鹰嘴豆耐旱种质的筛选、cDNA文库构建、EST数据分析及耐旱相关基因克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球性的气候异常和生态平衡的破坏,干旱、沙化、盐碱土地面积急剧增加,水资源短缺已成为全人类面临的一个严重生态问题。干旱也已成为一种世界性的重大农业灾害,其对农作物造成的损失在所有的非生物胁迫中居首位,仅次于生物胁迫病虫害造成的损失。
     鹰嘴豆是最早被人类驯化利用的豆科植物之一。在豆科类作物中居第3位,是世界上栽培面积较大的食用豆类作物之一。鹰嘴豆具有耐旱、抗逆、水分利用效率高等特点,是进行作物耐旱性改良的重要基因资源。本研究首先从我国新疆的鹰嘴豆品种中筛选鉴定耐旱品种,然后在构建鹰嘴豆幼苗水分胁迫下两个平行cDNA文库及其EST序列分析的基础上,克隆与水分胁迫响应的重要基因,并研究其表达模式,结果如下:
     1、鹰嘴豆干旱胁迫条件下生理生化的研究与耐旱性筛选鉴定
     通过室内试验,以耐旱性强弱不同的12个鹰嘴豆品种为材料,对干旱胁迫下鹰嘴豆叶片的相对含水量、丙二醛含量、脯氨酸含量等生理生化指标进行研究,探讨了这些生理生化指标与耐旱性的关系,同时通过系统聚类的方法对12个鹰嘴豆品种进行了耐旱性综合评价。结果表明,耐旱性较强的品种叶片保水能力强,水分亏缺小,脯氨酸增加倍数大,能保持较高的细胞膜相对完整性,细胞膜脂过氧化作用较小,净光合速率下降幅度较小,蒸腾速率和气孔导度下降幅度较大,水分利用效率较高。12个品种可划分为高耐旱性、中耐旱性和低耐旱性3个类群。对耐旱性强的209和耐旱性弱的88-1进行干旱胁迫下叶片和根中内源激素变化的研究表明,60 mM PEG 4000胁迫24 h后两个品种的ABA与IAA含量均显著增加,但209的增幅大于88-1;GA和ZR含量均显著降低,且209的降幅大于88-1。
     2、鹰嘴豆叶片cDNA文库的构建
     在前期鉴定鹰嘴豆耐旱性基础上,选取耐旱性较好的品种209用于构建PEG 4000模拟的干旱胁迫(MH1)和正常生长(MH2)的两个平行的cDNA文库。通过梯度稀释与细菌平板记数法计算出MH1库容量为4.9×105,重组率为92%;MH2库容量7.5×105,重组率为90%。经过菌落PCR鉴定,两个文库中外源基因的插入片段基本上均达到1 Kb以上。因此构建的cDNA文库均符合文库标准,可以进行下一步大规模的EST测序。这为筛选抗旱相关的重要基因提供了有效的平台,为基因克隆等奠定了良好的基础。
     3、两个鹰嘴豆叶片cDNA文库大规模测序及EST序列分析
     对前期构建的两个非均一化的cDNA文库(一个是PEG 4000胁迫处理文库,另一个是对照文库)进行了EST测序。每个文库随机挑选2500个左右的克隆进行测序,并对测序结果进行生物信息学分析。经过IDEG6在线生物软件分析,结果表明有92个基因的表达差异显著,且这些基因参与了不同的生物学过程。许多上调表达的基因都与干旱耐性相关,而下调表达的基因大多数与光合作用相关。为验证文库分析的结果,挑选了5个差异表达的基因进行实时荧光定量PCR(qPCR)分析,结果表明,qPCR结论与EST分析的结果一致。本结果将为鹰嘴豆耐旱分子基础的研究做出重要的贡献。
     4、鹰嘴豆S—腺苷甲硫氨酸(SAM)代谢途径中几个重要基因的克隆及其表达研究
     在对前期构建的两个鹰嘴豆叶片cDNA文库5’随机测序和序列拼接注释的基础上,克隆了鹰嘴豆SAM代谢途径中的CpSAMs、CpMS及CpSAMDC3个重要基因,并对这三个基因进行了相关的生物信息学分析。结果表明这3个基因都包含了完整的开放阅读框,其中CpSAMs基因编码的蛋白包含了两个腺苷甲硫氨酸信号结构域,CpMS基因编码的蛋白含有Meth_synt_1和Meth_synt_2两个结构域,CpSAMDC基因编码的蛋白包含了酶原剪切位点和PEST两个结构域。同时为了研究SAM代谢途径与鹰嘴豆耐旱的相关性,对该途径中CpSAMs、CpMS、CpSAHH和CpSAMDC等4个基因进行了半定量RT-PCR分析。结果表明这4个基因于干旱胁迫的初始阶段在根和叶中的表达量都上升,在根、茎、叶中的表达存在组织特异性。因此,SAM代谢途径可能参与鹰嘴豆干旱胁迫响应。
With deterioration of global climate and destruction of the balance of biogeocenose, the area of aridity, desertification and salinization rapidly increased. The shortage of water resources has been a serious ecological problem which faced by human being. Drought has also been a global agricultural calamity and is first abiotic stress factor led to reduction of yield.
     The cultivated chickpea, Cicer arietinum L., was one of the first grain legumes to be domesticated in the ancientry. Today, chickpea is the third most important pulse crop in the world. Due to displaying considerable drought tolerance, adverse resistance and high water used efficiency, chickpea is being used as a important gene resource for improving drought tolerance of crop. In this study, strong drought tolerant varieties were screened and identified from 12 chickpea varieties from Xinjiang Autonomous Region. On the basis of construction of two cDNA libraries of chickpea leaves under water stress and analysis of expressed sequence tags (ESTs), cloning and expression pattern of some important water-stress responded genes involved in SAM pathway were studied. The main conclusions are as follows:
     1. Effects of drought stress on physiological-biochemical indexes and identification of drought tolerance of chickpea cultivars
     Through laboratory experiment study, relative water content, malondialdehyde content, proline content and other physiological-biochemical indexes of leaves of 12 chickpea cultivars under drought stress were investigated. The relationship between these physiological-biochemical indexes and drought tolerance were discussed. By system cluster analysis, the 12 chickpea varieties could be classified into 3 drought tolerant ranks:the strong drought tolerant, the medium drought tolerant, and the weak drought tolerant. The results showed that the strong drought tolerant varieties have stronger water retaining capacity, smaller water deficit, larger increase multiple of proline, higher relative integrity of the membrane, smaller membrane lipid peroxidation, smaller decline rate of net photo synthetic, larger decline rate of stomata conductance and transpiration, higher water use efficiency.
     The IAA, GA3, ZR and ABA contents in chickpea under drought conditions were determined by the method of ELISA and the relationship between these endogenous hormones and drought tolerance were discussed. The results showed, after 60 mM PEG 4000-treated 24 h, contents of ABA and IAA increased significantly and contents of GA3 and ZR decreased significantly in 209 (strong drought tolerant) and 88-1 (weak drought tolerant). The stronger the drought tolerance of the variety is, the more the decrease of GA3 and ZR contents, the less the increase of ABA and IAA contents.
