柚(Citrus grandis Osbeck)对盐胁迫的生理反应及适应性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以坪山柚和琯溪蜜柚为材料,研究了NaCl胁迫对种子萌发与幼苗生长、矿质元素吸收、叶片及根细胞亚显微结构、叶片内源激素、内源多胺含量、蛋白质组分及含量、叶片光合作用、叶绿素荧光诱导动力学和若干生理特性等的影响。结果表明:
     1 盐胁迫对柚幼苗生长及矿质元素吸收特性的影响
     1.1 40mmolL~(-1)NaCl胁迫不影响坪山柚种子萌发率及生长,但萌发时间延长;NaCl浓度≥60mmol L~(-1)会降低种子萌发率、抑制胚根及芽的生长,且随着NaCl浓度的增加,抑制作用加强。同一浓度NaCl胁迫下,坪山柚种子萌发率高于福橘、胚根长度及芽长度受抑制程度比福橘低。
     1.2 NaCl浓度≥80mmol L~(-1),柚幼苗叶片及根细胞变形严重,质壁分离明显,细胞器结构混乱,甚至崩溃瓦解。幼苗株高、叶面积、地上部干重、根部干重显著下降。坪山柚生长受抑制程度比福橘小。
     1.3 随NaCl胁迫程度的加强,坪山柚地上部及根部Na和Cl含量明显增加,但低于福橘,这与其对Na~+、Cl~-的吸收量及吸收速率低、K_m值较大有关,因而具有比福橘更强的耐NaCl胁迫的能力。NaCl胁迫后,坪山柚地上部及根部K、Ca、Mg、P和Mn含量降低,Fe、Zn和Cu含量因器官而异。K/Na、Ca/Na及Mg/Na比值均显著下降,同一浓度NaCl胁迫,坪山柚K/Na、Ca/Na及Mg/Na比值均高于福橘。
     1.4 NaCl胁迫后,坪山柚地上部和根部甜菜碱含量增加,是其对盐胁迫的一种适应。
     2 盐胁迫对柚幼苗内源激素、多胺含量及蛋白质的影响
     2.1 NaCl胁迫下,坪山柚幼苗叶片IAA、GA_3和CTK含量下降,ABA含量增加,ABA/IAA、ABA/GA_3、ABA/CTK及ABA/(IAA+GA_3+CTK)比值均增大,其中ABA含量、ABA/GA_3及ABA/CTK比值与耐盐性关系密切。坪山柚叶片ABA含量及上述各比值均比福橘高。
     2.2 NaCl胁迫后,坪山柚叶片内源Put、Spd和Spm含量均增加。当NaCl浓度高于80mmol L~(-1),Put/Spd及Put/Spm比值增大。坪山柚多胺
    
    福建农林大学博士学位论文——摘要 *
     (PAs)总量、Put、Spd禾 Spin含量比福橘高,且 Put/Spd比值和
     Put/Spm比值的增幅比福橘大。因此,Put含量及Put/Snd及Put/SPm
     比值的增大是坪山抽对NaCI胁迫的一种适应。
    2.3 NaCI胁迫后,一些蛋白质的合成受阻,但亦产生一些新的蛋白质。坪
     山抽幼苗经 NaCI胁迫后,80kD、67kD、54kD、32kD、28kD、18kD、
     17kD和 16kD等8种蛋白质不受影响而稳定表达;35kD和 24kD两种
     蛋白是新产生的特异蛋白,而58kD和 14kD两种蛋白质消夫。福橘叶
     片中 80kD、67kD、32kD、28kD、21kD、18kD、17kD、16kD和
     15kD等 9种蛋白为稳定表达的蛋白,72kD、43kD和 24kD三种蛋白
     为新产生的特异蛋白,13kD蛋白在NaCI胁迫后消失。
    3盐胁迫对抽光合作用和叶绿素荧光特性的影响
    3.INaCI胁迫后,棺溪蜜抽叶片Chl、Chla、Chlb及Car含量明显下降,
     下降幅度 Car>Chlb>Chla。随着 NaCI浓度的增加,Chl/Car及
     Chla/Chlb比值增大,说明Car LL Chl,Chlb比Chla更易受高浓度
     NaCI胁迫的影响。
    3.2 40mmol LI NaCI胁迫 60d,植溪蜜抽叶片光合速率(Pn)、气孔导
     度(C S)及胞间 CO。浓度(Ci)均降低,而气孔限制值(LS)增加,
     表明光合作用受抑制主要是气孔限制。120mmol-’NaCI胁迫 60d,王
     官溪蜜抽叶片 Pn和 Cs下降的同时,Ci升高,Ls降低,表明光合作用
     限制主要是非气孔因素。此时,蒸腾速率(Tr)、光饱和点(LSP)、表
     观量子产量(AQY)及光合梭化效率(CE)明显降低,而光补偿点(LCP)
     升高,说明叶肉细胞光能转换系统活性下降,COZ固定能力降低。
    3.3 120mmol-INaCI胁迫60d,抽叶片可变荧光产量(Fv)下降,半
     驰豫时间(TllZ)减少;可变荧光衰减能力(八 FV)、光系统*(PS 11)
     潜在光化学活性(*v”。)及*Sll原初光能转换效率(*v瓜_)降低:
     可变荧光比值(A FV/FS)下降,表明碳同化受到影响,积砧馆溪蜜抽
     叶片上述参数降低的幅度均比抽砧馆溪蜜抽大。
    3.4 NaCI胁迫下,抽叶绿素光合电子传递受阻,光合磷酸化活性降低,乙
     醇酸氧化酶(GO)活性升高。
    4 抽对盐胁迫的生理反应及适应性
    
