小麦生理型、遗传型雄性不育系及其对应可育系小花叶绿体蛋白差异的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杂种优势是生物界普遍存在的自然现象,作为世界第一大粮食作物,小麦有着明显的杂种优势,如何有效的利用其杂种优势,是我国现阶段提高小麦产量的一条重要途径。目前,小麦生产上杂种优势利用的途径主要有:(1)化学杀雄进行杂交制种;(2)采用雄性不育系进行杂交制种。但其雄性不育机理研究已成为小麦杂种优势利用中的一个科学难关仍在探索之中,近年将其焦点多集中在细胞核和线粒体中一些与育性相关因子的解析与研究。而本试验则以杀雄剂诱导的生理型雄性不育系ms(A)-西农1376、遗传型雄性不育系ms(S)-西农1376及其对应可育系MS(A)-西农1376单核早期的小花为试材,经差速离心结合蔗糖密度梯度离心技术先提纯小花完整叶绿体;然后,通过TCA-丙酮法沉淀蛋白,利用IEF/SDS-PAGE双向电泳技术进行差异蛋白比较;最后胶内酶切进行挖点、生物质谱测序技术以及生物信息学数据库检索技术,对小麦小花在花粉小孢子萌发的单核早期叶绿体蛋白质进行了研究,得出以下重要结果:
     1、利用不同方法提取了供试材料单核早期小麦小花叶绿体,经淀粉碘化钾染色压片并结合电子显微镜观察,结果表明完整叶绿体呈棒状或橄榄状并被染成蓝色;而破碎的叶绿体不被染色,杂质含量也很大。
     2、经TCA-丙酮沉淀蛋白,7cm,pH3~10的线性预制干胶条进行IEF/SDS-PAGE检测,发现三层蔗糖密度梯度结合差速离心技术所得叶绿体完整性和纯度都高于差速离心技术,以及两层蔗糖密度梯度离心所得的叶绿体;核污染以及线粒体污染大大降低,弥补了单纯差速离心杂质多,以及两层蔗糖密度梯度离心技术高丰度蛋白过多而低丰度蛋白损失严重的缺点。
     3、用17cm,pH4~7的线性胶条对小麦ms(A)-西农1376、(A)-西农1376以及ms (S)-西农1376单核早期(花粉小孢子萌发形成单核)小花叶绿体蛋白质组进行比较分析,利用PDQuest软件对图像进行背景消减,斑点检测、匹配,获取斑点位置坐标,并分析计数蛋白点,每个图谱在pH4~7,分子量14.4~94.0KD的范围内,均可以得到130~200个蛋白点,而且大多数蛋白在等电点4.5~7(胶条的碱性端),分子量10~60KD居多。发现杀雄剂诱导的生理型雄性不育系和对应可育系间叶绿体蛋白差异点不明显,仅有少数差异只是表达量上的差异,其中在生理型雄性不育系中上调表达的蛋白点有5个,下调表达的蛋白点有7个;还有一些不是很明显的微小的质的差异点,在生理性雄性不育系中表达而可育系中没有表达的有8个,丢失的蛋白有2个,但都是不很明显的点。遗传型雄性不育系ms (S)-1376叶绿体蛋白保持系相匹配的蛋白点有150多个,表达上调的蛋白点有4个,下调的蛋白点有18个,在对应可育系中几乎没有表达,而在遗传型雄性不育系中明显特异表达的有15个点,在对应可育系中表达而遗传型不育系中未表达的有14个。两不育系中都表达而在对应可育系中缺失的蛋白有6个,正常可育系和生理型雄性不育系材料中表达而遗传型不育系中未表达的6个点;可育系中下调表达但在两不育系中上调表达的4个点。两种不育系下调表达,可育系中上调表达的点有2个。
     4、选取具有代表性的6个差异蛋白点进行质谱测序,获得质量较好的肽指纹图谱(PMF),用Profound和Mascot软件搜索NCBInr数据库,鉴定结果,Spot1为酰基辅酶A脱氢酶结构域蛋白,Spot3钙调结蛋白磷酸酶,Spot4被鉴定为多催化功能肽酶,Spot5为热休克蛋白60,其中蛋白点41是在拟南芥叶绿体中新发现的未知功能基因表达的蛋白。
     5、对已知蛋白的功能进行分析,推测小麦雄性不育可能主要与能量代谢紊乱导致代谢供能不足,信号转导受阻导致细胞抗性减弱,活性氧积累导致细胞中毒,细胞凋亡导致花药发育异常及花粉败育,以及调节花器官发育基因作用失控导致的花丝不伸长或不产生有功能的花粉等有关。这些差异蛋白很可能直接或间接地参与了供试材料育性正常发育与败育的某些关键途径,而供试遗传型雄性不育系和杀雄剂SQ-1诱导的生理型雄性不育系和对应可育系互为等基因或者等生理差异系,其叶绿体蛋白图谱中表现出的差异蛋白很有可能与雄性不育或者SQ-1诱导小麦雄性不育有关。
Heterosis was the widespread natural phenomenon in biosphere, wheat as the largest food crop in the world, heterosis clear, using it’s heterosis effectivly was an important way to improve the wheat yield. Approaches of wheat heterosis were mainly: (1) Chemical hybridizing, (2) Male sterile line. But it’s male sterility mechanism research has became a scientific difficulty in the wheat heterosis utility, and still during the exploration. The analysis and the research were mainly concentrated in the fertility factors at cell nucleus and the mitochondria in recent years. In this study, 1376 wheat as the material to study the gametocide induced physiological male sterity ms(A)–Xi-nong 1376, genetic male sterity ms (S)–Xi-nong1376, and the corresponding nuclear fertile line MS(A)–Xi-nong1376, purified complete spikelet chloroplast with the combination of differential centrifugation and sucrose density gradient centrifugation, precipited protein with TCA-acetone, compared protein by IEF / SDS-PAGE two-dimensional electrophoresis, gel-digestion, digging point, biological mass spectrometry sequencing, searching bio-informatics database, studied chloroplast proteins of spikelet on the uninucleate anther stage of wheat. Concluded as follow:
     1. Extracted spikelet chloroplast with different methods on the uninucleate anther stage of wheat, starch KI staining, electron microscopy, showen that integrity chloroplast was rod-shaped and was coloured blue or olive, the broken chloroplasts were not stained, high impurity content.
     2. Precipitation protein with TCA-acetone, detected with 7cm, pH3~10 prefabricated dry linear strips for IEF/SDS-PAGE, found that chloroplast integrity and purity with three-layers combination of differential sucrose density gradient centrifugation were higher than the differential centrifugation techniques, as well as two sucrose density gradient centrifugation obtained from chloroplasts, mitochondrial and nuclear pollution were greatly reduced, make up drawbacks of simple differential centrifugation impurities, as well as two layers of sucrose density gradient centrifugation technology.
     3. Compared chloroplast proteins of spikelet on the uninucleate anther stage(the pollen germination to form a small single-core) by 7cm, pH4~7 linear strips of ms(A)–Xi-nong1376, (A)–Xi-nong1376, as well as ms(S)–Xi-nong1376, background removal by PDQuest software, spot detected, matching, obtained location of spots, counted protein spots, in the pH4~7, 14.4~94.0KD, may be 130~200 protein spots, most of the protein in the pH4.5~7 (strip alkaline side), 10-60KD. Found no obvious difference between gametocide induced physiological-type male sterity and the maintainer, only a few expression of quantity differences, up-regulated expressed of protein spots in ms(A)–Xi-nong1376 are 5, down-regulated expressed 7 compared (A)– Xi-nong1376, also some miny qualitative differences between them, there were 8 ms(A)– Xi-nong1376 expressed while (A)–Xi-nong1376 lost , the missing protein had 2, but not obvious. There were more than 150 spots matched between ms(S)-1376 and (A)–Xi-nong1376, up- regulated expressed 4, down-regulated 18 compared (A)–Xi-nong1376, almost no expressed in(A)–Xi-nong1376, clear-specific expressed in ms(S)-1376 were 15 points, instead14 points. The two male sterity both expressed while (A)–Xi-nong1376 lost were 6, (A)–Xi-nong1376 and ms(A)–Xi-nong1376 expressed while ms(S)-1376 lost were 6, (A)–Xi-nong1376 down-regulated expressed. However, two male sterity up-regulated expressed 4point.instead 2 point.