     2. Construction and identification of two cDNA libraries of chickpea leaves
     On the basis of identification of drought tolerance, two non-normalized cDNA libraries were constructed from the seedling leaves of a strong drought-tolerant chickpea cultivar 209 under PEG 4000-treated (MH1) and-nontreated (MH2) conditions. Through serial dilution and bacteria plate count method, the content of cDNA library and the recombination were calculated. Results showed the content of the MH1 was 4.9×105 and the recombination was 92%, and the content of the MH2 was 7.5×105 and the recombination was 90%. The results of identification of colony PCR showed that the inserts of the two cDNA libraries were basically more than 1 Kb. The two libraries were constructed successfully and could be used for large-scale sequencing. It will provide an effective platform of screening for drought tolerant-related genes and gene clone.
     3. Large-scale sequencing and EST sequence analysis of two chickpea leaf cDNA libraries
     About 2500 clones from each library were selected randomly for sequencing analysis. Based on IDEG6 online software analysis,92 genes were differentially expressed, and these genes were involved in diverse biological progresses, such as metabolism, transcription, signal transduction, protein synthesis and others. Most of the up-regulated genes were related to drought tolerance, and the down-regulated genes were mainly involved in photosynthesis. The differential expression patterns of 5 functional unigenes were confirmed by quantitative real-time PCR (qPCR). The results will be helpful in understanding the molecular basis of drought tolerance in chickpea.
     4. Gene cloning and expression pattern study of some important genes in S-adenosylmethionine (SAM) metabolic pathway
     Under the basis of 5'EST sequencing, assembling and annotation of the two chickpea leaf libraries, CpSAMs、CpMS and CpSAMDC, which involved in SAM metabolic pathway, were cloned and analyzed by bioinformatics. In order to study the relationship between SAM metabolic pathway and responses of chickpea to drought, the expression patterns of CpSAMs、CpMS、CpSAHH and CpSAMDC were confirmed by semi-quantitative PCR(qPCR). The results showed the three cloned genes have complete open reading frames. CpSAMs contains two conserved SAMs motifs, CpMS contains Meth_synt_1 and Meth_synt_2 motifs and CpSAMDC contains PEST regions and proenzyme cleavage site motif. The gene expression of CpSAMs, CpMS, CpSAHH and CpSAMDC were up-regulated during the initial stages of drought stress and the three genes also have differentially expression patterns in chickpea roots, stems and leaves. Taken together, it can be speculated that SAM metabolic pathway may be involve in chickpea response to drought stress.
引文
1.李广敏,关军锋.作物抗旱生理与节水技术研究[M].北京:气象出版社,2001
    2.冯琳.2007年全国旱情及抗旱情况.中国防汛抗旱[J].2008(1):66—70
    3. Levitt J. Response of plants to environmental stresses. water, radiation, salt and other stresses[M]. New York, Academic Press,1980:325-358
    4. Hall. Physiological ecology of crops in relation to light, water, and temperature. In:Agroecology[M]. Edited by Carroll C R, Vandermeerv J H, P. R. New York:Me Graw Hill Publishing Company, 1990:191-233
    5.张木清,陈如凯,等.作物抗旱分子生理与遗传改良[M].北京:科学出版社,2005
    6.黎裕.作物抗旱鉴定方法与指标[J].干旱地区农业研究,1993,11(1):91—99
    7.孙彩霞,沈秀瑛.作物抗旱性鉴定指标及数量分析方法的研究进展[J].中国农学通报,2002,18(1):49—51
    8. Adams M D, Kelley J K, Gocayne J D, et al. Complementary DNA sequencing:expressed sequence tags and human genome project[J]. Science,1991,252:1651-1656
    9.于风池.EST技术及其应用综述[J].中国农学通报,2005,21(2):54—58
    10.胡松年.基因表达序列标签(EST)数据分析手册[M].浙江:浙江大学出版社,2005
    11. Van der Loo FJ, Turner S C S. Expressed sequence tags from developing castor seeds[J]. Plant Physiology,1995,108:1141-1150
    12. Boominathan P, Shukla R, Kumar A, et al. Long term transcript accumulation during the development of dehydration adaptation in Cicer arietinum[J]. Plant Physiology,2004,135(3):1608-1620
    13. Coram T E, Pang E C K. Isolation and analysis of candidate ascochyta blight defence genes in chickpea. Part Ⅰ. Generation and analysis of an expressed sequence tag (EST) library[J]. Physiological and Molecular Plant Pathology,2005,66(5):192-200
    14. Coram T E, Pang E C K. Isolation and analysis of candidate ascochyta blight defence genes in chickpea. Part Ⅱ. Microarray expression analysis of putative defence-related ESTs[J]. Physiological and Molecular Plant Pathology,2005,66(5):201-210
    15. Coram T E, Pang E C K. Expression profiling of chickpea genes differentially regulated during a resistance response to Ascochyta rabiei[J]. Plant Biotechnology Journal,2006,4(6):647-666
    16. Coram T E, Pang E C K. Transcriptional profiling of chickpea genes differentially regulated by salicylic acid, methyl jasmonate and aminocyclopropane carboxylic acid to reveal pathways of defence-related gene regulation[J]. Functional Plant Biology,2007,34(1):52-64
    17. Buhariwalla H K, Jayashree B, Eshwar K, et al. Development of ESTs from chickpea roots and their use in diversity analysis of the Cicer genus[J]. BMC Plant Biology,2005,5:16
    18. Van der Maesen L J G Cicer L., a monograph of the genus with special reference to chickpea(Cicer arietinum L.), its ecology and cultivation[M]. Maded. Landbouw. Wageningen,1972
    19. FAO. FAO statistical databases[EB/OL]. http://faostat.fao.org/site/340/default.aspx.
    20. De Candolle A. Origine des plantes cultivees[M]. Paris,1883
    21. Vavilov N I. Studies on the origin of cultivated plants[M]. Leningrad,1926
    22. Ladizinsky G, Adler A. The origin of chickpea Cicer arietinum L[J]. Euphytica,1976,25(1):211-217
    23. Singh K B, Ocampo B. Interspecific hybridization in annual Cicer species[J]. Journal of Genetics and Breeding,1993,47:199-204
    24. Ocampo B, Venora G, Errico A, et al. Karyotype analysis in genus Cicer[J]. Journal of Genetics and Breeding,1992,46:229-240
    25. Labdi M, Robertson L D, Singh K B, et al. Genetic diversity and phylogenetic relationships among the annual Cicer species as revealed by isozyme polymorphism[J]. Euphytica,1996,88(3):181-188
    26. Ladizinsky G, Adler A. Genetic relationships among the annual species of Cicer L. [J]. TAG Theoretical and Applied Genetics,1976,48(4):197-203
    27. Singh K B. Chickpea (Cicer arietinum L.) [J]. Field Crops Research,1997,53(1-3):161-170
    28.龙静宜,林黎奋,候修身,等.食用豆类作物[M].北京:北京科学出版社,1989
    29.朱锦福,刁治民,李强峰.鹰嘴豆生物学特性及应用价值[J].青海草业,2004,13(4):27—31
    30.郑卓杰.中国食用豆类学[M].北京:中国农业出版社,1997
    31.阿米娜·阿布里米提,热依拉·木合甫力.鹰嘴豆引种初探[J].新疆农业科学,1997(4):161—162
    32.车万琴,周艳红,于洪泳.鹰嘴豆栽培技术与产量关系试验[J].现代化农业,2001,261(4):7—8
    33.库尔班·尼扎米丁.鹰嘴豆在旱作条件下不同播种期对产量影响的研究[J].新疆农业科学,2008,45(1):175—179
    34.吾尔古丽,张保军,张巨松,等.新疆鹰嘴豆不同种植密度对其生长发育产量和品质的影响[J].干旱地区农业研究,2008(3):26—30
    35. Sheldrake A R, Saxena N P, Krishnamurthy L. The expression and influence on yield of the 'double-podded' character in chickpeas (Cicer arietinum L.) [J]. Field Crops Research,1978,1: 243-253.
