]. Chem. Phys. Lett.,2002,358,278-283.
    [95]Xu W, Guo H Q, Akins D L. Aggregation of Tetrakis(p-sulfonatophenyl)porphyrin within Modified Mesoporous MCM-41 [J]. J. Phys. Chem. B,2001,105,1543-1546.
    [96]Mu L X, Shi W Sh, Chang J C, Lee S-T, Silicon Nanowires-Based Fluorescence Sensor for Cu(II) [J]. Nano Lett.,2008,8,104-109
    [97]Xu Z C, Xiao Y, Qian X H, et al. Ratiometric and Selective Fluorescent Sensor for Cull Based on Internal Charge Transfer (ICT) [J]. Org. Lett.,2005,7,889-892.
    [98]Gao L, Wang Y, Wang J Q, et al. A Novel ZnⅡ-Sensitive Fluorescent Chemosensor Assembled within Aminopropyl-Functionalized Mesoporous SBA-15[J]. Inorg. Chem.,2006,45,6844-6850.
    [99]Xiang, Y, Tong, A, A New Rhodamine-Based Chemosensor Exhibiting Selective FeⅢ-Amplified Fluorescence [J]. Org. Lett.,2006,8,1549-1552.
    [100]Lin Y-S, Tsai C-P, Huang H-Y, Well-Ordered Mesoporous Silica Nanoparticles as Cell Markers [J]. Chem. Mater.,2005,17,4570-4573
    [101]Climent E, Bernardos A, Martinez-Manez R,et al. Controlled Delivery Systems Using Antibody-Capped Mesoporous Nanocontainers [J]. J. Am. Chem. Soc.,2009,131,14075-14080
    [102]Slowing I I, Trewyn B G, Giri S, et al. Mesoporous Silica Nanoparticles for Drug Delivery and Biosensing Applications [J]. Adv. Funct. Mater.,2007,17,1225-1236
    [103]Sarkar K, Dhara K, Nandi M, et al. Selective Zinc(Ⅱ)-Ion Fluorescence Sensing by a Functionalized Mesoporous Material Covalently Grafted with a Fluorescent Chromophore and Consequent Biological Applications [J]. Adv. Funct. Mater.,2009,19,223-234.
    [104]Tang B, Cui L J, Xu K H, et al. A Sensitive and Selective Near-Infrared Fluorescent Probe for Mercuric Ions and Its Biological Imaging Applications [J]. ChemBioChem.,2008,9,1159-1164.
    [105]Yao H B, Tan Z H, Fang H Y, et al. Artificial Nacre-like Bionanocomposite Films from the Self-Assembly of Chitosan-Montmorillonite Hybrid Building Blocks [J]. Angew. Chem. Int. Ed., 2010,49,10127-10131.
    [106]Renbutsu E, Okabe S, Omura Y, et al. Synthesis of UV-curable chitosan derivatives and palladium(Ⅱ) adsorption behavior on their UV-exposed films [J]. Carbohydr. Polym.,2007,69, 697-706.
    [107]Guan X L, Liu X Y, Su Z X. Preparation and Photophysical Behaviors of Fluorescent Chitosan Bearing Fluorescein:Potential Biomaterial as Temperature/pH Probes [J]. J. Appl. Polym. Sci., 2007,104,3960-3966.
    [108]刘志军,费学宁,谷迎春.壳聚糖支载菁染料荧光探针及荧光特性[J].影像科学与光化学,2009,27,307-313.
    [109]Du J J, Fan J L, Peng X J, et al. A New Fluorescent Chemodosimeter for Hg2+:Selectivity, Sensitivity, and Resistance to Cys and GSH [J]. Org. Lett.,2010,12,476-479.
    [110]Liu W, Xu L, Sheng R, et al. A Water-Soluble "Switching On" Fluorescent Chemosensor of Selectivity to Cd2+[J]. Org. Lett.,2007,12,3829-3892.
    [111]Kong L, Yang J, Hao X, et al. Tuning the optical properties of flurophore-hexylcarbazole organic nanoribbons with dispersed inorganic nanocrystals (AgNCs) [J]. J. Mater. Chem.,2010, 20,7372-7377.
    [112]李海虹毛勇.壳聚糖与二苯甲酮缩合反应的研究[J].化工时刊,2007,21(2):24-25.