    福建农林大学博士学位论文——摘要V
    4.1 *。0胁迫后,棺溪蜜抽根系活力下降,且*。m浓度越高,胁迫时间
     越长,根系活力下降幅度越大;地上部表现为叶片细胞膜透性(大分子
     渗漏值)增大,相对含水量(RWC)降低,叶片萎蔫。
    4.2 NaCI胁迫降低抽叶片氨基酸含量和硝酸还原酶(NR)活性,而使游
     离脯氨酸含量和可溶性蛋白质含量增加,短时间 NaCI胁迫,硝态氮含
     量增加,长时间 NaCI胁迫,硝态氮含量减少。
    4.3 NaCI胁迫下,植溪蜜抽叶片 O。“产生速率和 H刃。含量增加,膜脂过
     氧化产物MDA累积,体内抗氧化酶类和抗氧化物质有明显变化:SOD
     和POD活性增强,CAT和ASA-POD活性减弱,抗氧化物质GSH和
     ASA含量增加。
Pingshan pomelo (citrus grandis Osbeck>> and Guanxi pomelo were used as materials in the experiment. Effects of NaCl stress on seed germination, the growth of seedlings, mineral elements absorption, cytoultrastructure of leaves and roots, contents of endogenous hormones and endogenous polyamines, contents and components of protein, photosynthesis, chlorophyll a fluorescence induction kinetics and changes in physiological characteristics were studied. The main results were as follows: 1 Effects of NaCI stress on seedling growth and ion absorption characteristics of pomelo
    1.1 Seed germination percentage and seedling growth of Pingshan pomelo were not affected when the treated concentration of NaCl up to 40mmoL"1, but the time needed to complete germination was lengthened. NaCl concentration higher than 60mmoL~1 decreased final germination percentage, inhibited the growth of radicle and sprout, the inhibition was strengthened along with the increasing of NaCl concentration, Germination percentage of Pingshan pomelo was higher than Fuju and the inhibited extent of radicle sprout , and the inhibition was strengthened , along with the increasing of NaCl concentration. Germination percentage of Pingshan pomelo was higher than Fuju and the inhibited extent of radicle and sprout was lower than Fuju under the same NaCl concentration.
    1.2 The changes in celluar ultrastructure of leaves and roots of Pingshan pomelo were significant at NaCl concentration up to SOmnioLT1, the cell deformed severely, plasmolysis distinctly and the structure of organelle was destroyed or even collapsed when NaCl concentration was higher than SOmmoL"1. At the same time, NaCl salinity decreased drastically seedling plant height, leaf area, shoot dry weight and root dry weight of Pingshan pomelo, the decrements were higher in Fuju than in Pingshan pomelo.
    1.3 As NaCl concentration increased, Na and Cl contents in both root and the above ground parts of Pingshan pomelo seedlings were remarkably increased, but they are lower than the contents of Na and Cl in Fuju seedling, This was related to smaller Na+and Cl~ absorption amount and absorption rate with lower affinity of Pingshan pomelo seedlings. So the salt tolerance of Pignshan pomelo was stronger than Fuju. NaCl salinity decreased contents of K^ Ca%
    Mg, P and Mn in both root and the above ground parts of Pingshan pomelo,
    
    
    
    96
    the contents of Fe -, Zn and Cu varied with organ. In addition, the value of K/T^^ Ca/Na and Mg/Na reduced remarkably with increasing NaCl salinity. the values of K/Nax Ca/Na and Mg/Na were higher in Pingshan pomelo than in Fuju under the same NaCl concentration.
    1 .4 NaCl salinity was showed to result in the increase of glycinebetaine content
    in seedling shoots and roots of Pingshan pomelo, which was good at adaptation to NaCl stress.
    2 Effects of NaCl stress on endogenous hormones N endogenous polyamines and content and component of protein in leaves of pomelo
    2.1 Under NaCl stress, the contents of endogenous IAA,GAs and CTK in seedling leaves of Pingshan pomelo decreased, whereas the content of ABA and the ratios of ABA/IAA, ABA/GA3 , ABA/CTK and ABA/
    ( lAA+GAs+CTK ) increased, which the ABA content, the ratios of ABA/GAs and ABA/CTK were closely related to salt tolerance. The content of ABA and the ratios above were higher in Pingshan leaves than in Fuju.
    2.2 The contents of endogenous Pu^ Spd and Spm and the ratios of Put /Spd* Put/Spm increased under 80mmol/L~1NaCl stress. The increasing ranges of total polyamines ^ Put> Spd and Spm as well as the ratios of Put/Spd and Put/Spm in Pingshan pomelo were much than those in Fuju. therefore, the increment in Put content and in ratios of Put/Spd and Put/Spm were an adaptive response of Pingshan pomelo to NaCl stress.
    2.3 The composition of some proteins were obstructed and some new proteins were induced under NaCl stress. 80^67^54^32^28^ 18^ 16 kilodaltons proteins exhibited unchangeable and expressed stably, 35 and 24 kD were prese
引文
1.赵可夫.植物抗盐生理.北京:中国科学技术出版社,1993,1-320
    2.潘瑞炽,董愚得.植物生理学.北京:高等教育出版社,1995,332-333,180-224
    3.刘友良,汪良驹.植物对盐胁迫的反应和耐盐性.余叔文,汤章城.植物生理与分子生物学(第二版).北京:科学技术出版社,1998,752-769
    4.中国统计年鉴.北京:中国统计出版社,2000,8
    5.肖宏儒,曹曙明,万振邦,等.沿海滩涂地区农业资源综合开发利用模式的探索.农业环境与发展,1998,15(1):6-11,22
    6.刘祖祺,张石城.植物抗性生理学.北京:中国农业出版社,1994,222-285
    7.巴逢辰,赵羿.中国海涂土壤资源.土壤学报,1997,28(2):49-51
    8.福建统计年鉴.北京:中国统计出版社,2000,155-164
    9.中国农村统计年鉴.北京:中国统计出版社,1998,76-77
    10.李维江,李景岭.以色列盐水农业利用现状与技术.山东农业科学,1998,3:53-55
    11.秦立钢.海涂橘园用本地早作温州蜜柑砧木获成功.中国柑橘,1981,2:24
    12.王白坡,戴文圣,傅华明,等.海涂楚门文旦的生物学特性及适合砧木.中国柑橘,1991,20(2):20-21
    13.陈玳清,陈敏华,泮加球,等.海涂柑桔高产高效栽培技术.中国南方果树,1998,27(4):10-11
    14.章文才.果树研究法(第三版).北京:中国农业出版社,1995,149-168,192-194
    15.马凯,汪良驹,王业遴,等.十八种果树盐害症状与耐盐性研究.果树科学,1997,14(1):1-5
    16.陈竹生,聂华堂,计王,等.柑桔种质的耐盐性鉴定.园艺学报,1992,19(4):289-295.
    17.翁迈东.海涂柑橘适用砧木探讨.中国柑橘,1980,11:12-16.
    18.查霞娟,孙岚,肖崇彬,等.苹果砧木耐盐性比较试验.中国果树,1986,2:5-9.
    19.马继龙,崔连明,刘桂荣,等,珠美海棠耐滨海盐碱及嫁接苹果试验初报.落叶果树,1996(1):13-14
    20.武之新,齐树亭.土壤盐分对金丝小枣生长发育的影响.中国果树,1985,2:11-15.
    21.赵可夫,Harris P J C.盐胁迫对沙枣生理特性的影响.山东师范大学学报,1992,7(4):94-101
    22.唐伟英,徐子龙,李三玉,等.海涂温州蜜柑砧木比较试验.中国柑橘,1988,3:12-14
    23.王业遴,马凯,姜卫兵,等.五种果树耐盐力试验初报.中国果树,1990,3:8-12
    24.汪良驹,刘友良,马凯.钙在无花果细胞盐诱导脯氨酸积累中的作用.植物生理学报,1999,25(1):38-42.
    25.仝月澳,周厚基.果树营养诊断法.北京:农业出版社,1982,242-245
    26.陈耀锋,贺普超,廖祥儒,等.同基因型葡萄愈伤组织脯氨酸累积变异系的抗盐性研究.农业生物技术学报,1997,5(1):58-63.
    