    36.张崇武.地膜覆盖对鹰嘴豆的产量性状影响[J].农业与技术,2003,23(4):79—80
    37.吐热依沙木··依米提,艾买尔江·吾斯曼,王冀川,等.鹰嘴豆地膜覆盖栽培试验[J].新疆农业科学,2004,41(2):100—101
    38. Attia R S, Aman M E, Shehata A M E-T, Hamza M A. Effect of ripening stage and technological treatments on the lipid composition, lipase and lipoxygenase activities of chickpea (Cicer arietinum L.) [J]. Food Chemistry,1996,56(2):123-129
    39. Sanchez-Vioque R, Clemente A, Vioque J, et al. Polar lipids of defatted chickpea (Cicer arietinum L.) flour and protein isolates[J]. Food Chemistry,1998,63(3):357-361
    40.阿米娜·阿可布力米提,祖丽哈娅提·那思尔丁,刘成,等.诺胡提(鹰嘴豆)的开发利用研究[J].新疆农业科学,2002,39(1):45—47
    41.刘玉梅,李静璋,陈德军,等.超临界CO2萃取鹰嘴豆工艺研究及应用[J].粮食与油脂,2003(9).
    42. Jambunathan R, Singh U. Studies on desi and kabuli chickpea (Cicer arietinum L.) cultivars. I. Chemical composition[M]. In Proc. International Workshop on Chickpea Improvement Hyderabad. India:1979
    43. Singh U, Jambunathan R. Studies on Desi and Kabull chickpea (Cicer arietinum L.) cultivars:levels of protease inhibitors, levels of polyphenolic compounds and in vitro protein digestibility [J]. Journal of Food Science,1981,46(5):1364-1367
    44. Kumar K G, Venkataraman L V. Chickpea seed proteins:isolation and characterization of 10.3S protein[J]. Journal of Agricultural and Food Chemistry,1980,28(3):524-529
    45. Singh U, Raju S M, Jambunathan R. Studies on desi and kabuli chickpea (Cicer aritinum L.) cultivars. Ⅱ. Seed protein fraction and amino acid composition[J]. Journal of Food Science and Technology,1981,18:86-88
    46. Murray D R, Roxburgh C M. Amino acid composition of the seed albumins from chickpea[J]. Journal of the Science of Food and Agriculture,1984,35(8):893-896
    47. Newman C W, Roth N R, Lockerman R H. Protein quality of chickpea (Cicer arietinum L.) [J]. Nutrition Reports International 1987,36:1-5
    48.张涛,江波,王璋.鹰嘴豆分离蛋白质的功能性质[J].食品科技,2005(4):19—22
    49.张涛,江波,王璋.鹰嘴豆分离蛋白质的特性[J].食品与生物技术学报,2005,24(3):66—71
    50. Kaur M, Singh N. Characterization of protein isolates from different Indian chickpea (Cicer arietinum L.) cultivars[J]. Food Chemistry,2007,102(1):366-374
    51. Zhang T, Jiang B, Wang Z. Gelation properties of chickpea protein isolates[J]. Food Hydrocolloids, 2007,21(2):280-286
    52.张涛,江波,王璋.鹰嘴豆分离蛋白的胶凝性[J].食品科学,2006,27(8):108—113
    53.刘坚,江波,张涛,等.超高压对鹰嘴豆分离蛋白功能性质的影响[J].食品与发酵工业,2006,32(12):64—68
    54.魏玲,李学琴,王莉,等.反胶束体系萃取鹰嘴豆蛋白的工艺研究[J].中国粮油学报,2007,22(3):137—139
    55.张涛,江波,沐万孟.酶法改性对鹰嘴豆分离蛋白功能性的影响[J].食品与发酵工业,2007,33(4):56—61
    56.刘坚,江波,李艳红,等.超高压对鹰嘴豆分离蛋白起泡性能的影响[J].安徽农业科学,2007,35(28):9012—9013
    57.刘坚,李艳红,缪铭,等.超高压对不同缓冲体系中鹰嘴豆分离蛋白溶解性的影响[J].食品工业科技,2007,28(11):90—92
    58.张涛,江波,沐万孟,等.鹰嘴豆分离蛋白分离纯化[J].食品科学,2008,29(3):158—161
    59.崔竹梅,王红玲,张占琴,等.鹰嘴豆籽粒清蛋白和球蛋白等电点、相对分子量的测定[J].干旱地区农业研究,2007,25(6):89—95
    60. Srivastava K N, Mehta S L, Naik M S, et al. Protein accumulation and protein quality of Bengal gram (Cicer arietinum) cotyledons during development[J]. Journal of Agricultural and Food Chemistry,1981,29(1):24-27
    61. Paredes-Lopez O, Ordorica-Falomir C, Olivares-Vazquez M R. Chickpea protein isolates: physicochemical, functional and nutritional characterization[J]. Journal of Food Science,1991, 56(3):726-729
    62. Singh D K, Rao A S, Singh R, et al. Amino acid composition of storage proteins of a promising chickpea(Cicer arietinum L) cultivar[J]. Journal of the Science of Food and Agriculture 1988, 43(4):373-379
    63. Singh U, Subrahmanyam N, Kumar J. Cooking quality and nutritional attributes of some nely developed cultivars of chickpea(Cicer arietinum) [J]. Journal of the Science of Food and Agriculture,1991,55(1):37-46
    64. Cai R, Mccurdy A, Baik B K. Textural property of 6 legume curds in relation to their protein constituents[J]. Journal of Food Science,2002,67(5):1725-1730
    65. Singh N, Singh Sandhu K, Kaur M. Characterization of starches separated from Indian chickpea (Cicer arietinum L.) cultivars[J]. Journal of Food Engineering,2004,63(4):441-449
    66. De Almeida Costa G E, da Silva Queiroz-Monici K, Pissini Machado Reis S M, et al. Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes[J]. Food Chemistry,2006,94(3):327-330
    67. Cai R, Klamczynska B, Baik B K. Preparation of bean curds from protein fractions of six legumes[J]. Journal of Agricultural and Food Chemistry,2001,49(6):3068-3073
    68.朱志华,李为喜,张晓芳,等.食用豆类种质资源粗蛋白及粗淀粉含量的评价[J].植物遗传资源学报,2005,6(4):427—430
    69. Ruperez P. Oligosaccharides in raw and processed legumes[J]. Z Lebensm Unters Forsch A,1998, 206(2):130-133
    70.包兴国,杨蕊菊,舒秋萍.鹰嘴豆的综合开发与利用[J].草业科学,2006,23(10):34—37
    71.张涛,江波,王璋.鹰嘴豆营养价值及其应用[J].粮食与油脂,2004(7):18—20
    72.张玲,阿吉艾可拜尔·艾萨,夏作理.迪西鹰嘴豆和鹰嘴豆芽微量元素含量的分析比较[J].中国卫生检验杂志,2008,18(1):99—100
    73.张玲,王丽英,夏作理.卡布里鹰嘴豆及豆芽微量元素含量分析[J].粮油食品科技,2008,16(3):39—41
    74.何桂香,刘金宝.鹰嘴豆异黄酮提取物对高脂血症小鼠的降脂作用[J].中国临床康复,2005,9(7):80—81
    75.肖克来提,木尼拉.维药鹰嘴豆的国内外应用简介[J].中国民族医药杂志,2003,11(3):20
    76. Stevenson P C, Veitch N C. Isoflavenes from the roots of Cicer judaicum [J]. Phytochemistry,1996, 43(3):695-700
    77.马合木提·买买提明,海力茜·陶尔大洪,玛依拉,等.紫外分光光度法测定维药鹰嘴豆中总黄酮的含量[J].时珍国医国药,2007,18(4):889—890
    78.吴敏,袁建,俞阗,等.三波长紫外分光光度法测定鹰嘴豆籽粒总异黄酮含量的研究[J].干旱地区农业研究,2007,25(6):96—101
    79.刘金宝,何桂香.鹰嘴豆异黄酮提取物对高脂血症小鼠血脂的影响[J].新疆医科大学学报,2005,28(6):524—525
    80.李燕,巫冠中,张巨松.鹰嘴豆异黄酮提取物对糖尿病小鼠血糖和氧化—抗氧化态的效应[J].中国组织工程研究与临床康复,2007,11(38):7625—7629
    81. Herridge D F, Marcellos H, Felton W L, et al. Chickpea increases soil-N fertility in cereal systems through nitrate sparing and N2 fixation[J]. Soil Biology and Biochemistry 1995,27(4-5):545-551
    82.姚正良,刘秦.鹰嘴豆种质资源鉴定及开发利用前景[J].甘肃农业科技,2001(8):17—18