     4. Selected six points for mass spectrometry sequencing, got the PMF, searching in NCBInr database with profound and mascot software, identification results as follows: Spot 1 was acyl-coenzyme A dehydrogenase domain protein, spot3 was calmodulin-knot protein phosphatase, spot4 was multi-catalytic peptidase, spot5 was heat shock protein 60, spot 41 was unknown function protein in arabidopsis thaliana chloroplast gene discovered recently.
     5. Functional analysis known protein, speculated that male sterility of wheat may be related to energy metabolism disorder, signal transduction blocked, accumulation of reactive oxygen species, apoptosis and regulation of the role of developmental genes that control floral organ. These differentially expressed proteins were likely directly or indirectly involved in the test material for the normal development of fertility and abortion in certain key ways, while the three test materials were Isogenic lines, or Isophysiological system, the differencies of PMF were likely related to CMS .
引文
白普一,黄亚群. 1989.塑料薄膜简棚木同处理方法锈导小麦雄性不育试验报告.河北师范大学学报,(3):86.
    曹双河,张相岐,张爱民. 2005.光(温)敏雄性不育的调控机理和分子遗传学研究进展.物学通报,(1)
    陈蕊红,叶景秀,张改生,王俊生,牛娜,马守才,赵继新,朱建楚. 2009.小麦质核互作型雄性不育系及其保持系花药差异蛋白质组学分析.生物化学与生物物理进展,36(4):431~440
    陈万义. 1999.化学杂交剂的进展.农药,389(1):1~6
    CHEN X J(陈学军),CHEN ZH J(陈竹君),ZHANG Y ZH(张耀洲),JIN Y F(金勇丰). 2001. Research
    advances in the mo1ecular basis cytoplasmic male sterility and fertility restoration in plants. Chinese Bulletin of Life Science(生命科学),13(2):74~77(in Chinese).
    陈云伟,张年辉,赵云,杜林方,Masato NAKAI. 2004.油菜叶绿体被膜的制备和Toc33的检测.植物生理学通讯,40(2):223~225
    崔永兰,王鹏程,杨仲南,张森. 2008.拟南芥未知功能基因AT3g61870编码蛋白的叶绿体定位研究.北植物学报,(4):662~666
    杜伟莉,张改生,刘宏伟,王军卫,王小利. 2002.粘类小麦雄性不育系研究进展.陕西农业科学,(4):16~20
    范昌发,孙春昀,郭骁才,张福耀,孙毅,牛天堂,贾敬芬. 2002. CMS高梁叶绿体ndhD基因的序列变异.遗传学报,29(10):907~914
    何觉民,戴君惕,邹应斌,周美兰,张海清,刘雄伦. 1992.两系杂交小麦研究I生态雄性不育小麦的发现、培育及其利用价值.湖南农业科学,5(4):1~3.
    何蓓如,董普辉,宋喜悦,马翎健,胡银岗,蒋通关,王俊鹏,李宏斌. 2003.小麦温度敏感不育系A3314温敏特性研究.麦类作物学报,23(1):1~6.
    黄骥,张红生. 2007. TFⅢA型锌指蛋白及在提高植物耐逆性中的作用.遗传学报,29(8):915~92
    黄寿松,李万隆. 1991.蓝标型小麦核雄性不育保持系的选育研究.作物学报,17 (2):81~87.
    黄雪清,高东迎,杨安南. 2001.毗喃酮类衍生物对水稻的杀雄作用与活性氧代谢的关系.植物生理学报,27 (2):161~166.
    焦美俊,邵金旺,张家骅. 1988.甜菜叶绿体基因组研究概况.中国甜菜,(1):49~53
    孔令安. 2005.蛋白磷酸酶PP1和(或)PP2A参与调节青杆(Picea wilsonii)花粉萌发及花粉管生长.[博士学位论文].北京:中国农业大学.
    李传友,孙兰珍. 1996.普通小麦T型、V型和K型细胞质雄性不育系花粉败育机理的细胞学研究.华北农学报,11(2):1~8.
    李传友,孙兰珍. 1998.小麦同核异质雄性不育花粉发育的超微结构.华北农学报,13(1):24~29.
    李继耕. 1983.叶绿体遗传与细胞质雄性不育.中国农业科学,(1):49~52.