    
    27.廖祥儒,贺普超,万怡震.盐胁迫对葡萄新梢叶片的伤害作用.果树科学,1996a,13(4):211-214
    28.廖祥儒,贺普超,朱新产.玉米素对盐渍下葡萄叶圆片H_2O_2清除系统的影响.植物学报,1997,39(7):641-646.
    29.姜卫兵,马凯,朱建华.多效唑提高草莓耐盐性的效应.江苏农业学报,1992,8(4):13-17.
    30.陈立松,刘星辉.水分胁迫对荔枝叶片活性氧代谢的影响.园艺学报,1998,25(3):241-246.
    31.廖祥儒,贺普超.盐胁迫对葡萄叶片H_2O_2清除系统的影响.园艺学报,1996b,23(4):389-391.
    32.陈耀锋,贺普超,廖祥儒,等.葡萄脯氨酸累积变异系CAT和SOD活性研究,西北农业大学学报,1998,26(1):36-40
    33.汪良驹,刘友良,马凯,等.无花果细胞耐盐性与抗氧化酶活性的变化.园艺学报,1999,26(6):351-355
    34.汪良驹,马凯,姜卫兵,等.NaCl胁迫下石榴和桃植株Na~+、K~+含量与耐盐性的研究.园艺学报,1995,22(4):336~340.
    35.邓占鳌,章文才,万蜀渊.柑橘耐盐系的离体诱发与原生质体植株再生.园艺学报,1993,20(2):127-132.
    36.汪良驹,马凯,姜卫兵,等.五种落叶果树的氯离子分布与耐盐性研究.中国南方果树,1996,25(4):34-38.
    37.江东,陈竹生,李嘉庆.一些枳杂种耐盐性的遗传评价.中国南方果树,2001,30(1):3-4
    38.廖祥儒,贺普超,朱新产.盐渍对葡萄光合色素含量的影响.园艺学报,1996c,23(3):300-302.
    39.王连君,皇甫淳,王铭,等.盐碱胁迫下山葡萄的叶绿素含量与耐盐性关系的研究.葡萄栽培与酿酒,1995,4:1-3.
    40.黄卓烈,李明启.氯化钠对高等植物光呼吸作用的影响.植物生理学通讯,1993,29(3):214-218
    41.汪良驹,王业遴,刘友良.盐逆境中叶片蛋白质合成与脱落酸及脯氨酸积累的关系.江苏农业学报,1991,7(1):38-44.
    42.夏阳.水分逆境对果树游离脯氨酸和叶绿素含量变化的影响.甘肃农业大学学报,1993,28(1):26-31
    43.汤章城.对渗透和淹水胁迫的适应机理.余叔文,汤章城.植物生理与分子生物学(第二版).北京:科学技术出版社,1998,739-751
    44.梁峥.甜菜碱和甜菜碱醛脱氢酶.植物生理学通讯,1995,31(1):1-8
    45.梁峥,骆爱玲,赵原,等.干旱和盐胁迫诱导甜菜叶中的甜菜碱醛脱氢酶的积累.植物生理学报,1996,22(2):161-164
    
    
    46.侯彩霞,汤章城.钾离子以盐诱导菠菜甜菜碱积累的影响.植物生理学报,1998,24(2):131-135
    47.郭北海,张艳敏,李洪杰,等.甜菜碱醛脱氢酶(BADH)基因转化小麦及其表达.植物学报,2000,42(3):279-283
    48.李银心,常凤启,杜立群,等.转甜菜碱醛脱氢酶基因豆瓣菜的耐盐性.植物学报,2000,42(5):480-484
    49.刘凤华,郭岩,谷冬梅,等.转甜菜碱醛脱氢酶基因植物的耐盐性研究.遗传学报,1997,24(1):54-58.
    50.徐云岭,余叔文.植物盐胁迫蛋白.植物生理学通讯,1989,2:12-16
    51.林栖凤,李冠一.植物耐盐性研究进展.生物工程进展,2000,20(2):20-25
    52.章文华,陈亚华,刘友良.钙在植物细胞盐胁迫信号转导中的作用.植物生理学通讯,2000,36(2):146-152
    53.何天富,邓烈,何绍兰,等.我国柚类生产的回顾与展望.中国南方果树,1999,28(3):4-7
    54.陈立松.荔枝(Litchi chinensis Sonn.)对水分胁迫的生理生化反应和适应性.福建农业大学博士学位论文,1997,1-75
    55.李延.龙眼(Dimocarpus Longann Lour.)缺镁胁迫生理及调控技术研究.福建农业大学博士学位论文,1999,1-78
    56.邱栋梁.模拟酸雨对龙眼(Dimocarpus Longann Lour.)的危害及钙调节研究.福建农业大学博士学位论文,1999,1-87
    57.罗华建.水分胁迫对枇杷(Eriobotrya japonica Lindl.)光合特性及活性氧代谢的影响.福建农业大学硕士学位论文,1999,1-30
    58.李加宏,俞仁培.作物对盐分的吸收及其盐害的预测预报.土壤学报,1998,35(3):352-358
    59.牟咏花,张德威.NaCl胁迫下番茄苗的生长和营养元素积累.植物生理学通讯.1998,3(1):14-17
    60.西北农学院、华南农学院.农业化学研究法.北京:农业出版社,1979,78-85
    61.高安辉,陈守一,杨再英等.柚叶面积的简便测算方法初探.福建果树,1999,4:12-14
    62.庄伊美.柑橘营养与施肥.北京:中国农业出版社,1994,170-172
    63.中国土壤学会农业化学委员会.土壤农业化学常规分析方法,北京:科学出版社,1983,276-277
    64.韩振海,王永章.植物的离子吸收动力学研究的现状和前景.北京农业大学学报,1994,20(4):381-387
    65.刘恒烈.生物化学.江西:江西高校出版社,1993,61-65
    66.马翠英,陈德昌,杨兆起.反相离子对HPLC法测定天仙子中的生物碱及TLC法鉴别天仙子和南天仙子.药物分析杂志,1996,16(2):119-121
    67.张士功,高吉寅,宋景芝,等.甜菜碱对小麦幼苗生长过程中盐害的缓解作用.北京农业科学.1998,16(3):13-17
    