    83.段醒男.我国食用豆资源研究[J].中国种业,1982(2):6—11
    84.甘肃省张掖地区农科所.国外鹰嘴豆引种观察[J].甘肃农业科技,1988(1):26—27
    85.金维汉,寇思荣,王思慧.鹰嘴豆增产潜力初探[J].甘肃农业科技,1994(1):14—15
    86.寇思荣,金维汉,王思慧.鹰嘴豆种质资源丰产及抗性筛选试验[J].甘肃农业科技,1995(12):6—7
    87.寇思荣,王思慧.几个鹰嘴豆品种资源抗旱性的直接鉴定[J].干旱地区农业研究,1997,15(3): 117—121
    88.李焰,霍勤.食用豆类—鹰嘴豆引种试验初报[J].新疆农业科技,1998(1):12
    89.宋万林.鹰嘴豆种子生物学特性的研究[J].中国草地,1991(1):35—40
    90. Jayashree B, Hutokshi K B, Sanjeev S, et al. A legume genomics resource:the chickpea root expressed sequence tag database[J]. Electronic Journal of Biotechnology,2005,8(2):128-133
    91. Silim S N, Saxena M C. Adaptation of spring-sown chickpea to the Mediterranean basin. Ⅰ. Response to moisture supply[J]. Field Crops Research,1993,34(2):121-136
    92. Silim S N, Saxena M C. Adaptation of spring-sown chickpea to the Mediterranean basin. Ⅱ. Factors influencing yield under drought[J]. Field Crops Research,1993,34(2):137-146
    93. Krishnamurthy L, Ito O, Johansen C, et al. Length to weight ratio of chickpea roots under progressively receding soil moisture conditions in a Vertisol[J]. Field Crops Research,1998,58(3): 177-185
    94. Kashiwagi J, Krishnamurthy L, Upadhyaya H D, et al. Genetic variability of drought—avoidance root traits in the mini-core germplasm collection of chickpea (Cicer arietinum L.) [J]. Euphytica, 2005,146(3):213-222
    95. Benjamin J G, Nielsen D C. Water deficit effects on root distribution of soybean, field pea and chickpea[J]. Field Crops Research,2006,97(2-3):248-253
    96. Kashiwagi J, Krishnamurthy L, Crouch J H, et al. Variability of root length density and its contributions to seed yield in chickpea(Cicer arietinum L.) under terminal drought stress[J]. Field Crops Research,2006,95(2-3):171-181
    97. Anbessa Y, Bejiga G Evaluation of Ethiopian chickpea landraces for tolerance to drought[J]. Genetic Resources and Crop Evolution,2002,49(6):557-564
    98. Ford C W. A new lactone from water-stressed chickpea[J]. Phytochemistry,1981,20(8):2019-2020
    99. Singh D P, Singh P, Sharma H C, et al. Influence of water deficits on the water relations, canopy gas exchange, and yield of chickpea(Cicer arietinum) [J]. Field Crops Research,1987,16(3):231-241
    100. Singh P, Sri Rama Y V. Influence of water deficit on transpiration and radiation use efficiency of chickpea(Cicer arietinum L.) [J]. Agricultural and Forest Meteorology,1989,48(3-4):317-330.
    101. Morgan J M, Rodriguez-Maribona B, Knights E J. Adaptation to water-deficit in chickpea breeding lines by osmoregulation:relationship to grain-yields in the field[J]. Field Crops Research,1991, 27(1-2):61-70
    102. Lecoeur J, Wery J, Turc O. Osmotic adjustment as a mechanism of dehydration postponement in chickpea (Cicer arietinum L.) leaves[J]. Plant and Soil,1992,144(1):177-189
    103. Kaur S, Gupta A K, Kaur N. Gibberellic acid and kinetin partially reverse the effect of water stress on germination and seedling growth in chickpea[J]. Plant Growth Regulation,1998,25(1):29-33
    104. Behboudian M H, Ma Q, Turner N C, et al. Discrimination against 13CO2 in leaves, pod Walls, and seeds of water-stressed chickpea[J]. Photosynthetica,2000,38(1):155-157
    105. Nayyar H, Kaur S, Singh S, et al. Differential sensitivity of Desi (small-seeded) and Kabuli (large-seeded) chickpea genotypes to water stress during seed filling:effects on accumulation of seed reserves and yield[J]. Journal of the Science of Food and Agriculture,2006,86(13):2076-2082
    106. Nayyar H, Singh S, Kaur S, et al. Differential sensitivity of Macrocarpa and Microcarpa types of chickpea(Cicer arietinum L.) to water stress:association of contrasting stress response with oxidative injury[J]. Journal of Integrative Plant Biology,2006,48(11):1318-1329
    107. Basu P S, Berger J D, Turner N C, et al. Osmotic adjustment of chickpea(Cicer arietinum) is not associated with changes in carbohydrate composition or leaf gas exchange under drought[J]. Annals of Applied Biology,2007,150(2):217-225
    108. Turner N C, Abbo S, Berger J D, et al. Osmotic adjustment in chickpea(Cicer arietinum L.) results in no yield benefit under terminal drought[J]. Journal of Experimental Botany,2007,58(2):187-194
    109. Nayyar H, Kaur S, Smita, et al. Water stress-induced Injury to reproductive phase in chickpea: evaluation of stress sensitivity in wild and cultivated species in relation to abscisic acid and polyamines[J]. Journal of Agronomy and Crop Science,2005,191(6):450-457
    110. Nayyar H, Chander S. Protective effects of polyamines against oxidative stress induced by water and cold stress in chickpea[J]. Journal of Agronomy and Crop Science,2004,190(5):355-365
    111. Romo S, Labrador E, Dopico B. Water stress-regulated gene expression in Cicer arietinum seedlings and plants. Plant Physiology and Biochemistry,2001,39(11):1017-1026
    112. Bhattarai T, Fettig S. Isolation and characterization of a dehydrin gene from Cicer pinnatifidum, a drought-resistant wild relative of chickpea[J]. Physiologia Plantarum,2005,123(4):452-458
    113. Shukla R K, Raha S, Tripathi V, et al. Expression of CAP2, an APETALA-family transcription factor from chickpea, enhances growth and tolerance to dehydration and salt stress in transgenic tobacco[J]. Plant Physiology,2006,142(1):113-123
    1.余玲,王彦荣,Trevor G,等.紫花苜蓿不同品种对干旱胁迫的生理响应[J].草业学报,2006,15(3):75—85
    2. Valliyodan B. Nguyen H T. Understanding regulatory networks and engineering for enhanced drought tolerance in plants[J]. Current Opinion in Plant Biology,2006,9(2):189-195
