高锰奥氏体钢低温沿晶脆性的产生原因及抑制方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究高锰无镍奥氏体钢低温沿晶脆性产生的原因,寻找一种实用且有效的韧化技术方法,并用此方法制备一种77K下强韧性优异的低温无磁结构材料,为此开展以下几项工作并取得初步成果。
     1.采用“Material Studio”材料计算软件中的“CASTEP”子模块程序,以Fe-38Mn奥氏体合金为研究对象,对合金中杂质或溶质原子的晶界掺杂效应进行了理论预测。结果表明:氧、硫、硒、硅、磷等杂质原子的晶界偏聚降低了Fe-38Mn合金的沿晶断裂功,显示弱化晶界的倾向,进而会促进其沿晶脆性;而氮、碳、铝、钙、铬、钼则相反,会显著强化晶界,从而抑制沿晶脆性的发生。虽然锰对晶界的弱化能力较小,但同样会促进Fe-38Mn奥氏体合金的沿晶脆性。
     2.采用低温力学性能测试以及场发射扫描电镜和透射电镜(配EDAX附件)、俄歇能谱分析、X射线衍射分析等手段,对真空熔炼(VIM)和真空熔炼后又经电渣重熔(ESR)的Fe-38Mn奥氏体钢的低温力学行为以及晶界成分分布进行研究。结果表明:VIM Fe-38Mn奥氏体钢从室温到77K存在韧脆转变现象,77K断口为沿晶断裂特征,1373K固溶处理后的冷却方式和时效处理,均未改变其77K沿晶断裂特征。VIM钢低温沿晶脆性与硫、硅等杂质于晶界的偏聚有关。
     电渣重熔后其低温沿晶脆性被抑制,77K断口具有韧窝占主导并混有少量准解理小刻面的韧性断裂特征。电渣重熔的作用机理为降低钢中硫等弱化晶界的杂质总量及其晶界偏聚程度的同时,引入铝、钙等强化晶界元素,进而抑制了低温沿晶脆性;但ESR钢经1373K固溶处理后炉冷,77K断口却呈现沿晶断裂特征,这与强化元素在晶界以化合物形式析出有关。此外电渣重熔还使夹杂物总量减少、尺寸减小,提高了冲击吸收能—温度关系曲线的上平台值。氮表现出具有韧化晶界的作用,这些结果与理论预测吻合。
     3.以感应炉大气下冶炼(AIM)和感应炉大气下冶炼后又经电渣重熔(ESR)的氮强化高锰奥氏体钢为研究对象,采用低温力学性能试验以及透射电镜、扫描电镜、X射线衍射分析等手段,对其组织和力学行为以及相关理论问题进行探讨。结果表明:在1373K固溶水冷条件下,AIM钢存在低温沿晶脆性,电渣重熔对其具有抑制作用。ESR钢77K冲击断口为韧窝占主导的韧性断裂特征。
     从室温到77K随温度的下降,ESR钢的屈服强度和抗拉强度均显著升高,77K下的屈服强度和抗拉强度分别为883MPa、1350MPa;断面收缩率有所降低,而延伸率在77K下有所增加,经回归分析得到屈服强度与温度的关系式为:
    
     燕山大学工学博士学位论文
     该钢具有较好的抗裂纹扩展能力,其77K断裂韧度值为240MP而,断口具有
    韧性断裂特征。上述性能与该钢的高应变硬化能力有关,经拟合得到如下流变方程
     In or-a exp(In e/b)+c
     刀K温度下的咖/dE值明显高于其它温度的值,同时J’o/J。’在e>O.2以后变
    为正值,n与 dn以。这一特殊变化趋势导致 77K拉伸延伸率得到提高。变形区微结
    构观察后发现,孪晶与位错之间的相互作用是导致上述试验结果的主要原因。
     4.以ESR氮强化高锰奥氏体钢为研究对象,采用“静态”和“动态”氮氖混合
    气体保护TIG焊接方法,研究了焊接过程中氮的吸收和逸出行为及其实际焊接性能。
    结果表明:焊缝金属中的氮在焊接过程中的吸收、逸出行为受保护气中氮气添加比
    例影响较大,而焊接电流与焊接速度影响较小。采用氮氖混合气体保护,在合适的
    焊接规范条件下,可以保证焊缝氮含量在焊接后与母材相当;焊接接头组织稳定性
    高:抗气孔、热裂纹以及热影响区晶粒长大倾向的能力较强。焊接接头的硬度分布
    合理,低温拉伸强度接近母材的性能指标。
In this paper, the causes of cryogenic intergranular brittleness (IGB) in high manganese austenitic steels are investigated. The goal of present research is to find out an effective toughening method by which a cryogenic structural material with excellent performance can be fabricated. The following are the main works and the primary results.