    
    68.章文华,刘友良,夏长沛.盐胁迫对大、小麦种子萌发时两种酶活性的影响.南京农业大学学报,1991,14(4):18-22
    69.王宝山,赵可夫,皱琦.作物耐盐机理研究进展及提高作物抗盐性的对策.植物学报,1997,14(增刊):25-30
    70.刘志媛,朱祝军,钱亚榕,等.等渗Ca(NO_3)_2和NaCl对番茄幼苗生长的影响.园艺学报,2001,28(1):31-35
    71.李美如,刘鸿先,王以柔.植物细胞中的抗寒物质及其与植物抗冷性的关系.植物生理学通讯,1995,31(5):328-334
    72.林定波.非低温理化逆境因子诱导植物抗寒性增强的分子生物学基础.植物生理学通讯,1998,34(3):225-229
    73.周燮,夏凯.脱落酸的生物合成、代谢与作用机理.余叔文,汤章城,植物生理与分子生物学(第二版).北京:科学技术出版社,1998,476-492
    74.赵可夫,范海,Harris P J C.盐胁迫下外源ABA对玉米幼苗耐盐性的影响.植物学报,1995,37(4):295-300
    75.杨洪强,黄天栋.苹果新根内源多胺周年形成动态研究.园艺学报,1994,21(2):145-150
    76.王世平,宋长冰,李连朝.三种多胺在苹果开花及坐果初期的生理作用,园艺学报,1996,23(4):319-325
    77.席屿芳,郑永华,应铁进,等.杨梅果实采后的衰老生理.园艺学报,1994,21(3):213-216
    78.王汉忠,赵福庚.多胺延缓植物衰老机制.山东农业大学学报,1995,25(2):227-232
    79.杨洪强,黄天栋,束怀端,等.IBA和多胺对苹果发根、内源PAs和核酸含量的影响.园艺学报,1995,22(2):136-139
    80.林定波,刘祖祺,张石城.多胺对柑橘抗寒力的效应.园艺学报,1994,21(3):222-226
    81.韦军,田边贤二.温度对采后梨果实多胺、ACC含量、EFE活性和乙烯生成量的影响.园艺学报,1994,21(2):139—144
    82.季作梁,张昭其,王燕,等.芒果低温贮藏及其冷害研究。园艺学报,1994,21(2):111-116
    83.陈如凯,张木清.甘蔗耐盐生理研究.Ⅵ.NaCl胁迫对甘蔗多胺代谢影响.作物学报,1995,21(4):479-484
    84.刘伟.甘薯耐盐性的生理基础及外源Ca~(2+)调控的研究.福建农业大学硕士学位论文,1997,1-37
    85.江行玉,赵可夫,窦君霞.NaCl胁迫对玉米和滨藜叶片中内源多胺含量与幼苗生长的影响.植物生理学通讯,1999,35(3):188-190
    86.赵福庚,刘友良,盐胁迫对大麦幼苗质膜、液泡膜上共价和非共价结合多胺含量的影响.植物学报,2000,42(9):920-926
    
    
    87.王洪新,胡志昂.胡萝卜培养细胞的盐适应蛋白.植物学报,1989,31:561-564
    88.徐云岭,余叔文.苜蓿愈伤组织中的盐胁迫蛋白.植物生理学报,1991,17:395-402
    89.贺志理,王洪春.盐胁迫下苜蓿中盐蛋白的诱导产生.植物生理学报,1991,17(1):71-79
    90.王颖,杜荣骞,赵素然.不同NaCl处理条件诱导盐胁迫蛋白的效果.南开大学学报,1997,30(4):14-20
    91.向旭,张展薇,邱燕萍.适合荔枝样品几种内源激素的分析方法.果树科学,1993,10(2):119-121
    92.章文才,植物生长调节剂在果树上的应用.果树科学,1985,(4):1-11
    93.施木田,甘纯玑,彭时尧.HPLC测定植株叶片中多胺.福建分析测试,1995,4(1):231-232,238
    94.李振国.盐胁迫蛋白的测定.中国科学院上海植物生理研究所上海市植物生理学会,现代植物生理学实验指南.北京:科学出版社,1999,311-312
    95.杨洪强,接玉玲.多胺与果树生长发育的关系.山东农业大学学报,1996,27(4):514-520
    96.周俊义.多胺在果树生理中的作用.果树科学,1995,12(2):117-119
    97.田长恩,叶蕙,李人圭,等.多胺、可溶性蛋白质及POD与甜瓜叶子不定芽发生的关系.园艺学报,1997,24(2):199-200
    98.王俏梅,曾广文.激素与多胺对苦瓜性别分化的影响.园艺学报,1997,24(1):48-52
    99.沈惠娟,李梅枝,梁成喜.盐胁迫下ABA对刺槐幼苗体内腐胺、脯氨酸和保护酶系统的影响.浙江林学院学报,1992,9(3):290-296
    100.汪沛洪.植物多胺代谢的酶类与胁迫反应,植物生理学通迅,1990,26(1):1-7
    101.王可玢,赵福洪,王孝宣,等.用体内叶绿素a荧光诱导动力学鉴定番茄的抗冷性.植物学通报,1996,13(2):29-33
    102.卢从明,张其德,匡廷云.水分胁迫对小麦光系统Ⅱ的影响.植物学报,1994,36(2):93-98
    103.罗俊,张木清,吕建林,等.水分胁迫对不同甘蔗品种叶绿素a荧光动力学的影响.福建农业大学学报,2000,29(1):18-22
    104.张木清,陈如凯,吕建林,等.甘蔗苗期低温胁迫对叶绿素a荧光诱导动力学的影响.福建农业大学学报,1999,28(1):1-7
    105.邱栋梁,刘星辉.模拟酸雨对龙眼叶绿素a荧光特性的影响.园艺学报,2000,27(3):177-181
    106.李延,刘星辉,庄卫民.缺Mg对龙眼光合作用的影响.园艺学报,2001,28(2):101-106
    107.沈伟其.测定水稻叶片叶绿素含量的混合液提取法.植物生理学通讯,1988,24(3):62-64
    