    3. FAO. FAO statistical databases[EB/OL]. http://faostat.fao.org/site/340/default.aspx.
    4. Winter P, Pfaff T, Udupa S M, et al. Characterization and mapping of sequence-tagged microsatellite sites in the chickpea (Cicer arietinum L.) genome[J]. Molecular and General Genetics MGG,1999, 262(1):90-101
    5. Nayyar H, Kaur S, Singh S, et al. Differential sensitivity of Desi (small-seeded) and Kabuli (large-seeded) chickpea genotypes to water stress during seed filling:effects on accumulation of seed reserves and yield[J]. Journal of the Science of Food and Agriculture,2006,86(13):2076-2082
    6. Nayyar H, Singh S, Kaur S, et al. Differential sensitivity of Macrocarpa and Microcarpa types of chickpea(Cicer arietinum L.) to water stress:association of contrasting stress response with oxidative injury[J]. Journal of Integrative Plant Biology,2006,48(11):1318-1329
    7. Behboudian M H, Ma Q, Turner N C., et al. Discrimination against 13CO2 in leaves, pod Walls, and seeds of water-stressed chickpea[J]. Photosynthetica,2000,38(1):155-157
    8.寇思荣,王思慧.几个鹰嘴豆品种资源抗旱性的直接鉴定[J].干旱地区农业研究,1997,15(3):117—121
    9. Troll W, Lindsley J. A photometric method for the determination of protine[J]. The Journal of Biological Chemistry,1955,215(2):655-660
    10.赵世杰,许长成,邹琦,等.植物组织中丙二醛测定方法的改进[J].植物生理学通讯,1994,30(3):207—210
    11.张志良.植物生理实验指导[M].北京:高等教育出版社,1994
    12.汤章城.现代植物生理学实验指南[M].北京:科学出版社,1999
    13. Seki M, Umezawa T, Urano K, et al. Regulatory metabolic networks in drought stress responses[J]. Current Opinion in Plant Biology,2007,10(3):296-302
    14.王艳青,陈雪梅,李悦,等.植物抗逆中的渗透调节物质及其转基因工程进展[J].北京林业大学学报,2001,4:66—67,60
    15. Dingkuhn M, Cruz R T, O'Toole J C, et al. Responses of seven diverse rice cultivars to water deficits. Ⅲ. Accumulation of abscisic acid and proline in relation to leaf water-potential and osmotic adjustment[J]. Field Crops Research,1991,27(1-2):103-117
    16. Molinari H B C, Marur C J, Filho J C B, et al. Osmotic adjustment in transgenic citrus rootstock Carrizo citrange(Citrus sinensis Osb. ×Poncirus trifoliata L. Raf.) overproducing proline[J]. Plant Science,2004,167(6):1375-1381
    17.张木情,陈如凯.作物抗旱分子生理与遗传改良[J].北京:科学出版社,2005
    18.顾龚平,吴国荣,陆长梅,等.PEG处理对大豆幼苗活力及活性氧代谢的影响[J].中国油料作物学报,2000,22(2):26—30
    19.苏梦云,范铭庆.渗透胁迫和钙处理对杉木幼苗膜脂过氧化及保护酶活性的影响[J].林业科学研究,2000,13(4):391—396
    20.周泉澄,陈国祥,陈利,等.高产杂交稻两优培九旱育秧苗期抗氧化系统活性的研究[J].植物研究,2005,25(1):80—85
    21.葛体达,隋方功,张金政,等.玉米根、叶质膜透性和叶片水分对土壤干旱胁迫的反应[J].西北植物学报,2005,25(3):507—512
    22.杨春杰,张学昆,邹崇顺,等.PEG-6000模拟干旱胁迫对不同甘蓝型油菜品种萌发和幼苗生长的影响[J].中国油料作物学报,2007,25(1):80—85
    23.康国栋,程存刚,李敏,等.水分胁迫对苹果不同品种光合特性的影响[J].吉林农业大学学报2008,30(1):31—35
    24.王磊,张彤,丁圣彦,干旱和复水对大豆光合生理生态特性的影响[J].生态学报,2006,26(7):2073—2078
    25. Chan K Y, Heenan D P. Effect of tillage and stubble management on soil water storage, crop growth and yield in a wheat-lupin rotation in southern NSW[J]. Australian Journal of Agricultural Research,1996,47(3):479-488
    26. Pustovoitova T N, Zhdanova N E, Zholkevich V N. Changes in the levels of IAA and ABA in cucumber leaves under progressive soil drought[J]. Journal of Plant Physiology,2004,51 (4):513-517
    27. Katsvairo T, Cox W J, van Es H. Tillage and rotation effects on soil physical characteristics[J]. Agronomy Journal,2002,94(2):299-304
    28.赵文魁,童建华,张雪芹,等.干旱胁迫下几种柑桔植物内源激素含量的变化规律[J].农业与技术,2007,27(4):55—58
    29.张明生,谢波,谈锋.水分胁迫下甘薯内源激素的变化与品种抗旱性的关系[J].中国农业科学,2002,35(5):498—501
    30. Krochko J E, Abrams G D, Loewen M K,等. (+)-Abscisic acid 8'-hydroxylase is a cytochrome P450 monooxygenase[J]. Plant Physiology,1998,118(3):849-860
    31. Landi P, Sanguineti M C, Salvi S, et al. Validation and characterization of a major QTL affecting leaf ABA concentration in maize[J]. Molecular Breeding,2005,15(3):291-303
    32. Xiong L. Abscisic acid in plant response and adaptation to drought and salt stress. In:Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops[M]. Edited by Jenks M A, Hasegawa P M, Jain S M. Springer Netherlands,2007:193-221
    33. Bandurska H, Stroinski A. ABA and proline accumulation in leaves and roots of wild (Hordeum spontaneum) and cultivated (Hordeum vulgare 'Maresi') barley genotypes under water deficit conditions[J].Acta Physiologiae Plantarum,2003,25(1):55-61
    34. Yan L, Hai-chun P, De-quan L. Responses of ABA and CTK to soil drought in leafless and leafy apple tree[J]. Journal of Zhejiang University-Science A,2003,4(1):101-108
    35.李德全,郭清福,张以勤,等.冬小麦抗旱生理特性的研究[J].作物学报,1993,19(2):125—132
    36.陈京,谈锋,李蓉.甘薯苗期离体叶片对水分胁迫的适应能力[J].植物生理学通讯,1994,30(4):269—271
    37.康俊梅,樊奋成,杨青川.41份紫花苜蓿抗旱鉴定试验研究[J].草地学报,2004,12(1):22—23
    1.晏慧君,黄兴奇,程在全.cDNA文库构建策略及其分析研究进展[J].云南农业大学学报,2006,21(1):1—6
    2.胡松年.基因表达序列标签(EST)数据分析手册[M].浙江:浙江大学出版社,2005
    3. Winter P, Pfaff T, Udupa S M, et al. Characterization and mapping of sequence-tagged microsatellite sites in the chickpea (Cicer arietinum L.) genome[J]. Molecular and General Genetics MGG,1999, 262(1):90-101
    4. Jayashree B, Hutokshi K B, Sanjeev S, et al. A legume genomics resource:the chickpea root expressed sequence tag database[J]. Electronic Journal of Biotechnology,2005,8(2):128-133
    5. Xiong L, Wang R-G, Mao G, et al. Identification of drought tolerance determinants by genetic analysis of root response to drought stress and abscisic acid[J]. Plant Physiology,2006,142(3):1065-1074
    6. Zhao X-Q, Xu J-L, Zhao M, et al. QTLs affecting morph-physiological traits related to drought tolerance detected in overlapping introgression lines of rice(Oryza sativa L.) [J]. Plant Science, 2008,174(6):618-625
    7. Bruce W B, Edmeades G O, Barker T C. Molecular and physiological approaches to maize improvement for drought tolerance[J]. Journal of Experimental Botany,2002,53(366):13-25
    8. Turner N C, Wright G C, Siddique K H M. Adaptation of grain legumes (pulses) to water-limited environments. In:Advances in Agronomy[M]. Academic Press,2001(71):193-231