    1. Using CASTEP calculation program, which is a subunit of Materials Studio software and founded in frame of First-principle based on quantum mechanics theory, the grain-boundary(GB) doping effects of impurity or solute atoms in Fe-38Mn austenitic alloy were theoretically forecasted. The results show that the GB segregation of O, S, Se, Si, P atoms decreases the intergranular fracture energy, and enhances the IGB tendency of Fe-38Mn austenitic alloy. Contrarily, the grain-boundary can be strengthened by GB segregation of N, C, Al, Ca, Cr and Mo atoms and consequently the IGB is restricted. Although the capability decreasing GB strength of manganese atom is puniness, its GB segregation could also enhance the IGB of Fe-38Mn austenitic alloy.
    2. Using mechanical tests, FE-SEM, FE-TEM, AES, and XRD etc. analysis methods, the mechanical behavior and the GB chemical compositions of Fe-38Mn austenitic alloy prepared by VIM (vacuum induction melting) and VIM+ESR (electroslag remelting) were investigated. The results show that there is a toughness-brittleness transition phenomenon in Fe-38Mn alloy from room temperature to 77K. The 77K fracture surfaces exhibit intergranular character, which can not be changed by the cooling rate and ageing after 1373K solution treatment. The cryogenic IGB is related to the GB segregation of S, Si, and etc.
    After ESR the IGB of the VIM alloy is restricted. The 77K fracture surfaces are mainly composed of dimples with a small amount of cleavage facets and exhibit a tough fracture character. The mechanism of ESR restricting the IGB of the VIM alloy is that the total content of the GB-weakening elements such as S, Si and their GB segregation degree are decreased, meanwhile the GB-strengthening elements such as Al, Ca and their GB segregation are introduced. However, in the condition of furnace cooling after solution treatment, the IGB in ESR alloy appears again. This links with the GB-precipitation of GB strengthening elements in the form of compound such as A1N. Furthermore the quantity and the dimension of inclusion are also decreased by ESR, as a result the value of impact absorbed energy at room temperature is increased. Nitrogen exhibits a GB-strengthening effect. All above results agree with the theoretical forecasting results.
    3. Using cryogenic mechanical tests, TEM, SEM, and XRD etc. analysis methods, the microstructure and mechanical behavior of a nitrogen strengthened high manganese austenitic steel 32Mn-7Cr-0.7Mo-0.3N prepared by AIM (air induction melting) and
    
    
    AIM+ESR were investigated, and the corresponding theoretical questions were discussed. The results show that in the condition of water cooling rate after 1373K solution treatment, fracture surfaces of the AIM steel exhibit a IGB character, and that is restricted by ESR. The 77K fracture surfaces of ESR steel mainly composed of dimples and exhibit a tough fracture character.