    
    108.波钦诺克著.植物生物化学分析方法.荆家海,丁钟荣译,北京:科学出版社,1976,255-259
    109.郭延平,张良诚,沈允钢.低温胁迫对温州蜜柑光合作用的影响.园艺学报,1998,25(2):111-116
    110.曲桂敏,沈向,王鸿霞,等.不同品种苹果树水分利用效率及有关参数的日变化.果树科学,2000,17(1):7-11
    111.彭新湘,李明启.乙醇酸氧化酶活性的测定.中国科学院上海植物生理研究上海市植物生理学会编,现代植物生理学实验指南.北京:科学出版社,1999,92-93
    112.叶济宇,米华玲.完整叶绿体的制备.中国科学院上海植物生理研究所上海市植物生理学会编,现代植物生理学实验指南.北京:科学出版社,1999,2-3
    113.黄卓辉,魏家绵.光合磷酸化偶联机制研究Ⅷ,6-苄基嘌呤对光合磷酸化的促进作用.植物生理学报,1984,10(2):161-167
    114.徐春和,米华玲.光合作用的原初反应.余叔文,汤章城,植物生理与分子生物学(第二版),北京:科学出版社,1998,188-197
    115.谭新星,许大全.叶绿素缺乏的大麦突变体的光合作用和叶绿素荧光.植物生理学报,1996,22(1):51-57
    116.沈允钢.光合电子传递与光合磷酸化.中国植物生理学会.光合作用研究进展.北京:科学出版社,1980,66-77
    117.王国强.叶绿体的光合磷酸化.于叔文,汤章城.植物生理与分子生物学(第二版).北京:科学出版社,1998,212-222
    118.曾韶西,王以柔,刘鸿先.低温光照下与黄瓜子叶叶绿素降低有关的酶促反应.植物生理学报,1991,17(2):177-182
    119.蒋明义,郭绍川.水分亏缺诱导的氧化胁迫和植物的抗氧化作用.植物生理学通迅,1996a,32(2):144-150
    120.蒋明义,郭绍川.渗透胁迫及光照下水稻幼苗叶片光合色素降解过程中~1O_2的参与.植物学报,1996b,38(10):797-802
    121.陈立松,刘星辉.高温胁迫对桃和柚细胞膜透性和光合色素的影响.武汉植物学研究,1997,15(3):233-237
    122.陈献勇,廖镜思.水分胁迫对果梅光合色素和光合作用的影响.福建农业大学学报,2000,29(1):35-39
    123.罗华建,刘星辉.水分胁迫对枇杷光合特性的影响.果树科学,1999,16(2):126-130
    124.胡文海,喻景权.低温弱光对番茄叶片光合作用和叶绿素荧光参数的影响.园艺学报,2001,28(1):41-46
    125.张其德.盐胁迫对植物及其光合作用的影响.植物杂志,2000,1:28-29
    126.陈沁,刘友良,陈亚华.盐胁迫下大麦叶片的活性氧伤害与液泡膜H~+-ATP_(ase)活性的关系.南京农业大学学报,1998,21(3):21-25
    127.王爱国.植物的氧代谢.于叔文,汤章城.植物生理与分子生物学(第二版).北京:科学出版社,1998,366-389
    
    
    128.刘伟,潘廷国,柯玉琴.盐胁迫对甘薯叶片氮代谢的影响.福建农业大学学报,1998,27(4):490-494
    129.许大全,沈允钢.光合作用的限制因素.于叔文,汤章城.植物生理与分子生物学.北京:科学出版社,1998,262-276
    130.赵相生,张承烈.河西走廊芦苇在不同盐渍生境中RuBp羧化酶的比较研究.应用生态学报,1994,5:152-155
    131.薛松,汪沛洪,许大全.水分胁迫对冬小麦CO_2同化作用的影响.植物生理学报,1992,18(1):1-7
    132.刘友良,毛才良,汪良驹.植物耐盐性研究进展.植物生理学通讯,1987,23(4):1-7
    133.龚明,丁念诚,贺子义.盐胁迫下大麦和小麦叶片脂质过氧化伤害与超微结构变化的关系.植物学报,1989,31(11):841-846
    134.陈文利,徐朗莱,沈文飚,等.盐胁迫下两品种大麦叶片H_2O_2累积及其清除酶活性的变化.南京农业大学学报,1999,22(2):97-100
    135.刘宛,胡文玉,谢甫绨等.NaCl胁迫及外源自由基对离体小麦叶片O_2~-和膜脂过氧化的影响.植物生理学通讯,1995,31(1):26-29
    136.刘志礼,李鹏云.NaCl胁迫对螺旋藻生长及抗氧化酶活性的影响.植物学通报,1998,15(3):43-47
    137.华东师范大学生物系植物生理教研组.植物生理学实验指导.上海:人民教育出版社,1980,2-3
    138.沈曾佑,根系活力的测定.张志良.植物生理学实验指导(第二版).北京:高等教育出版社,1990,59-62
    139.陈因.硝态或硝酸态氮的测定.中国科学院上海植物生理所上海市植物生理学会编.现代植物生理学实验指南.北京:科学出版社,1999,139-140
    140.张志良.硝酸还原酶活性的测定.张志良.植物生理学实验指导(第二版).北京:高等教育出版社,1990,65-68
    141.赵继芬.氨基酸含量的测定(茚三酮比色法).张志良,植物生理学实验指导(第二版).北京:高等教育出版社,1990,172-175
    142.王爱国,罗广华.植物的超氧化物自由基与羟胺反应.植物生理学通讯,1990,6:55-57
    143.林植芳,李双顺,林桂珠,等.衰老叶片和叶绿体中H_2O_2的累积与膜脂过氧化的关系.植物生理学报,1988,14(1):16-22
    144.赵世杰,许长成,邹琦,等.植物组织中丙二醛测定方法的改进.植物生理学通讯,1994,30(3):207-210
    145.蒋明义,郭绍川,张学明.氧化胁迫下稻苗体内积累的脯氨酸的抗氧化作用.植物生理学报,1997,23(4):347-352
    146.余挺,席屿芳.不结球白菜采后衰老生理的研究.园艺学报,1998,25(4):402-404
    