    [113]He C, Lin Z H, He Z, et al. Metal-Tunable Nanocages as Artificial Chemosensors [J]. Angew. Chem. Int. Ed.,2008,47,877-881.
    [114]Huang W, Song C X, He C, et al. Recognition Preference of Rhodamine-Thiospirolactamsfor Mercury(II) in Aqueous Solution [J]. Inorg. Chem.,2009,48,5061
    [115]Paulino A T, Guilherme M R, Reis A V. Capacity of adsorption of Pb2+ and Ni2+ from aqueous solutions by chitosan produced from silkworm chrysalides in different degrees of deacetylation [J]. J. Hazard. Mater.,2007,147,139-147.
    [116]Kumar M, Kumar R, Bhalla V. Regioselective Intramolecular Dipolar Cycloaddition of Azides and Unsymmetrical Alkynes [J]. Org. Lett.,2010,12,366-369.
    [117]Xing B, Khanamiryan A, Rao J. Cell-Permeable Near-Infrared Fluorogenic Substrates for Imaging (3-Lactamase Activity [J]. J. Am. Chem. Soc.,2005,127,4158-4159.
    [118]Felippe J, Pavinatto, Pavinatto A, et al. Interaction of Chitosan with Cell Membrane Models at the Air-Water Interface [J]. Biomacromolecules,2007,8,1633-1640.
    [119]Palmer R M J, Ferrige A G, Moncade S. Nitric oxide release accounts for the biological activity of endothelium derived relaxing factor [J]. Nature,1987,327,524-526.
    [120]张灯青,赵圣印,刘海雄.一氧化氮荧光分子探针[J].化学进展,2008,20(9)1396-1405.
    [121]孙俊永,黄克靖,刘彦明,等.分子荧光探针在一氧化氮分析中的应用进展,信阳师范学院学报:自然科学版[J].2008,21,155-160.
    [122]Meineke P, Rauen U, Groot H, et al. Cheletropic Traps for the Fluorescence Spectroscopic Detection of Nitric Oxide (Nitrogen Monoxide) in Biological Systems [J]. Chem. Eur. J.,1999,5, 1738-1749.
    [123]Privat C, Lantonie F, Bedioui F, et al. Nitric Oxide Production by Endothelia 1 Cells: Comparison of Three Methods of Quanification [J]. Life Sci.,1997,61,1193-1202.
    [124]Girgis R, Qureshi M, Abrams J, et al. Decreased Exhaled Nitric Oxide in Sickle Cell Disease: Relationship with Chronic Lung Involvement [J]. Am J Hematol,2003,2,177-84.
    [125]Han T, Hyduke D, Vaughn M, et al. Nitric Oxide Reaction with Red Blood and Hemoglobin under Heterogeneous Conditions [J]. Proc Natl Acad Sci USA,2002,99,7763-768.
    [126]Kim K, Chang H T, Oh G S, et al. Integrated Gold-disk Microelectrode Modified with Iron (Ⅱ)-phthalocyanine for Nitric Oxide Detection in Macrophage [J]. Microchem J,2005,80, 219-226.
    [127]Kiechle F L, Malinski T. Indirect Detection of Nitric Effect:a Review [J]. Ann Clin Lab Sci., 1996,26,501-511.
    [128]Gimldez R P, Zweier J L. An Improved Assay for Measurement of Nitric Synthase Activity Biological Tissues [J]. Anal Biochem.,1998,261,29-35.
    [129]Momz L L, Dahlgren R L, Boudko D, et al. Direct Single Cell Determination of Nitric Oxide Synthase Related Metabolites in Identified Nitrergic Neurons [J]. J Inorganic Biochem.,2005, 99,929-939.
    [130]Kojima K, Himtani M, Nakatsubo N, et al. Detection and Ima ging of Nitric Oxide with Novel Fluorescence In dicators:Diaminofluoresceins [J]. Anal. Chem.,2001,73,2446-2453.
    [131]Katayama Y, Takahashi S, Maeda M. Design, synthesis and characterization of a novel fluorescent probe for nitric oxide (nitrogen monoxide) [J]. Anal. Chim. Acta,1998,365,159-167
    [132]Soh N, Katayama Y, Maeda M. A fluorescent probe for monitoring nitric oxide production using a novel detection concept [J]. Analyst,2001,126,564-566
    [133]Bergonzi R, Fabbrizzi L, Licchelli M, et al. Molecular switches of fluorescence operating through metal centred redox couples [J]. Coord. Chem. Rev.,1998,170,31-46.