    From room temperature to 77K, the yield and proof strength are all obviously increased. At 77K they are 883MPa and 1350 MPa, respectively. The elongation and reduction in area decrease with decreasing temperature, but the elongation at 77K increases in a sort. By regression analysis the relationship between yield strength and temperature is gained as following
    o02(MPa) = 1392.4 exp(-0.0106r) + 300
    Furthermore ESR steel exhibits a excellent ability of resistance in crack propagation. The 77K fracture toughness is 240MPa^ and fracture surfaces exhibit a tough fracture character. Above results are related to the high strain hardening ability of testing steel. By fitting the flowing equation is gained as following
    In o = a exp(ln e /b) + c
    The value of dn/dsat 77K is obviously higher than that at ano
引文
1 Y. Yoshimura, H. Masumoto. Properties of Low-Carbon 25Mn-5Cr-1Ni Austenitic Steel for Cryogenic Use. Advances in Cryogenic Engineering Materials. 1982, 28:115-125
    2 S. Shimamoto, H. Nakajima, K. Yoshida. Requirement for Structural Alloys for Superconducting Magnet Cases. Proc. of theICMC9, butterworth Co, Ltd., Surrey, England, 1982:127-132
    3 J. W. Chan, D. Chu, J. W. Morris, Jr. Metastable Austenites in cryogenic High Magnetic Field Environments. Advances in Cryogenic Engineering Materials. 1992, 38:78-85
    4 Nakajima, K. Yoshida and S. Shimamoto. Development of New Cryogenic steels for the Superconducting Magnets of the Fusion Experimental Reactor. ISIJ. International. 1990, 30(8): 567-578
    5 K. Nohara, S. Sato. Fine-blanking Performance of Non-magnetic High Manganese cryogenic Steel and its Application to Superconducting Dipole Magnet. Cryogenics. 1994, 34:477-480
    6 Y. Tomota et al. Strength and Toughness Relationship at Cryogenic Temperature in High Manganese Steel. Inernational Congress On 5th. Heat Treatment of Materials. Budapest, 1986: 446-453
    7 T. Horiuchi, M. Shimada. Cryogenic Fe-Mn Austenitic Steel. Advances in Cryogenic Engineering Materials. 1986, 32:33-34
    8 K. S. Xue, Z. L. Rong. The Improvement of Low Temperature Toughness of High Manganese Austenitic Steels. Cryogenic Materials 88', E. S. Xing and E. W. Coolings eds., ICMC. Boulder, 1988: 501-509
    9 M. J. Strum and J. W. Morris Jr. Influence of Post-anneal Cooling Treatments on Suppression of Cryogenic Interguannlar Fracture in Experimental NJ-free High-Mn Austenitic Steel. Advances in Cryogenic Engineering Materials, 1988, 34:371-378
    10 Y. Tomota, S. Shibuki. Intergranular Fracture in Fe-Mn Austenitic Alloys at 77K. ISIJ International, 1990, 30(8): 663-665
    11 K. S. Xue. The low temperature brittle fracture of austenitic Fe-Mn alloy. LBL 20938 Lawrence Berkeley Laboratory, Berkeley, 1986.
    12 柴寿森.奥氏体Fe-Mn合金的低温脆性.金属学报.1988,24A(1):24-29
    13 K. S. Xue. Mechanism of the effect of Cr on the low-temperature toughness of high manganese austenitic steel. Advances in Cryogenic Engineering Materials, 1994, 38:1275-1281
    14 薛侃时,孙大涌.高锰奥氏体超低温钢低温脆断机制的研究.机械工程学报.1998,34(5):1-6
    15 孙大涌,薛侃时.锰低温钢中锰及合金元素的不平衡偏聚.机械工程学报.1998,34(4):1-6
    16 薛侃时,孙大涌.提高高锰奥氏体超低温钢低温韧性的方法.机械工程学报.1998,34 (6):11-15
    17 张静江,王滨等.高锰低温钢晶体结构及位错形态研究.机械工程学报.1998,34(6):23-26
    18 刘文昌,郑炀曾.氮强化高锰奥氏体不锈钢的应变强化行为.金属热处理学报 1995,16 (3):33-37
    19 郑炀曾,刘文昌.22Mn-13Cr-5Ni-0.25N氮强化高锰奥氏体钢的低温变形与断裂.钢铁.1996,31(8):41-44
    
    
    20 戴起勋.高锰奥氏体钢低温拉伸变形特性.钢铁研究学报.1995,7(3):40-44
    21 S. C. Liu, T. Hashida. A Study on Fractography in the Low-Temperature Brittle Fracture of an 18Cr-18Mn-0.7N Austenitic Steel. Metall. and Mater. Trans. A. 1998, 29A(4):791-798
    22 陈国邦.用于低温工程度金属与合金.低温工程.1988,(3):60-73
    23 H. Yoshimara, N. Yamada. Microstmcture, low temperature toughness and thermal expansion coefficients of high manganese-chromium austenitic steels. Trans. Iron Steel Inst. 1976, 16:98
    24 Richard P. Reed.奥氏体不锈钢中的氮.高氮钢译文集.许嘉龙,葛红林编.上海:上海钢铁研究所.1990:75-82
    25 T. Xing, S. Z. Yan. Nonequilibrium Phase diagram of Fe-Mn-Al System. Scripta Metallurgical & Materialia. 1993, 28:1219-1222
    26 H. S. Chang, S. Z. Yan and Y. K. Xu. An Fe-Mn-Al Austenic Steel for Cryogenic Uses. Advances in Cryogenic Engineering materials.1984, 30: 245-252.