    
    147. 阎成士,李德全,张建华.植物叶片衰老与氧化胁迫.植物学通报, 1999, 16(4) : 398-404
    148. Abou El-Khashab A M, El-Sammak A F, Elaidy A A, et al. Paclobutrazol reduces some negative effects of salt stress in peach. J Amer Soc Hort Sci, 1997,122 (1) : 43-46
    149. Al-Rawahy S A, Stroehlein J L, Pessarakli M. Dry matter yield amd nitrogen-15,Na+、 cl and K+ content of tomatoes under sodium chloride stress. J Plant Nutr, 1992,15: 341-358
    150. Amako K, Chen G, Asada K. Separate assays specific for ascorbate peroxidase and guaiacol peroxidase and for the chloroplastic and cytosolic isozymes of ascorbate peroxidase in plants. Plant Cell Physiol. 1994,35:497-504
    151. Amzallag g N, Lerner H R, Polijakoff-Mayber A. Exogenous ABA as a modulator of the response of sorghum to high salinity. J Exp Bot, 1990,41:1529-1534
    152. Ayers A D. Seed germination is affected by soil moisture and salinity, Agron J, 1952, 44: 82-84
    153. bacteriophage T4. Nature, 1970,227:680-685
    154. Bagni N, The Function and Metabolism of Polyamines in Plants. Acta Hort, 1986,179:95-103
    155. Banuls J, Primo-Millo E. Effects of chloride and sodium on gas exchange parameters and water relations of Citrus Plants. Physiol Plant, 1992,86: 115-123
    156. Banuls J, Primo-Millo E. Effects of salinity on some Citrus scion-rootstock combinations. Ann Bot, 1995,76: 97-102
    157. Banuls J, Serna M D, Legaz M, et al.. Growth and gas exchange parameters of Citrus Plants stressed with different salts. J Plant Physiol, 1997,150: 194-199
    158. Bar Y, Apeelbaum A,Kafkafiv etal.Relationship between chloride and nitrate its effect on growth and mineral composition of avocado and citrus plants, J Plant Nutr, 1997,20:715-731
    159. Bernstein L. Effect of salinity on plant growth.. Ann Rev Plant Physiol, 1975,26: 295-312
    160. Bielorai H, Shalhevet J, Levy Y. The effect of high sodium irrigation water on soil salinity and yield of mature grapefruit orchard. Irrig Sci, 1983,4: 255-266
    161. Blumwald E, Poole R J. Salt tolerance in suspension cultures of sugar beet. Plant Physiol, 1987,83:884-887
    162. Bradford M M. A rapid and sensitive method for the quantitation of microgam quantities of protein utilizing the principle of protein dry binding. Anal. Biochem, 1976,72:248-254
    163. Buras N. Efficient irrigation environmental effects and its long term sustainability. ICID 3rd Pan American Regional Conf, 1992
    164. Carbonell-Barrachina A A, Burld F, Mataix J. Response of bean micronutrient to
    
    arsenic and salinity. J Plant Nutr, 1998, 21 : 1287-1299
    165. Chartzoulakis K, Klapaki G. Response of two greenhouse pepper hybrids to NaCl Salinity during different growth stages. Scientia Horticulturae, 2000, 86: 247-260
    166. Chartzoulakis K, Klapaki G. Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages. Scientia Horticulturae, 2000, 86: 247-260
    167. Chartzoulakis K, Loupassaki M. Effects of NaCl salinity on germination, growth, gas exchange and yield of greenhouse eggplant. Agric Water Mgmt, 1 997,32 : 215-225
    168. Chow W S, Ball M C, Anderson J M. Growth and photosynthetic responses of spinach to salinity :Implications of K+ nutrition for salt tolerance. Aust J Plant Physiol,1990,17: 563-578
    169. Chow W S, Ball M C, Anderson J M.. Growth and photosynthetic responses of spinach to salinity: implications of K+ nutrition for salt tolerance. Aust J Plant Physiol, 1990,17: 563-578
    170. Coons J M, Kuehl K O, Simon N R. Tolerance of ten lettuce cultivars to high temperature combined with NaCl during germination. J Amwr Soc Hort Sci, 1990,115: 1004-1007
    171. Cooper W C, Gorton B S. Salt tolerance of various citrus rootstocks. Proc Rio Grande Valley. Hortic Soc, 1951,5: 46-52
    172. Costa G, Bagni N. Effects of Polyamines on Fruit-set of Apple Hort Sci, 1983,18:59-61
    173. Cram W J. Chloride accumulation as a homeostatic system: set points and perturbation. J Exp Bot. 193, 34:1484-1502
    174. Cramer. G R, Epstein E, Lauchli A. Effects of sodium, Potassium and Calcium on salt stress barely. 1. 1 Growth analysis. Physiol Plant, 1990, 80: 83-88
    175. Cruz. V, Cuartero J. Effects of salinity at several developmental stages of six genotypes of tomato (Lycopersicon spp.) . Proc. VIth Eucarpia Meeting on Tomato Genetics and Breeding Mdlaga, Spain . 1990,81-86
    176. Cuartero J, Fernandez-Munoz R. Tomato and salinity. Scientia Horticulturae, 1999,78: 83-125
    177. Dasberg S, Bielorai H, Haimowitz A, et al.. The effect of saline irrigation water on shamouti orange trees : Irrig Sci , 1991 , 12 : 205-211
    178. Divate M R, Pandey R M. Salt tolerance in grapes I. Effect of salinity on chlorophyll photosynthesis and respiration. Indian J Plant Physiol, 1981 ,24 (1) : 74-82
    179. Downton W J S. Photosynthesis in salt stressed grapevines. Aust J Plant Physiol, 1977,4: 183-192
    180. Duke E R, Johnson C R, Koch K E. Accumulation of phosphorus, dry matter and betaine during NaCl stress of split-root citrus seedlings colonized with vesicular-arbuscular mycorrhizal fungi on zero, one or two halves. New Phytol, 1986,104: 583-590
    