    9. Romo S, Labrador E, Dopico B. Water stress-regulated gene expression in Cicer arietinum seedlings and plants[J]. Plant Physiology and Biochemistry,2001,39(11):1017-1026
    10. Buhariwalla H K, Eshwar J B K, Crouch J H. Development of ESTs from chickpea roots and their use in diversity analysis of the Cicer genus[J]. BMC Plant Biology,2005,5(16):1-16
    11. Boominathan P, Shukla R, Kumar A, et al. Long term transcript accumulation during the development of dehydration adaptation in Cicer arietinum[J]. Plant Physiology,2004,135:1608 -1620
    12.朱馨蕾,马艳,张富春.盐胁迫下胡杨cDNA文库的构建及其nhx基因的克隆[J].植物研究,2007,27:82—88
    13.毛新国,景蕊莲,孔秀英,等.几种全长cDNA文库构建方法比较[J].遗传,2006,28(7):865—873
    14.萨姆布鲁克.分子克隆实验指南[M].北京:科学出版社,2002
    15.吴乃虎.基因工程原理[M].北京:科学出版社,1998
    16.印莉萍,祁晓廷,刘祥林,等.缺铁诱导玉米根cDNA文库的构建及铁胁迫基因(fdr3)的筛选和鉴定[J].科学通报,2000,45(1):44—48
    17.马春泉,张莹,崔颖,等.甜菜M14品系花期cDNA文库的构建及特异表达基因的筛选[J].植物研究,2008,28(4):408—411
    18.官德义,赖燕,林明,等.紫外线照射辣椒叶片cDNA文库构建及部分防御信号基因cDNA的检测[J].福建农林大学学报(自然科学版),2008,37(3):275—279
    19.陈金中,薛京伦.载体学与基因操作[M].北京:科学出版社,2007
    20.陈亮,赵丽萍,高其康.茶树新梢cDNA克隆测序和表达序列标签(ESTs)特性分析[J].农业生物技术学报,2005,13(1):21—25
    21. Zhao L PGao Q K, Chen L. Sequencing of cDNA clones and analysis of the expressed sequence tags (ESTs) of tea plant [Camellia sinensis (L.) O. Kuntze] young shoots[J]. Chinese Journal of Agricultural Biotechnology,2008,2(2):137-141
    22. Clarke L, Carbon J. A colony bank containing synthetic Col El hybrid plasmids representative of the entire E. coli genome[J]. Cell,1976,9(1):91-99
    1. Xiong L, Wang R-G, Mao G, et al. Identification of drought tolerance determinants by genetic analysis of root response to drought stress and abscisic acid[J]. Plant Physiology,2006,142(3):1065-1074
    2. Bray E A. Plant responses to water deficit[J]. Trends in Plant Science,1997,2(2):48-54
    3. Ingram J, Bartels D. The molecular basis of dehydration tolerance in plants[J]. Annual Review of Plant Physiology & Plant Molecular Biology,1996,47(1):377-433
    4. Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to drought and cold stress[J]. Current Opinion in Biotechnology,1996,7(2):161-167
    5. Campalans A, Messeguer R, Goday A, et al. Plant responses to drought, from ABA signal transduction events to the action of the induced proteins[J]. Plant Physiology and Biochemistry, 1999,37(5):327-340
    6. Adams M D, Kelley J M, Gocayne J D, et al. Complementary DNA sequencing:expressed sequence tags and human genome project[J]. Science,1991,252(5013):1651-1656
    7. Delseny M, Cooke R, Raynal M, et al. The Arabidopsis thaliana cDNA sequencing projects[J]. FEBS Letters,1997,405:129-132
    8. Winter P, Pfaff T, Udupa S M, et al. Characterization and mapping of sequence-tagged microsatellite sites in the chickpea(Cicer arietinum L.) genome[J]. Molecular and General Genetics MGG,1999, 262(1):90-101
    9. Anbessa Y, Bejiga G Evaluation of Ethiopian chickpea landraces for tolerance to drought[J]. Genetic Resources and Crop Evolution,2002,49(6):557-564
    10. Ewing B, Hillier L, Wendl M C, et al. Base-calling of automated sequencer traces using phred. I. accuracy assessment[J]. Genome Research,1998,8(3):175-185
    11. Ewing B, Green P. Base-calling of automated sequencer traces using phred. II. error probabilities [J]. Genome Research,1998,8(3):186-194
    12. Gordon D, Abajian C, Green P. Consed:a graphical tool for sequence finishing[J]. Genome Research,1998,8(3):195-202
    13. Altschul S F, Madden T L, Schaffer A A. Gapped BLAST and PSI-BLAST:a new generation of protein database search programs[J]. Nucleic Acids Research,1997,25(17):3389-3402
    14. Harris M A, Clark J, Ireland A, et al. The Gene Ontology (GO) database and informatics resource[J]. Nucleic Acids Research,2004,32(1):D258
    15. Minoru K, Susumu G, Shuichi K, et al. The KEGG resource for deciphering the genome[J]. Nucleic Acids Research,2004,32(1):D277-280
    16. Romualdi C, Bortoluzzi S, d'Alessi F, et al. IDEG6:a web tool for detection of differentially expressed genes in multiple tag sampling experiments[J]. Physiolgical Genomics,2003(12):159-162
    17. Ehrt S, Schnappinger D. Isolation of plasmids from E. coli by alkaline lysis[M]. Humana Press, 2003:75-78
    18. Bhattarai T, Fettig S. Isolation and characterization of a dehydrin gene from Cicer pinnatifidum,a drought-resistant wild relative of chickpea[J]. Physiologia Plantarum,2005,123(4):452-458
    19. Chen R-D, Yu L-X, Greer A F, et al. Isolation of an osmotic stress- and abscisic acid- induced gene encoding an acidic endochitinase from Lycopersicon chilense[J]. Molecular and General Genetics MGG,1994,245(2):195-202
    20. Wang H, Zhang H, Li Z. Analysis of gene expression profile induced by water stress in upland rice (Oryza sativa L. var. IRAT109) seedlings using subtractive expressed sequence tags library[J]. Journal of Integrative Plant Biology,2007,49(10):1455-1463
    21. Chiang P K, Gordon R K, Tal J, et al. S-Adenosylmethionine and methylation[J]. The FASEB Journal 1996,10(4):471-480
    22. Malakar D, Dey A, Ghosh A K. Protective role of S-adenosyl-l-methionine against hydrochloric acid stress in Saccharomyces cerevisiae[J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 2006,1760(9):1298-1303
    23.汤亚杰,李艳,李冬生,等.S-腺苷甲硫氨酸的研究进展[J].生物技术通报,2007,(2):76—81
    24. Bleecker A B, Kende H. ETHYLENE:A gaseous signal molecule in plants[J]. Annual Review of Cell & Developmental Biology,2000,16(1):1-18
    25. Hamilton A J, Bouzayen M, Grierson D. Identification of a tomato gene for the ethylene-forming enzyme by expression in yeast[J]. Proceedings of the National Academy of Sciences USA,1991, 88(16):7434-7437
    26. Thu-Hang P, Bassie L, Safwat G, et al. Expression of a heterologous S-adenosylmethionine decarboxylase cDNA in plants demonstrates that changes in S-adenosyl-L-methionine decarboxylase activity determine levels of the higher polyamines spermidine and spermine[J]. Plant physiology,2002,129(4):1744-1754