    27 J. W. Morris Jr., S. K. Wang. Fe-Mn Alloys for Cryogenic Use: A Brief Survey of Current Research. Advances in Cryogenic Engineering. 1984, 24: 91-102
    28 T. Horiuchi, R. Ogawa and M. Shimada. Cryogenic Fe-Mn Austenitic Steel. Advances in Cryogenic Engineering Materials. 1986, 32:33-42
    29 H. Yoshimara, N. Yamada. Toughness of high manganese-chromium austenitic steel at liquid helium temperature. Trans. Iron Steel Inst. 1980, 20:187-189
    30 H. Yoshimura, T. Shimizu. Tensile and Impact Properties of 25Mn-5Cr-1Ni Austenic Steel at Liquid Helium Temperature. Trans. ISIJ. 1982, 22:577-584
    31 K. Sato, Y. Inoue. Effects of Deformation Induced Phase Transformation and Twinning on the Mechanical Properties of Austenitic Fe-Mn-Al alloy. ISIJ International. 1989, 29(10):868-877
    32 K. Tsuzaki, M. Ikegami and Y. Tomota. Effect of Transformation Cycling on the εMartensitic Transformation in Fe-Mn Alloys ISIJ International. 1990, 30(8): 666-673
    33 Y. Tomota, M. Strum and J. W. Morris Jr. Microstructural Dependence of Fe-High Mn Tensile Behavior. Metall. Trans. A. 1986, 17A(4): 537-547
    34 Y. Tomota, M. Strum and J. W. Morris Jr. Tensile Deformation Behavior of Mechanically Stabilized Fe-Mn Austenite Metall. Trans. A. 1988, 19A(6): 15631-568
    35 Y. Tomota, M. Strum and J. W. Morris Jr. The Relationship between Toughness and Microstructure in Fe-High Mn Binary Alloys Metall. Trans. A. 1987, 18A(6): 1073-1081
    36 T. Yuri, K. Nagai. Effect of Cold Rolling on Mechanical Properties and Fracture Mode of a 32Mn-7Cr Steel at Cryogenic Temperature. ISIJ International. 1990, 30(8):639-645
    37 J. H. Chen, G. Z. Wang. Study of Mechanism of Cleavage Fracture at Low Temperature Metall. Trans. A. 1992, 23A(12): 509-517
    38 J. Kubier, H. J. Schindler. Influence of aging on the fracture toughness of cryogenic austenitic materials, evaluated by a simple test mehtod. Advances in Cryogenic Engineering. 1992, 38: 191-198
    39 K. Shibata, N. Kondo. Mechanical properties of high manganese steels toughened by post-annealing heat treatments. Advances in Cryogenic Engineering 1990, 36:1257-1263
    40 J. M. Han, Y. G. Kim. The Role of deformation twinning on mechanical properties of an austenitic Fe-30Mn-1.2Al-0.3C alloy. Acta. Metall. Mater. 1991, 39(9): 2169-2175
    41 B. W. Oh, S. J. Cho and S. H. Hong. Effects of deformation twinning and martensitic transformation
    
    on the cryogenic mechanical properties of Fe-19Mn-5Cr-(0.5)AL-0.2C alloy. Advances in Cryogenic Engineering 1994, 40:1183-1190
    42 K. Shibata, Y. Kobiki. Mechnical Properties of High Yield Steel at Cryogenic Temperatures. Advances in Cryogenic Engineering Materials.1984, 30:153-160
    43 R. Miura, H. Nakajima. 32Mn-7Cr Austenitic steel for Cryogenic applications. Advances in Cryogenic Engineering materials. 1986, 32:245-252
    44 J. W. Morris Jr. Structural Alloys for High Field Super-conducting Magnets. Advances in Cryogenic Engineering Materials. 1986, 32:1-12
    45 P. Rama Rao, V. V. Kutumbarao. Developments in Austenitic Steels Containing Manganese. International Materials Reviews. 1989, 34(21):69-86