    
    181. Dunlap J R, Binzel M L. NaCl reduces indol-3-acetil acid levels in the roots of tomato plants independent of stress-induced abscisic acid. Plant Physiol, 1996,112:379-384
    182. Ellman G L. Tissue Sulfhydryl groups. Archives of Biochemistry and Biophysics, 1959,82:70-77
    183. Ericson M C, Alfinito S H. Proteins produced during salt stress in tobacco cell culture. Plant Physiol, 1984,74:506-509
    184. Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Ann Rev Plant Physiol,1982,33:317-345
    185. Flowers T J. Salinisation and horticultural production. Scientia Horticulturae, 1999,78: 1-4.
    186. Francois L E, Clark R A. Salinity effects on yield and fruit quality of Valencia orange. J Amer Soc Hortic Sci, 1 980, 105 : 1 99-202
    187. Garcia-Legaz M F, Ortiz J M, Garcia-Lidon A G, et al.. Effect of salinity on growth, ion content and CO2 assimilation rate in lemon varieties on different rootstocks. Physiol Plant, 1993,89: 427-432
    188. Ghassemi F, Jakeman A J, Nix H A. Salinisation of land and water resources. Human causes extent management and cases study. CAB International, 1995. Oxford,526
    189. Gilmour, S J. Thomashow M F. Cold acclimation and cold-regulated gene expression on ABA mutants of Arabidopsis thaliana. Plant Mol Biol. 1991,17:1233-1240
    190. Grattan S R, Grieve C M. Mineral element acquisition and growth response of plants grown in saline environments. Agric Ecosys Environ, 1992, 38: 275-300
    191. Greenway H,Munns R. Mechanisms of salt tolerance in non-halophytes. Ann Rev Plant Physiol, 1980,31: 149-190.
    192. Gusta L V. Stress tolerance induction: the role of ABA and heat stable proteins. Hort Sci, 1994,29:571
    193. Hitz W D. Hanson A D. Determination of glycinebetaine by pyrolysis-gas chromatography in cereals and grasses. Phytochemistry, 1980,19: 2371-2374
    194. Horton P. Non-photochemical quenching of chlorophyll fluorescence. In: Jennigs R C(ed). Light as an energy source and information carrier in plant physiology. New York: Plenum Press, 1996,99-112
    195. Howie H, Lloyd J. Response of orchard 'Washington navel' orange Citrus sinensis Osbeck to saline water II. Flowering, fruit set and fruit growth. Aust J Agric Res, 1989,40: 371-380
    196. Hurkman W J, Tao H P, Tanaka C K. Germin-like polypeptides increase in barley roots during salt stress. Plant Physiol, 1991,97:366-374
    197. Jackson M. Hormones from roots as signals for the shoots of salt stressed plants. Trends Plant Sci, 1997,2:22-28
    198. Klapheck S, Zimmer I, Coose H. Scavenging of hydrogen peroxide in the enobspern of
    
    Ricinus communisbg ascorbate peroxidase. Plant Cell Physiol. 1990,11:1005-1013
    199. Laemmki U K. Cleavage of structural protein during the assembly of the head of
    200. Levy Y, Shalhevet J. Ranking the salt tolerance of citrus rootstocks by juice analysis. Sci Hortic, 1990,45: 89-98
    201. Lloyd J, Kriedemann P, Aspinall D. Comparative sensitivity of Prior Lisbon lemon and Valencia orange trees to foliar sodium and chloride concentrations. Plant Cell Environ, 1989,12: 529-540
    202. Lloyd J, Kriedemann P, Aspinall D. Contrasts between Citrus species in response to salinisation : An analysis of photosynthesis and water relations for different rootstock-scion combinations. Physiol Plant, 1990,78: 236-246
    203. Lopez F, Vansugt G, Fourcroy P. Accumulation of a 22kD protein and it mRNA in the leaves of Raphanus sativus in response to salt stress or water deficit. Physiol Plant, 1994,91:605-614
    204. Lurie S. Irrigation of pomegranates, peaches and table grapes with brackish water-fruit quality and storage potential. Alon Hanatea, 1991,45 (12) : 979-986
    205. Maas E V. Salinity and citriculture. Tree Physiol, 1993,12: 195-216
    206. Maas E V. Salt tolerance of plants. Appl Agric Res, 1986,1: 12-26
    207. Manetas Y. A re-examination of NaCl effects on phosphoend pyruvate carboxylase at high (physiological) enzyme concentrations. Physiol Plant, 1990,78: 225-229
    208. Maslenkova L T, Miteva T S, Popova L P. Changes in the polypeptide pattern of seedlings exposed to jasmonic acid and salinity. Plant Physiol, 1992,98:700-707
    209. Mavrogianopoulos G N, Spanadis J, Tsikalas P. Effect of carbon dioxide enrichment and salinity on photosynthesis and yield in melon. Scientia Horticulture,1999,79:51-63
    210. McCue K F, Hanson A D. Salt-inducible betaine aldehydedehydrogenas from sugar beet: cDNA cloning and expression, Plant Mol Biol, 1992,18: 1-11
    211. Motosugi H, Sugiura A, Tomana T. Salt tolerance of various apple rootstock cultivars. J Japan Soc Hort Sci, 1987,56: 135-141
    212. Munns R, Termaat A. Whole-plant responses to salinity. Aust J Plant Physiol, 1986,13: 143-160
    213. Nieves M, Ruiz D, Cerda A. Influence of rootstock-scion combination in lemon trees salt tolerance. In: Proc Int Soc Citriculture Acireale Italy, 1992,387-390
    214. Okubo M, Furukawa Y, Sakuratani T. Growth, flowering and leaf properties of pear cultivars grafted on two Asian pear rootstock. Scientia Horticuturae,
    