    27. Hao Y-J, Zhang Z, Kitashiba H, et al. Molecular cloning and functional characterization of two apple S-adenosylmethionine decarboxylase genes and their different expression in fruit development, cell growth and stress responses[J]. Gene,2005,350(1):41-50
    28. Fontecave M, Atta M, Mulliez E. S-adenosylmethionine:nothing goes to waste[J]. Trends in Biochemical Sciences,2004,29(5):243-249
    29. Krochko J E, Abrams G D, Loewen M K, et al. (+)-Abscisic acid 8'-hydroxylase is a cytochrome P450 monooxygenase[J]. Plant Physiology,1998,118(3):849-860
    30. Wang X-S, Zhu H-B, Jin G-L, et al. Genome-scale identification and analysis of LEA genes in rice (Oryza sativa L.)[J]. Plant Science,2007,172(2):414-420
    31. Romo S, Labrador E, Dopico B. Water stress-regulated gene expression in Cicer arietinum seedlings and plants[J]. Plant Physiology and Biochemistry,2001,39(11):1017-1026
    32. Shao H-B, Liang Z-S, Shao M-A. LEA proteins in higher plants:Structure, function, gene expression and regulation[J]. Colloids and Surfaces B:Biointerfaces,2005,45(3-4):131-135
    33. Alba M M, Pages M. Plant proteins containing the RNA-recognition motif[J]. Trends in Plant Science,1998,3(1):15-21
    34. Young J J, Jin K K, Kang H. Molecular cloning of a cDNA encoding a high mobility group protein in Cucumis sativus and its expression by abiotic stress treatments[J]. Journal of Plant Physiology, 2007,164(2):205-208
    35. Schweighofer A, Hirt H, Meskiene I. Plant PP2C phosphatases:emerging functions in stress signaling[J]. Trends in Plant Science,2004,9(5):236-243
    36. Khanna-Chopra R, Srivalli B, Ahlawat Y S. Drought Induces many forms of cysteine proteases not observed during natural senescence[J]. Biochemical and Biophysical Research Communications, 1999,255(2):324-327
    37. Zhang J, Liu T, Fu J, et al. Construction and application of EST library from Setaria italica in response to dehydration stress[J]. Genomics,2007,90(1):121-131
    38. Chang Y C, Walling L L. Abscisic acid negatively regulates expression of chlorophyll a/b binding protein genes during soybean embryogeny[J]. Plant Physiology,1991,97(3):1260-1264
    39. Boguski M S, Lowe T M J, Tolstoshev C M. dbEST-database for "expressed sequence tags"[J]. Nature Genetics,1993,4:332-333
    40. Sreenivasulu N, Sopory S K, Kavi Kishor P B. Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches[J]. Gene,2007,388(1-2):1-13
    41. Bray E A. Classification of genes differentially expressed during water-deficit stress in Arabidopsis thaliana:an analysis using microarray and differential expression data[J]. Annals of Botany,2002, 89(7):803-811
    42. Kader J-C. Lipid-transfer proteins in plants[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1996,47(1):627-654
    43. Watkinson J I, Sioson A A, Vasquez-Robinet C, et al. Photosynthetic acclimation Is reflected in specific patterns of gene expression in drought-stressed loblolly pine[J]. Plant Physiology,2003, 133(4):1702-1716
    1. Chiang P K, Gordon R K, Tal J, et al. S-Adenosylmethionine and methylation[J]. The FASEB Journal,1996,10(4):471-480
    2. Malakar D, Dey A, Ghosh A K. Protective role of S-adenosyl-l-methionine against hydrochloric acid stress in Saccharomyces cerevisiae[J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 2006,1760(9):1298-1303
    3.汤亚杰,李艳,李冬生,等.S-腺苷甲硫氨酸的研究进展[J].生物技术通报,2007,(2):76—81
    4. Bleecker A B, Kende H. ETHYLENE:A gaseous signal molecule in plants[J]. Annual Review of Cell & Developmental Biology,2000,16(1):1-18
    5. Hamilton A J. Bouzayen M, Grierson D. Identification of a tomato gene for the ethylene-forming enzyme by expression in yeast[J]. Proceedings of the National Academy of Sciences USA,1991, 88(16):7434-7437
    6. Thu-Hang P, Bassie L, Safwat G, et al. Expression of a heterologous S-adenosylmethionine decarboxylase cDNA in plants demonstrates that changes in S-adenosyl-L-methionine decarboxylase activity determine levels of the higher polyamines spermidine and spermine[J]. Plant Physiology, 2002,129(4):1744-1754
    7. Hao Y-J, Zhang Z, Kitashiba H, et al. Molecular cloning and functional characterization of two apple S-adenosylmethionine decarboxylase genes and their different expression in fruit development, cell growth and stress responses[J]. Gene,2005,350(1):41-50
    8. Fontecave M, Atta M, Mulliez E. S-adenosylmethionine:nothing goes to waste[J]. Trends in Biochemical Sciences,2004,29(5):243-249
    9. Palmer J L., Abeles R H. The mechanism of action of S-adenosylhomocysteinase[J]. The Journal of Biological Chemistry,1979,254(4):1217-1226
    10. Yoshie H, Taku T, Anthony J M, et al. ACAULIS5, an Arabidopsis gene required for stem elongation, encodes a spermine synthase[J]. EMBO Journal,2000,19(16):4248
    11.冯艳飞,梁月荣.茶树S-腺苷甲硫氨酸合成酶基因的克隆和序列分析[J].茶叶科学,2001,21(1):21—25
    12.谢国生,柳朏奎,高野哲夫,等.水稻中与盐碱适应性相关的VB12不依赖型蛋氨酸合成酶基因的克隆和表达[J].遗传学报,2002,29(12):1078—1084
    13. Eichel J, Gonzalez J C, Hotze M, et al. Vitamin-B12-independent methionine synthase from a higher plant (Catharanthus roseus) [J]. European Journal of Biochemistry,1995,230(3):1053-1058
    14. Ravanel S, Gakiere B, Job D, et al. The specific features of methionine biosynthesis and metabolism in plants[J]. Proceedings of the National Academy of Sciences USA,1998,95(13):7805-7812
    15. Hu W-W, Gong H, Pua E C. The pivotal roles of the plant s-adenosylmethionine decarboxylase 5' untranslated leader sequence in regulation of gene expression at the transcriptional and posttranscriptional levels[J]. Plant Physiol,2005,138(1):276-286
    16. Franceschetti M, Hanfrey C, Scaramagli S, et al. Characterization of monocot and dicot plant S-adenosyl-L-methionine decarboxylase gene families including identification in the mRNA of a highly conserved pair of upstream overlapping open reading frames[J]. The Biochemical Journal, 2001,353:403-409
    17. Walters D R. Polyamines and plant disease. Phytochemistry,2003,64(1):97-107