    46 T. Sakamoto. Nitrogen-Containing 25Cr-13Ni Stainless Steel as a Cryogenic Structures Material. Advances in Cryogenic Engineering Materials. 1984, 30:137-144
    47 Y. Tomota, S. Endo. Cleavage-like Fracture at Low Temperature in an 18Mn-18Cr-0.5N Austenitic Steel. ISIJ International. 1990, 30(8): 656-662
    48 Y. Tomoa, Y. Xin and K. Inoue. Mechanism of Low Temperature Brittle Fracture in High Nitrogen Bearing Austenitic Steels. Acta. Mater. 1998, 46(5):1577-1587
    49 K. Suemune, K. Sugino. Improvement of Toughness of a High-Structure, High Manganese Stainless Steel for Cryogenic Use. Advances in Cryogenic Engineering. 1986, 32:51-56
    50 I. N. Bogachen. Influence of Nickel and chromium on Magnetic and Crystallographic Transformations in Iron-Manganese Austenitic. Fiz. Metal. Metalloved. 1979, 47:1294-1296
    51 T. Sakamoto, H. Nakajima. Nitrogen-containing 25Cr-13Ni Stainless Steel as a cryogenic Structure Material. Advances in Cryogenic Engineering. 1984, 30:137-144
    52 S. K. Hwang, J. W. Morris Jr. The Improvement of Cryogenic Mechanical Properties of Fe-12Mn and Fe-8Mn Alloy Steels Through Thermal/Mechanical Treatments. Metal Trans. 1979, 10A: 545-555
    53 K. Shibata, K. Fujita. Cooling Conditions after Solution Treatment and Low Temperature Toughness of a 32% Mn Steel Bearing High Content of Nitrogen. Trans. ISIJ. 1986, 26:386-387
    54 H. Tanaka, K. Fujita. Effects of Boron on Increasing Toughness of High Strength High Manganese Non-Magnetic Steels. Advances in Cryogenic Engineering. 1992, 38:199-207
    55 M. Murakami, K. Shibata. Low Temperature Toughness of 6% Mn Steels. Tetsu-to- Hagane. 1986, 72:241-246
    56 M. Hasimoto. Atomistic Studies of Grain Boundary seregation in Fe-B Alloys-Ⅱ. Electronic Structure and Intergranular Embrittlement. Acta Metal. 1984, 32:13-20
    57 H. Matsui, H. Kimura. The Influence of Oxygen and Sulfur on the Intergranular Brittleness of Iron. Japan Inst. Metals, 1983, 47:294
    58 K. S. Shin. M. Meshii. Effect of sulfur segregation and Hydrogen charging on intergranular fracture of iron. Acta Metall, 1983, 31:1559
    59 王崇愚.金属缺陷能量学基础及掺杂晶界电子结构.金属学报.1997,33(1):54
    60 梁成广,肖纪美.利用界面偏析控制沿晶断裂—Ⅱ晶界偏析与晶间脆性的预测.中国科学(A),1993,23:211-218
    61 胡壮麒,王鲁红等.电子和原子层次材料行为的计算机模拟.材料研究学报.1998,12(1):1-3
    62 R. D. K. Misra, P. Rama Rao. Grain Boundary Segregation Isotherms. Materials Science and Technology. 1997, 13(3): 277-288
    
    
    63 D. Mclean. Grain boundaries in metals. London, Oxford University Press, 1957:118
    64 吴平,贺信莱.晶界非平衡偏聚的回顾与展望.金属学报,1999,35(10):1009-1019
    65 徐庭栋,宋申华.非平衡晶界偏聚动力学模型.武汉钢铁学院学报.1991,14(3):250-257
    66 T. D. Xu. Non-equilibrium cosegregation to grain boundaries. Scripta Materialia, 1997, 37(11):1643-1650
    67 T. D. Xu. Critical time and temper embrittlement isotherms. Matreials Science and Technology. 1999, 15(6): 659-665
    68 徐庭栋,宋申华.溶质原子晶界偏聚研究.武汉钢铁学院学报.1991,14(3):243-249
    69 S. H. Song, R. G. Faukner. Combined equilibrium and non-equilibrium segregation treatment of temper embrittlement in low alloy steels. Materials Science and Technology. 2001, 17(5): 523-528