    2000,85: 91-101
    215. Papp J C, Ball M C, Terry N. A comparative study of the effects of NaCl salinity on respiration, photosynthesis and leaf extension in Beta vulgaris (sugar beet) . Plant Cell and Environ, 1983,6:675-677
    216. Perez-Alfocea F, Estan M T, Santa C A. Effects of salinity on nitrate, total nitrogen, soluble protein and free amino acid levels in tomato plants. J Hort Sci, 1993,68:1021-1027
    217. Pessarakli M, Tucker T C. Dry matter yield and nitrogen-15 yptake by tomatoes under sodium chloride stress. Soil Sci Soc Am J, 1988,52:698-700
    218. Piqueras A, Hernandez J A, Olmos E et al.. Changes in antioxidant enzymes and organic solutes associated with adaptation of citrus cells to salt stress. Plant Cell Tissue Organ Cult, 1996,45: 53-60
    219. Prabucki A, Serek, M, Andersen A S. Influence of salt stress on stock plant growth and cutting performance of Chrysanthemum morifolium Ramat. Journal of Horticultural Science & Biotechnology, 1999,74 (1) : 132-134
    220. Priebe A, Jager H J. Effect of NaCl on the levels of putrescine and related polyamines in plants differing in salt tolerance. Plant Sci Lett, 1978,12:365-369
    221. Qiao Y L. An application of aerial remote-sensing to monitor salinization at Xinding Basin. Space Research, 1995,18: 133-139
    222. Ramagopal S. Protein synthesis in a mazie callus exposed to NaCl and mannitol. Plant Cell Reports, 1986,5:530-534
    223. Ramagopal S. Regulation of protein synthesis in root, shoot and embryonic tissues of germinating barley during salinity stress. Plant Cell Environment. 1988,11 :501-515
    224. Ramagopal S. Salinity stress induced tissue-specific proteins in barley seedlings. Plant Physiol, 1987,84:324-331
    225. Romero-Aranda R, Syvertsen J P. The influence of foliar-applied urea nitrogen and saline solution on net gas exchange of citrus leaves. J Amer Soc Hort, 1996,121 (3) : 501-506
    226. Ruiz D, Martinez V, Cerda A. Demarcating specific ion (NaCl, Cl-, Na+) and osmotic effects in the response of two citrus rootstocks to salinity. Scientia Horticulturae, 1999,80: 213-224
    227. Salin ML.Toxic oxygen species and protective systems of the chloroplast. Physiol Plant, 1987,72:681-686
    228. Schmidhalter U, Certli J J. Germination and Seedling growth of carrots under salinity and moisture stress. Plant Soil, 1991,132: 243-251
    229. Shannon M C, Francois L E. Salt tolerance of three muskmelon cultivars. J Amer Soc Hort Sci, 1978,103: 127-130
    230. Shannon M C,Grieve C M, Francois L E. Whole-plant response to salinity. In:
    
    Wilkinson R E (Ed.) . Plant-Environment Interactions. Marcel Dekker, New York, 1994,199-244
    231. Singh N K, Donald E N, David K, et al.. Molecular cloning of osmotin and regulation of its expression by ABA and adaptation to low water potential. Plant Physiol, 1989,90:1096-1101
    232. Singh N K, Handa A K, Hasegawa P M, et al.. Electrophoretic protein patterns in cultured cells of tobacco adapted to NaCl. Plant Physiol, 1983,72 (suppl) : 94-95
    233. Singh N K, Handa A K, Hasegawa P M, et al.. Proteins associated with adaptation of cultured tobacco cells to NaCl. Plant Physiol, 1 985,79:126-137
    234. Skriver K, Mundy J. Gene expression in response to abscisic acid and osmotic stress. Plant Cell, 1990,2:503-512
    235. Solomon A, Beer S, Waiser Y et al.. Effect of NaCl on the carboxylating activity of Rubisco from Tamarix jordanis in the presence and absence of proline-related compatible solutes. Physiol Plant, 1994,90:198-204
    236. Storey R, Walker R R. Citrus and salinity. Scientia Horticulturae , 1999,78: 39-81
    237. Suhayda C G, Giannini J L, Briskin D P, et al.. Elestrostatic changes in Lycopersicon esculentum root plasma membrance resulting from salt stress. Plant Physiol, 1990,93:471-478
    238. Thomas H, James A R. Freezing tolerance and solute changes in contrastion genotypes of Lolium perenne L. acclimated to cold and drought. Physiol Plant, 1993,72:249-254
    239. Villora G, Pulgar G, Moreno D A, et al.. Salinity treatments and their effection mutrient-concentration in Zucchini plants ( Cucurbita pepo L. var. Moschata) . Aust J Exp Agric, 1 997, 37: 605-608
    240. Walker R R, Blackmore D H, Qing S. Carbon dioxide assimilation and foliar ion concentrations in leaves of lemon ( Citrus limon L.) trees irrigated with NaCl or Na2SO4. Aust J Plant Physiol, 1993,20: 173-185
    241. Walker R R. Sodium exclusion and potassium-sodium selectivity in salt-treated trifoliate orange (poncirus triliata) and cleopatra manadrin (Citrus reticulata) plants. Aust J Plant Physiol, 1986,13: 293-303
    242. Xiong S Y, Xiong Z X, Wang P W. Soil salinity in the irrigated area of the Yellow River in Ningxia, China Arid soil Research and Rehabilitation, 1996, 10: 95-101
    
    
    243. Zekri M, Parsons L R. Calcium influences growth and leaf mineral concentration of citrus under saline conditions. HortScience, 1 990,25 : 784-786
    244. Zid E, Grignon C. Sodium-calcium interactions in leaves of Citrus aurantium grown in the presence of NaCl. Physiol Veg, 1985,23:895-903
    245. Zidan M A, Elewa M A. Effect of salinity on germination seedling growth and some metabolic changes in four plant species (Umbelliferae) . Indian J Plant Physiol, 1995, 38: 57-61

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700