    18. Bouchereau A, Aziz A, Larher F, et al. Polyamines and environmental challenges:recent development[J]. Plant Science,1999,140(2):103-125
    19. Li Z Y, Chen S Y. Differential accumulation of the S-adenosylmethionine decarboxylase transcript in rice seedlings in response to salt and drought stresses[J]. TAG Theoretical and Applied Genetics, 2000,100(5):782-788
    20. Roy M, Wu R. Overexpression of S-adenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance[J]. Plant Science,2002,163(5):987-992
    21. Winter P, Pfaff T, Udupa S M, et al. Characterization and mapping of sequence-tagged microsatellite sites in the chickpea (Cicer arietinum L.) genome[J]. Molecular and General Genetics MGG,1999,262(1):90-101
    22. Stanley B A, Pegg A E, Holm I. Site of pyruvate formation and processing of mammalian S-adenosylmethionine decarboxylase proenzyme[J]. The Journal of Biological Chemistry,1989, 264(35):21073-21079
    23. Schroder G, Schroder J. cDNAs for S-adenosyl-L-methionine decarboxylase from Catharanthus roseus, heterologous expression, identification of the proenzyme-processing site, evidence for the presence of both subunits in the active enzyme, and a conserved region in the active enzyme, and a conserved region in the 5'mRNA leader[J]. European Journal of Biochemistry,1995,228(1):74-78
    24. Kashiwagi K, Taneja S K, Liu T Y, et al. Spermidine biosynthesis in Saccharomyces cerevisiae. Biosynthesis and processing of a proenzyme form of S-adenosylmethionine decarboxylase [J]. The Journal of Biological Chemistry,1990,265(36):22321-22328
    25. Rogers S, Wells R, Rechsteiner M. Amino acid sequences common to rapidly degraded proteins:the PEST hypothesis[J]. Science,1986,234(4774):364-368
    26. Lindroth A M, Saarikoski P, Flygh G, et al. Two S-adenosylmethionine synthetase-encoding genes differentially expressed during adventitious root development in Pinus contorta[J]. Plant Molecular Biology,2001,46(3):335-346
    27. Horikawa S, Sasuga J, Shimizu K, et al. Molecular cloning and nucleotide sequence of cDNA encoding the rat kidney S-adenosylmethionine synthetase[J]. The Journal of Biological Chemistry, 1990,265(23):13683-13686
    28. Ferrer J-L, Ravanel S, Robert M, et al. Crystal structures of cobalamin-independent methionine synthase complexed with zinc, homocysteine, and methyltetrahydrofolate[J]. The Journal of Biological Chemistry,2004,279(43):44235-44238
    29. Jean F E, Dennis E S. Isolation and identification by sequence homology of a putative cytosine methyltransferase from Arabidopsis thaliana[J]. Nucleic Acids Research,1993,21(10):2383-2388
    30. Mudgett M B, Clarke S. Hormonal and environmental responsiveness of a developmentally regulated protein repair L-isoaspartyl methyltransferase in wheat[J]. The Journal of Biological Chemistry,1994,269(41):25605-25612
    31. Thanos C D, Bowie J U. p53 Family members p63 and p73 are SAM domain-containing proteins[J]. Protein Science,1999,8(8):1708-1710
    32. May M, Vernoux T, Leaver C, et al. Review article. Glutathione homeostasis in plants:implications for environmental sensing and plant development[J]. Journal of Experimental Botany,1998, 49(321):649-667
    33. Rzewuski G, Sauter M. Ethylene biosynthesis and signaling in rice[J]. Plant Science,2008,175(1-2):32-42
    34. Dugardeyn J, Van Der Straeten D. Ethylene:Fine-tuning plant growth and development by stimulation and inhibition of elongation[J]. Plant Science,2008,175(1-2):59-70
    35. Chae H S, Kieber J J. Eto Brute? Role of ACS turnover in regulating ethylene biosynthesis[J]. Trends in Plant Science,2005,10(6):291-296
    36. Chang C. Ethylene signaling:the MAPK module has finally landed[J]. Trends in Plant Science, 2003,8(8):365-368
    37. Chen Y-F, Etheridge N, Schaller G E. Ethylene signal transduction[J]. Annals of Botany,2005, 95(6):901-915
    38. Guo H, Ecker J R. The ethylene signaling pathway:new insights[J]. Current Opinion in Plant Biology,2004,7(1):40-49
    39. Klee H J. Ethylene signal transduction. moving beyond Arabidopsis[J]. Plant Physiol,2004,135(2): 660-667
    40. Wang K L C, Li H, Ecker J R. Ethylene biosynthesis and signaling networks[J]. The Plant Cell, (14):S131-151
    41. Imai A, Matsuyama T, Hanzawa Y, et al. Spermidine synthase genes are essential for survival of Arabidopsis[J]. Plant Physiology,2004,135(3):1565-1573
    42. Mayne M B, Coleman J R, Blumwald E. Differential expression during drought conditioning of a root-specific S-adenosylmethionine synthetase from jack pine (Pinus banksiana Lamb.) seedlings[J]. Plant, Cell and Environment,1996,19(8):958-966
    43. Peleman J, Saito K, Cottyn B, et al. Structure and expression analyses of the S-adenosylmethionine synthetase gene family in Arabidopsis thaliana[J]. Gene,1989,84(2):359-369
    44. Schroder G, Eichel J, Breinig S, et al. Three differentially expressed S-adenosylmethionine synthetases from Catharanthus roseus:molecular and functional characterization[J]. Plant Molecular Biology,1997,33(2):211-222
    45. Espartero J, Pintor-Toro J A, Pardo J M. Differential accumulation of S-adenosylmethionine synthetase transcripts in response to salt stress[J]. Plant Molecular Biology,1994,25(2):217-227
    46. Zeh M, Leggewie G, Hoefgen R, et al. Cloning and characterization of a cDNA encoding a cobalamin-independent methionine synthase from potato (Solanum tuberosum L.) [J]. Plant Molecular Biology,2002,48(3):255-265
    47. Abrahams S, Hayes C M, Watson J M. Expression patterns of three genes in the stem of lucerne (Medicago sativa) [J]. Plant Molecular Biology,1995,27(3):513-528
    48. Bhuiyan N, Liu W, Liu G, et al. Transcriptional regulation of genes involved in the pathways of biosynthesis and supply of methyl units in response to powdery mildew attack and abiotic stresses in wheat[J]. Plant Molecular Biology,2007,64(3):305-318

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700