    70 褚幼义,柯俊.溶质原子向晶界的非平衡偏聚机制.金属学报.1989,A25(4):275-281
    71 褚幼义,贺信莱,唐立.硼在奥氏体晶界的两类偏聚.金属学报.1987,A23(3):169-175
    72 徐庭栋等.一个强韧化钢的新概念-非平衡晶界共偏聚.钢铁研究学报.1999,11(2):29-33
    73 T. S. Duh, J. J. Kai Effects of grain boundary misorientation on the solute segregation in austenitic stainless steels Jouranal of Nuclear Materials 1998, 258-263:2064-2068
    74 崔怀洋,贺信莱等.溶质原子在再结晶运动晶界上偏聚的研究.材料科学与工程.1995,13(3):2-7
    75 S. Suzuki. Influence of a Varity of Grain Boundary Structure on Grain Boundary Segregation. ISIJ International. 1990, 30(11): 1000-1002
    76 T. D. Xu. A Model for intergranular segregation/dilution induced by applied stress. Journal of materials science 35 2000:5621-5628
    77 R. Yang, D. L. Zhao and M. Wang. Effects of Cr, Mn on the conhesion of the γ-iron grainboundary. Acta. Mater. 2001, 49:1079-1085
    78 L. K. Genrich, G. B. Olson. Effect of Boron, Carbon, Phosphorus and Sulfur on intergranular cohesion in iron. Solid State Communications. 1990, 76(3):247-251
    79 L. P. Zhong, G. B. Olson. Effects of Mn additions on the P embrittlement or the Fe grain boundary. Physical Review B. 1997, 55(17):133-135
    80 P. Lejcek, S. Hofmann. Chemical aspects of brittle fracture: grain boundary segregation. Materials Sciene and Engineering. 1997, A234-236:283-286
    81 高德春.Ca对42MnCr钢显微组织及冲击韧性的影响.金属热处理学报.1993,14(3):10-14
    82 李永基,高德春.Ca对60CrMnCuV钢中流的晶界偏聚及冲击韧性的影响.金属学报.1993,A29(12):534-537
    83 K. Yamamoto, T. inoue. Suppression of Intergranular Brittle Fracture in Pure Iron by Reducing Grain boundary Segregation of Sulfur with Oxides. J. Japan Inst. Metals. 1994, 58(8): 872-881
    84 D. L. Zhao, C. Y. Wang. Effects of Cr, Mn on the Cohesion of the γ-Iron Grain Boundary. Acta Mater. 2001, 49:1079-1085
    85 Y. Q. Fen, C. Y. Wang. Electronic effects of nitrogen and phosphorus on iron grain boundary cohesion. Computational Materials Science. 2001, 20:48-56
    86 J. R. Rice, J. S. Wang. Materials Science and Engineering. 1989, A107:23,40
    87 T. Kuwana, H. Kokawa. Nitrogen Absorption of Stainless Steel Weld Metal in Pressurized Welding Atmospheres. Transaction of the Japan Welding Society, 1987, 18(2): 10-17
    88 T. Kuwana, H. Kokawa. The Nitrogen Absorption of Stainless Steel Weld Metal during Gas
    
    Tungsten Arc Welding. Transactions of the Japan Welding Society. 1986, 17(2):30-35
    89 I. Woo, Y. Kikuchi. Weldability of High Nitrogen Stainless Steel. ISIJ International. 2002, 42(12): 1334-1343
    90 R. Petersens, O. Runnerstam. Selecting Shielding Gases for Welding of Stainless Steels. Welding Review International. 1993, 8:152-158
    91 S. Hertzman, S. Wessman. An Experimental and Theoretical Study of Nitrogen Flux in Stainless Steel TIG Welds. Materials Science Forum. 1999, 318-320:579-590
    92 T. A. Palmer, K. Mundra. Modeling Nitrogen Dissolution in Metals from Welding Plasma. Trends in Welding Research, Proceeding of the 4th International Conference. Gatlinburg, Tennessee ed. 1995:141-146