    李继耕. 1992.细胞质雄性不育性的分子机理.遗传,14(6):31~36
    LIJY(李家洋),LIJG(李继耕). 1986. Chloroplast thylakoid member polypeptides and cytoplasmic male sterility. Acta Gene.Sin.(遗传学报),13(6):430~436(in Chinese).
    廖翔,应天翼,黄留玉,黄培堂. 2003.蛋白质组学研究中的双向电泳技术.生物技术通讯,14(6):522~524.
    LING X Y(凌杏元),ZHOU P J(周培疆),ZHU Y G(朱英国).2000. Research advances in the mo1ecular basis cytoplasmic malesterility.Chinese Bulletin of Botany(植物学通报),17(4):319~332(in Chinese).
    凌杏元,周培疆,朱英国. 2000.水稻红莲型细胞质雄性不育系与保持系mtRNA差异显示和差别片段的分析.植物学报,42(3):284-288
    刘秉华. 1991.植物显性核不育基因的分类起源及在杂种生产中利用的可能性.作物杂志,(3):17
    刘秉华,杨丽. 1988.小麦Rht10基因与Ms2基因关系的遗传分析.遗传,10(4):1~3.
    刘宏伟,张改生,刘秉华. 2004.化学杂交剂GENESIS诱导小麦雄性不育的细胞形态学观察.西北植物学报,24(12):2282~2285.
    刘录样,黄铁城. 1990.作物化学杂交育种的实践与展望.中国农业科学,23(2):1~9
    刘雄伦,何觉民. 2000.小麦杂种优势利用途径及其研究进展.湖南农业科学,(1):9~12.
    刘忠松. 1987.不育花药的生理生化研究进展与展望.植物生理学通迅,(2):16~21.
    刘祚昌,李继耕,罗会馨. 1983.二磷酸核酮糖羧化酶与细胞质雄性不育性的研究.遗传学报,10(1):36~42
    LIU Z CH(刘祚昌). 1986. Chloplast genome translated products and cytoplasmic male sterility. Acta Gene.Sin.(遗传学报),13(3):201~206 (in Chinese ).
    马伯军,顾志敏. 2009.水稻类钙调磷酸酶B亚基蛋白基因OsCBL8功能的初步研究.国水稻科学,23(2):127~134.
    裴雁曦,陈竹君,曹家树. 2004.榨菜胞质雄性不育系与保持系间线粒体和叶绿体多肽比较.西北植物学报,24(8):1511~1513.
    邵玲,陈向荣. 2005.热激蛋白与植物的抗逆性.北方园艺,(3):7~37
    宋国琦,胡银岗,林凡云,董普辉,马翎健,宋喜悦,何蓓如. 2006. YS型小麦温敏雄性不育系A3017控温条件下的花粉育性比较.麦类作物学报,26(1):17~20
    宋喜悦,何蓓如,马翎健,胡银岗,李宏斌. 2005.小麦温敏不育系A3314温敏不育性的遗传研究.中国农业科学,38(6):1095~1099
    宋宪亮,孙学振,刘英欣. 2001.棉花ms5ms6核雄性不育花药中碳水化合物和游离氨基酸的变化.棉花学报,13 (6):334~336.
    苏俊英,吕德彬,程西永,许海霞. 2000.化学杂交剂Genesis及Sc2053对小麦穗部过氧化物酶活性的影响.河南农业大学学报,30(4):309~311.
    孙群,胡景江. 2006.植物生理学研究技术.陕西:农林科技大学出版社:127~130
    唐征,杨凯,冯永庆,秦岭. 2009.板栗蛋白磷酸酶PP2A催化亚基基因的克隆与同源性分析.北京农学院学报,24(2):1~4
    陶龙兴,王熹,俞美玉,黄效林. 2001. CM–(268)诱导水稻雄性不育的效果及作用机理研究.作物学报,27(2):178~181
    王鸿丽,刘峰,赵永强,李萍,杨松成,魏开华. 2008.双向凝胶电泳缺陷胶及其原因.生物技术通讯,19(4):569~571.