    [134]Lim M H, Lippard S J. Fluorescence-Based Nitric Oxide Detection by Ruthenium Porphyrin Fluorophore Complexes [J]. Inorg. Chem.,2004,43,6366-6370.
    [135]Lim M H, Lippard S J, Copper Complexes for Fluorescence-Based NO Detection in Aqueous Solution [J]. J. Am. Chem. Soc,2005,127,12170-12171.
    [136]McQuade L E, Lippard S J, Fluorescence-Based Nitric Oxide Sensing by Cu(Ⅱ) Complexes That Can Be Trapped in Living Cells [J]. Inorg. Chem.,2010,49,7464-7471.
    [137]Lim M H, Xu D, Lippard S J, Visualization of nitric oxide in living cells by a copper-based fluorescent probe [J]. Nature Chemical Biology,2006,2,375-380.
    [138]Lim M H, Wong B A, Pitcock W H. Direct Nitric Oxide Detection in Aqueous Solution by Copper(II) Fluorescein Complexes [J]. J. Am. Chem. Soc.,2006,128,14364-14373.
    [139]Kobayashi H, Ogawa M, Alford R, et al. New Strategies for Fluorescent Probe Design in Medical Diagnostic Imaging [J]. Chem. Rev.,2010,110,2620-2640.
    [140]Wang J, He C, Wu P Y, et al. An Amide-Containing Metal r Organic Tetrahedron Responding to a Spin-Trapping Reaction in a Fluorescent Enhancement Manner for Biological Imaging of NO in Living Cells [J]. J. Am. Chem. Soc,2011,133,12402-12405.
    [141]Praneeth V K K, Paulat F, Berto T C. Electronic Structure of Six-Coordinate Iron(Ⅲ)-Porphyrin NO Adducts:The Elusive Iron(Ⅲ)-NO(radical) State and Its Influence on the Properties of These Complexes [J]. J. Am. Chem. Soc.,2008,130,15288-15303.
    [142]Zheng H, Shang G Q, Yang S Y, et al. Fluorogenic and Chromogenic Rhodamine Spirolactam Based Probe for Nitric Oxide by Spiro Ring Opening Reaction [J]. Org. Lett.,2008,10, 2357-2360.
    [143]Yang Y K, Yook K J, Tae J, A Rhodamine-Based Fluorescent and Colorimetric Chemodosimeter for the Rapid Detection of Hg2+ Ions in Aqueous Media [J]. J. Am. Chem. Soc., 2005,127,16760-16761.
    [144]Xiang Y, Tong A J, Jin P Y, et al. New Fluorescent Rhodamine Hydrazone Chemosensor for Cu(II) with High Selectivity and Sensitivity [J]. Org. Lett.,2006,8,2863-2866.
    [145]Aruna J. Weerasinghe, Carla Schmiesing, Ekkehard Sinn, Highly sensitive and selective reversible sensor for the detection of Cr3+[J]. Tetrahedron Lett.,2009,50,6407-6410.
    [146]Wu D Y, Huang W, Duan C Y, et al. Highly Sensitive Fluorescent Probe for Selective Detection of Hg2+ in DMF Aqueous Media [J]. Inorg. Chem.,2007,46,1538-1540.
    [147]Held A M, Halko D J, Hurst J K, Mechanisms of chlorine oxidation of hydrogen peroxide [J]. J. Am. Chem. Soc.,1978,100,5732-5740.
    [148]Zhang R, Ye Z Q, Wang G L. Development of a Ruthenium(Ⅱ) Complex Based Luminescent Probe for Imaging Nitric Oxide Production in Living Cells [J]. Chem. Eur. J.,2010,16, 6884-6891.
    [149]Wu D Y, Huang W, Hua W J, et al. Metal complexes formed by metal-assisted solvolysis of di-pyridylketone azine:structures and magnetic properties [J]. Dalton Trans.,2007,18, 1838-1845.
    [150]Sarkar K, Dhara K, Nandi M, et al. Selective Zinc(Ⅱ)-Ion Fluorescence Sensing by a Functionalized Mesoporous Material Covalently Grafted with a Fluorescent Chromophore and Consequent Biological Applications [J]. Adv. Funct. Mater.,2009,19,223-234.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700