    93 F. Trsken, P. Pant and G. Sten. 超过溶解度极限的高氮合金钢的焊接.高氮钢译文集.许嘉龙,葛红林编.上海:上海钢铁研究所,1990:142-145
    94 S. Hertzman, R. J. Pettersson and R. Blom. Influence of Shielding Gas Corrosion Properties of Welds in N-alloyed Stainless Steel Grades. ISIJ International. 1996, 36(7): 968-976
    95 P. Deimel, H. Fischer and M. Hoffman. Strength and Toughness Properties of Two Nitrogen Alloyed Stainless Steels and Their Submerged Arc Weldments at Cryogenic Temperatures. Journal of Materials Science. 1998, 33:1105-1116
    96 用反压铸造法生产船用高氮钢及其实际应用的研究.高氮钢译文集.许嘉龙,葛红林编.上海:上海钢铁研究所,1990:44-58
    97 S. Tone, M. Hiromatsu and J. numata. Cryogenic Properties of Electron-Beam Welded Joints in A 22Mn-13Cr-5Ni-0.22N Austenitic Stainless Steel. Advances in Cryogenic Engineering Materials. 1986, 32:82-87
    98 L. Karisson, S. Rigdal and S. L. Andersson. Welding Of Highly Alloyed Austenitic And Duplex Stainless Steels. 11W Asian Pacific Progress. 1996, 2(4-9):247-266
    99 L. K. Genrich, G. B. Olson. Effect of Boron, Carbon, Phosphorus and Sulfur on Intergranular in Iron. Solid State Communications. 1990, 76(3):247-251
    100 L. P. Zhong, G. B. Olson. Effect of Mn additions on the P embrittlemet of the Fe grain boundary. Phys. Rev. B. 1997, 55(17):133-137
    101 X. Chen, D. E. Ellis and G. B. Olson. Effects of Alloying Elementson Iron Grain Boundary Cohesion. Materials Research Siciety. 1998, 492:243-248
    102 Q. M. Hu, D. S. X and D. Li. First-principles investigations of the solute-vacancy interaction energy and its effect on the creep properties of α-titanium. Ph. Mag. A. 2002, 81(12):2809-2821
    103 Q. M. Hu, D. S. X and D. Li. First-principles investigations of the solute-hydrogen interaction in a α-titanium. Phys. Rev. B. 2002, 66:64201-64209
    104 肖慎修,王崇愚等.密度泛函理论的离散变分方法在化学和材料物理学中的应用.北京:科学出版社.1998:231-284
    105 叶恒强等.材料界面结构与特性.北京:科学出版社.1999:79-92
    106 孙大明,席光康.固体的表面与界面.合肥:安徽教育出版社,1996:121-128
    107 刘志林,李志林等.界面电子结构与界面性能.北京:科学出版社,2002:152-166
    108 李静媛.钢和钼中夹杂物的鉴定.北京:科学出版社,1988:1-20
    109 马如璋,徐祖雄.材料物理现代研究方法.北京:冶金工业出版社,1997:322-329
    110 I. I. Reformatskaya and L. I. Freiman. Pricipitation of Sulfide Inclusions in Steel Structure and Their
    
    Effect on Local Corrosion Processes. Protection of Metals. 2001, 37(5): 459-464
    111 史群星.奥氏体化温度对4330M钢晶界上杂质偏聚的影响.金属学报.1990,26(6):A464-466
    112 张灶利,余宗森.连续冷却过程中低碳贝氏体钢的晶界化学.金属热处理学报.1998,19(2):11-16
    113 付文逵.钢铁冶炼工艺.北京:机械工业出版社,1981:368-372
    114 江口泰弘.电渣重熔渣系的选择资料.国外电渣重熔译文集.北京:钢铁研究总院出版.1985:125-148
    115 B.A.格里戈良.电炉炼钢过程理论基础.北京:冶金工业出版社,1985:412-418
    116 A.肖德胡尔里.八吨电渣重熔设备的冶金和工艺效果.国外电渣重熔译文集.北京:钢铁研究总院出版,1985:32-39
    117 F.R.卡尔马纳,A.米切尔.渣成份对电渣重熔铸锭成份及非金属夹杂物成份的影响.国外电渣重熔译文集.北京:钢铁研究总院出版.1990:201-214
    118 P. Mullner. On the ductile to brittle transition in austenitic steel. Mater. Sciand Eng. 1999, A234-236:94-97
    119 M. O. Speidel, P. J. Uggowitzer. High Nitrogen Austenitic Steels: Their Strength and Toughness. High Manganese, High Nitrogen Austenitic Steels. R A Lula eds., ASM International, 1993: 135-142
    120 I. A. Yakcbtsov, D. D. Perovic. Effect of nitrogen on stacking fault energy of F. C. C iron-based alloys. Acta Mater. 1999, 47(4):1271-1279