    王俊生,袁蕾,位明明,张改生,张龙雨,袁正杰,孙瑞,叶景秀,牛娜,马守才,李红霞. 2009.小麦生理型雄性不育花药中能量相关基因的表达.核农学报,23(6):928~934
    王丽,赵春梅,王义菊,刘箭. 2005.过量表达叶绿体小分子热激蛋白提高番茄抗寒性.植物生理与分子学学报,31(02)
    Wang Y J (王永军), Zhang G Sh (张改生), Wang J W (王军卫), Niu N (牛娜). 2005. Comparativestudy on anther isoenzymesof sterility induced by physiology and heredity type in wheat(J). Journal of Triticeae Crops (麦类作物学报),25(4):44~49(in Chinese with English abstract)Wang Zh H (王振华),Liu H W (刘宏伟),Zhang G Sh
    王强,王邦俊,李学刚. 2003.化学杀雄剂1号对棉花过氧化物酶、蔗糖酶活性的研究.棉花学报,15(6):353~356.
    王强,李学刚,王邦俊. 2001.化杀1号对棉花可溶性糖淀粉及叶绿素影响的研究.西南农业大学学报,23(1):76~79
    文李,刘盖,张再君,陶钧,万翠香,李绍清,朱英国. 2006.红莲型水稻细胞质雄性不育花药蛋白质组学初步分析.遗传HEREDITAS,( Beijing) 28 (3):311~316
    夏涛,刘纪麟. 1988.玉米细胞质雄性不育性与组织抗氰呼吸关系的研究.中国农业科学,21 (1): 39~43.
    向珣,李成琼,雷建军. 1999.热激蛋白与植物抗热性研究进展.北方园艺,(4):9~10
    许明,白名义,魏毓棠. 2008.不同发育期紫菜薹细胞质雄性不育系和保持系植物体内物质代谢差异的研究.沈阳农业大学学报,38(2):152~155.
    许仁林,谢东师,素云,陆维忠,国伟,汪训明. 1995.水稻线粒体DNA雄性不育有关特异片段的克隆及序列分析.植物学报,37(7):501~506
    杨景成,于元杰,齐延芳,沈法富,刘凤珍. 2001.小麦D型细胞质雄性不育系和保持系小孢子发育的超微结构观察.作物学报,27(1):91~96.
    杨守萍,曾维英,段美萍,喻德跃,盖钧镒. 2006.大豆雄性不育突变体NJ89-l核不育基因的SSR标记和定位.大豆科学, 25(4):344~345.
    姚雅琴,张改生,刘宏伟,王军卫,刘红梅. 2002. K型和T型小麦雄性不育花粉粒形态与细胞化学定位.中国农业科学,35 (2):123~126.
    叶景秀,陈蕊红,张改生,王俊生,王书平,李莉,牛娜,马守才,李红霞,朱建楚. 2009.杀雄剂SQ-1诱导小麦雄性不育花药蛋白质组分分析.农业生物技术学报,17(5):858~864
    易平,汪莉,孙清萍,朱英国. 2002.红莲型细胞质雄性不育水稻线粒体atp6基因转录本的编辑位点研究.生物化学与生物物理进展,29(5):729~733.
    应燕如,倪大洲,蔡以欣. 1989.水稻、小麦、油菜和烟草细胞质雄性不育系统中组分蛋白的比较分析.遗传学报,16(5):362~366
    喻堃,臤蚶觯羲苫? 2006. RACE方法获得番茄蓝光受体基因Phototropin-2全长及其过量表达载体的构建.安徽农业科学,34(22):8-5809,5869
    曾广文,蒋德安. 1998.植物生理学.成都:科学技术出版社:88
    曾维英,杨守萍,盖钧镒,喻德跃. 2007.大豆质核互作雄性不育系NJCMS1A及其保持系的花药差异蛋白质组学研究.中国农业科学,40(12):2679~2687.
    ZHANG Y J(张燕君),ZHAO SH Y(赵双宜),LI Y M(栗翼玫). 1999. Compairative study on translated products of chloroplast genome between the male sterility line in radish.Acta Horticulturae Sinica(园艺学报),26(2):123~124(in Chinese).
    赵团结. 2006.大豆雄性不育性的自然变异、种质发掘与选育研究.南京农业大学. [博士学位论文].陕西:西北农林科技大学
    周长久,张友良. 1994.萝卜雄性不育性的几种特性研究.园艺学报,21(1):65~70.
    周宽基,周文麟,王淑英. 1996. 4E-ms小麦雄性核不育、保持体系的建立.中国农业科学, 29(3):93~94.
    AndreC, LevyA, walbot V. 1992. Small repeated sequences and the structure of Plant mitoehondrialgenomes. TrendsGenet. 8: 128~132.
    Bradford M M. 1976. A rapid and sensitive method for the quantitation of microgram quantities utilizing the principle of protein dye binding. Anal Biochem, 72: 248~254
    Driscoll, CJ. 1972. XYZ system of producing hybrid wheat. Crop Sci, 12: 516~517.
    Driscoll, CJ. 1985. Modified XYZ system of producing hybrid wheat. Crop Sci, 25: 1115~1116.
    Forda BG, LEAVER C J. 1990. Variation in mitochondria translation products associated with CMS in maize. Proc. Natl. Acad. Sci. USA, 77: 418~422.
    Frankel R, Scowcroft WR, Whitfcld PR. 1979. Chloroplast DNA variartion of isonuclcarmalcstcrilc lincs of Nicotiana. Mol Genct, (169): 129~135.
    GalauGA, WilkinsTA. 1989. Alloplasmic male sterilily in AD allotctraploid Gossypium hirsution upon replitccment of its residcnt A cytoplasmwith of D specics G. Thcor Appl Genet, (78): 23~30.
    Gallardo K, Job C, Grot SP, Puype M, Demol H, Vandekerckhove J, JobD. 2001. Proteomic analysis of arabidopsis seed germination and priming. Plant Physiol, 126(2): 835~848.
    Gillibertol, Perrotta G, Pallara P. 2005. Manipulation of the blue ligh photoreceptor cryptochrome 2 intomato affects vegetative development, flowerin time, and fruit antioxidant content. Plant Physiology, 137(1): 199~208.
    GUO Yi-Ming, SHEN shi-Hua, JING Yu-Xiang, et al. 2002. plant proteomics in the postgenomic era . Acta Botanica sinica, 44(6): 631~641
    Hanson MR, Bentolila S. 2004. Interactions of mitochondrial and nuclear genes that affect male gameto- phyte development. Plant Cell. 16(suppl): S154~S169.
    Hochholdinger F, Guo L, Schnable P S. 2004. Cytoplasmic regulation of the accumulation of nuclear-encoded proteins in the mitochondrial proteome of maize. Plant Journal, 37(2): 199.
    Howad W, Kempken F. 1997. Cell type-specific loss of atp6 RNA editing in cytoplasm male sterile sorghum bicolor. Proc Natl Acad Sci USA, 94(20): 11090~11095.
    Imin N, Kerim T, Weinman JJ, Rolfe BG. 2001. Characterisation of rice anther proteins expressed at the young microspore stage. Proteomics, 1(9): 1149~1161.
    Kadowaki K, Suzuki T, Kazame S. 1990. A chimeric gene containing the 5' portion of atp6 is associated with cytoplasmic male-sterility of rice. Mol Gen Genet, 224(1): 10~16.
    Kaul MLH. 1988. Male Sterility in higher plant.Springer-Verlag Press: Berlin, 14: 74~77
    Kerim T, Imin N, Weinman JJ, Rolfe BG. 2003. Protcome analysis of male gametophyte develorp-ment in rice anthers. Proteomics, 3(5): 738~751.
    Klose J, Kobalz U. 1995. Two-dimensional electropHoresis of proteins:an updated protocol and implications for a functional analysis of the genome.Electrophoresis, 16(6): 1034~1059.
    Knight MI, Chambers PJ. 2003. Problems associated with determining protein concentration: acomparison of techniques for protein estimations. Molecular Biotechnology, 23(1): 19~28
    Komatsu S, Tanaka N. 2005. Rice proteome analysis:a step toward functional analysis of the rice genome. Proteomics, 5(4): 938~949.
    Laser KD, Lersten NR. 1972. Anatomy and cytology of microsporogenesis in cytoplasmic male sterile angiosperms. Bot Rev. 38: 427~454.
    Levings C S, Pring D R. 1990. The Texas cytoplasm of Maize.Science, 250: 942~947.
    Malek O, Lattig K, Hiesel R, et al. 1996. RNAediting in bryophytes and a molecular phylogeny of land plants. The EMBO Journal, 15(6): 1403~1411
    Mariani C, De Beuckeleer M, Truetmer M, et al. 1990. Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature, 347: 737~741.