    121 A. L. Sozinov, V. G. Gavriljuk. N-N interaction and nitrogen activity in the iron base austenite. Acta Mater. 1999, 47(3):927-935
    122 M. Shimada. Effect of Precracking on K_(IC) at 4K for a 22Mn-13Cr-5Ni Steel. Advances in Cryogenic Engineering Materials. 1990, 36:1095-1102
    123 张旺峰,朱金华.低层错能奥氏体钢的变形硬化特点.材料工程.2000,(2):25-28
    124 G. K. Young, J. K. Han. Low Temperature Mechanical Behavior of Microalloyed and Controlled-Rolled Fe-Mn-Al-C-X Alloy. Metall. Trans. A. 1985, 16A:1689-1693
    125 G. K. Young, Y. L. Cha. The Flow Equation and Its Necking Criterion in Austenitic Cryogenic Fe-Mn-Al-X Steels. Metall. Trans. A. 1987, 19A:1625-1631
    126 J. W. Simmons. Strain Hardening and Plastic Flow Properties of Nitrogen Alloyed Fe-17Cr-(8-10)Mn-5Ni Austenitic stainless Steels Acta Mater. 1997, 45(6):2467-2475
    127 S. Kubota, Y. Xia and Y. Tomota. Work-hardening Behavior and Evolution of Dislocation microstructures in High-nitrogen Bearing Austenitic Steels. ISIJ International, 1998, 38(5): 474-481
    128 P. H. Adler, G. B. Olson and W. S. Owen. Strain Hardening of Hadfield Manganese Steel. Metall. Trans. A. 1986, 17:1725
    129 A. Soussan, S. Degallaix. Work-hardening behavior of nitrogen alloyed austenitic stainless steels. Mater. Sci. and Eng. A. 1991, A142:169-176
    130 T. S. Shun, C. M. Wan and J. G. Byrne. A study of work hardening in austenitic Fe-Mn-C and Fe-Mn-Al alloys. Acta. Metall. Mater. 1992, 40(12):3407-3412
    131 戴天成,刘东升等.高锰奥氏体钢的双n行为.沈阳工业大学学报.1994,16(4):68-71
    132 王滨,王位,薛侃时等.高锰奥氏体钢变形硬化特性的计算机辅助测定.理化检验-物理分册.1997,33(11):17-19
    
    
    133 D. C. Ludwigson. Modified Stress-Strain Relation for FCC Metals and Alloys. Metall. Trans. 1971, 2(10):2925-2828
    134 石德珂,刘军海.高锰钢的变形与加工硬化.金属学报。1989,25(4):B282-285
    135 朱瑞富,朝志强.系列奥氏体锰钢的拉伸变形行为及其本质.山东工业大学学报.1997,27(1):50-54
    136 L. Remy. The interaction between slip and twining systems and the influence of twining on the mechanical behavior of fcc metals and alloys. Metall. Trans. A. 1981, 12A(4):387-408
    137 D. J. Drobnjak, J. G. Parr. Deformation substructure and strain hardening characteristics of metastable Fe-Mn austenite. Metall. Trans. 1970, 1:759
    138 R. Juhani, H. E. Hannen. Mechanical Properties of Austenitic High-nitrogen Cr-Ni and Cr-Mn Steels at low Temperatures. ISIJ International. 1996, 36(7): 873-877
    139 J. M. Gomez de salazar, A. Urena. TIG Welding of Uranus 45N Duplex Stainless Steel: Changes in Microstructure and Properties. Welding International. 1998, 12(7): 548-558
    140 Y. Kikuchi, G. Matsuda, T. Okabe. Nitrogen Content of 316L Weld Metal and Its Fine Particle by Means of High-Pressure MIG Welding. ISIJ International. 1996, 36(7):977-982
    141 M. Abbaham, M. Kutsuna and Y. Hosoi. Effect of Alloying Elements on Hot Cracking Susceptibility of Fe-Cr-Mn Alloys. Transactions of Japan Welding Society. 1991, 22(1):8-12
    142 B. Lundqvist. Welding of Modern Stainless Steels. Welding Review International. 1992, (5): 60-66

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700