    Mariani C, Gossele V, De Beuckeleer M, et a1. 1992. A Chimaeric ri-bonuclease-inhabitor gene restores fertility to male sterile plants.Nature, 357: 384~387.
    Mihr C, Baumg?rtner M, Dieterich J H, et al. 2001. Proteomic approach for investigation of cytoplasmic male sterility (CMS) in Brassica. J. Plant Physiol, 158: 787~794.
    Mikami T, Sugiura M, kinoshita T. 1986. Procedings of the Sugar beet Re-search Association. Japan, (28): 14~18.
    Moban L H K. 1988. Male Sterility in higher plants, Berlin Springer-Verlag, 27: 55~59
    Musgrave ME, Antonovics J, SiedowJ N. 1986. Is male sterility in plants related to lack of cyanide-resistant respiration in tissues. Plant Sci, 44: 7~11.
    Natera S H, Guerreiro N, Djordjevic M A. 2000. Proteome analysis of differentially displayed proteins as a tool for the investigation of symbiosis. Mol plant Microbe Interact, 13: 995~1009
    Qiu Q S, Guo Y, Dietrich M A, et al. 2002. Regulation of SOS1, a plasma membrane Na+/H+exchanger inArabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci USA, 99: 8436~8441.
    Quintero F J, Ohta M, Shi H, et al. 2002. Reconstitution in yeast of the ArabidopsisSOS signaling pathway for Na+homeostasis.Proc Natl Acad Sci USA, 99: 9061~9066.
    Rhodes, et al. 1998. Methods of Identifying and creating RubisCO large subunit variants with improved RubisCO activity, compositions and methods of use there of . Nature, 319: 791~793. Science , 240: 204~207.
    Roscoe TJ, Ellis R J. 1980. Two-dimensional gel electrophoresis of chloroplast proteins. In:Methods in Chloroplast Molecular Biology. Amsterdam:Elsevier Biomedical Press, pp1015~1078
    Saiardi A, Quagliariello C. 1992. RNA editing of cytochrome oxidase subunit III in Sunflower Mitochondria. Plant Physiol, 98(4): 1261~1263.
    Sakano, et al. 1988. Molecular aspects of wheat evolution Rubisco composition. Wheat science, Today and tomorrow, 241(4861): 71~74 (4)61
    Sasakuma T. 1979. $1 Ohtsuka.Cytoplasmic effects of aegilops species having D gene in wheat, cytoplasmic differenctiation among five species regarding pistillody induction. Seiken Ziho. 27-28: 59~65
    Schnable PS, Wise RP. 1998. The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci, 3: 175~180.
    Setsuko Komatsu, Keiichi K ojima, Kouji Suzuki, Kazuo Ozaki and Kemc~Higo. 2004. Rice Proteome Database based on two-dimen sional polyacrylamide gel electmphoresis:its status in 2003. Nucleic Acids Research, 32: 388~392.
    WilliamH, Vensel, Charlene K,Tanaka, Nick Cai, Joshua H. 2005. Wong,metabolic protein profiles of wheat endosperm.Proteomics, 4(5): 5000.
    Wolstenholme DR, Fauron CR. 1995. Mitochondrial genome organization. InThe Molecular Biology of Plant Mitochondria [C], C.S. LevingsⅢandL.K. Vasil, eds(Dordrecht, The Netherlands: Kluwer Academic Publishers, 1~60.
    Woo SH, Kimura M, Higa-Nishiyama A, Dohmae N, Hamamoto H, Jong SK, Yamaguchi I. 2003. Proteome analysis of wheat lemma. Bioaei Biotechnol Biochem, 67(11): 2486~2491.
    Zhao C, Wang J, Cao M, Zhao K, Shao J, Lei T, Yin J, Hill GG, Xu N, Liu S. 2005. Proteornic changes in rice leaves during development of field-grown riceplants. Proteomics, 5(4): 961~972.
    Zhao H J, Wang J H, et al. 2004. Cloning of Plastid Acetyl-CoA Carboxylase cDNA from Setariaitalica and Sequence Analysis of Graminicide Target Site. Acta Botanica Sinica, 46 (6): 751~756

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700