粘结结构界面缺陷超声检测技术及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粘结结构以其优越的性能而广泛应用于化工、航空航天及食品等各领域,但在其制造和使用过程中常常会出现界面缺陷,如粘结不良、气孔等现象,这些缺陷的存在将会影响材料使用的可靠性,在使用过程中由于界面缺陷的存在而造成的灾难性事故时有发生。为了保证产品质量和使用安全,对粘结结构界面质量的检测是十分有意义的。
     超声脉冲回波法以缺陷定位准确、适用范围广、操作方便等优点广泛应用于无损检测。采用脉冲回波法对粘结结构的界面特性进行检测分析时,由于超声波在各层介质之间发生多次反射和透射,不易分辨出各界面的回波。目前,尽管采用多种的信号处理方法用来解决该问题,但相对来说,处理方法比较复杂、繁琐,而且往往有时候不能得到满意的结果。尤其对于厚度较小(甚至于几百微米的厚度)的粘结结构界面质量的检测问题,缺陷特征信号的提取变得非常棘手。目前,国内有关这方面的研究相对缺乏。针对此问题,本文以两类厚度较小的粘结结构为研究对象,一类是软包装热封试件,另一类是粘接结构件,基于超声脉冲回波技术,提出一种基于超声背散射回波包络积分成像法的粘结结构界面缺陷检测方法,该方法将各界面回波作为一个总能量来考虑,通过有无缺陷时总能量的差异来判断缺陷的存在于否,该方法简单,快捷,不需要进行繁琐的信号处理,克服了由于试件厚度较小,常规的换能器难以分辨界面信号的局限性,为国内评价粘接材料界面质量性能提供了有效的实验手段和技术支持。主要工作如下:
     (1)粘结结构界面缺陷超声检测系统设计
     配合已有的硬件系统,开发设计了一套完整的粘结结构界面缺陷检测的软件系统,软件系统采用模块化思想进行设计,实现了检测过程的自动扫描、数据实时采集、实时显示、在线处理以及存储等功能;试验结果表明,所获得的背散射回波信号波形清晰,信噪比较大,满足检测要求,为进一步的粘结结构界面缺陷检测的试验研究提供了可靠保证。
     (2)粘结结构界面缺陷定性研究
     基于超声背散射回波包络积分成像方法(简称BEEI成像方法),采用中心频率为22.66MHz,-6dB横向分辨率为315μm的水浸式点聚焦传感器,对两类粘结结构界面缺陷,一类是软包装(聚乙烯膜)热封封口处50~150μm的通道型泄漏缺陷、夹杂缺陷;另一类是粘接试件中粘接界面出现的夹杂缺陷、气泡等进行检测;同时,以软包装热封封口处缺陷为研究对象,分析了成像矩阵中BEEI值的变异系数以及垂直于热封方向和平行于热封方向上BEEI值的变化趋势。试验结果表明,利用超声BEEI成像方法实现粘结结构界面缺陷检测是可行的,由于受传感器横向分辨率的影响,利用BEEI方法所测得缺陷尺寸比缺陷实际尺寸偏大;当成像矩阵中BEEI值的变异系数小于4%时,整个成像矩阵中BEEI值的离散程度较小;缺陷区的BEEI均值高于背景区的BEEI均值约30~40%。
     (3)粘结结构界面缺陷量化分析研究
     以软包装热封试样为研究对象,研究了扫描步长对BEEI图像质量的影响,结果表明,沿着热封长度方向,随着扫描步长的增大,图像质量明显下降,合理扫描步长是小于传感器-6dB的横向分辨率;并在合理扫描步长的基础上,通过详细分析不同尺寸范围内的缺陷尺寸与超声检测结果两者间的关系,从量值上评估了传感器横向分辨率对超声检测结果的影响大小。研究结果表明,缺陷的实际尺寸可近似为传感器-6dB的横向分辨率与超声检测结果二者的差值。
     (4)粘结结构界面缺陷检测机理研究
     超声背散射回波成像方法可以实现软包装热封后封口处微缺陷的检测,检出的最小缺陷达到52μm。鉴于考虑系统噪声和粘结结构的多层界面反射,如此微小的缺陷引起的背散射能量较小,加之试件本身厚度较小,微缺陷引起的回波会淹没在试件的上、下表面回波中,不能清晰地分辨出来,进而不能判断缺陷的存在与否。但在实际检测中,这些微缺陷能通过这种方法检测到。针对此问题,以两层聚乙烯膜热封封口处的微缺陷为研究对象,从声阻抗重建理论、ANSYS有限元热分析数值模拟以及缺陷截面扫描试验三个方面对其超声检测机理进行了深入的分析研究。结果表明,超声BEEI成像方法之所以能检测到微缺陷的存在,主要是因为缺陷周围区域由于高温作用,基体材质发生化学变化,使得缺陷周围产生与基体材质阻抗差异较大的热熔环形区,声波在传播过程中遇到环形区时,会产生较缺陷本身产生的较强的反射回波。
More and more bonding structure have been widely applied in industry of chemical, aviation, aerospace and food for their superior performance. Disastrous accidents happen in process of manufacture and working at times for weak bonding or air hole of layered media. So it is urgently needed to make accurate detection for interface quality and insure the quality of products and working safety.
     Ultrasonic echo method is widely applied in non-destructive detection for its advantage of accurate defect locating, wide application, convenient operation and so on. When the interface properties of multi-layer materials is studied using pulse-echo method, the interface echo is not easy to be distinguished because of multiple reflections and transmission for ultrasound in layers of multi-layer materials. It is usually assessed by the echo of the overall energy, especially for a thin layered media, even thickness with a few hundred micrometers. In the current research, a novel ultrasonic imaging method, based on backscattered echo envelope integral (BEEI) imaging method is proposed and applied for the defect detection of bonding structure. Two kinds of interface defects are detected, one is the channel defects and inclusion embedded in bonded 2-sheet polyethylene film, the other is inclusion defect and air hole embedded in the adhesive structure. It has been demonstrated that the interface defects in bonding structure can be effectively detected using ultrasonic backscattered echo envelope integral imaging method. The main research works are given as follows.
     (1) System design for ultrasonic detection of defects in bonding structure
     Ultrasonic system is developed for detecting interface defects embedded in bonding structure. The software system is designed based on the modularization, realizes experimental operation automatically controlled by computer, real time data acquiring, data on-line processing and storage, high efficiency compared with off-line processing. The results show that the software system has strong real time capability, high efficiency and reliability, and the echo with high signal-noise can be obtained to satisfy the need of signal analysis and processing.
     (2) Interface defects ultrasonic qualitative detection in bonding structure
     The interface defects in bonding structure are detected using BEEI imaging method. The images are formed with an immersion spot focused 22.66-MHz ultrasound transducer which the -6dB pulse-echo beam diameter at the focus is 315μm. At the same time, the Coefficient of variation (CV) values of BEEI-matrix for each sample is studied for the channel defects and inclusion defects in bonded 2-sheet polyethylene film. The variation of the BEEI values in the direction vertical to the edge of the heat seal and in the direction parallel to the edge of the heat seal are compared for the channel defects. The results show that the interface defects in layered media can be effectively detected using ultrasonic BEEI imaging method, and the size of defects on the ultrasonic image is larger than its actual size which is correlated with the lateral resolution of the transducer. The CV values are lower than four percent for channel and inclusion defect, which indicate the variation of the BEEI values in matrix is small. The mean BEEI values on the defect region are about greater between thirty percent and forty percent than that on the background region.
     (3) Quantitative analysis for interface defects ultrasonic detection in bonding structure
     The scanning size issue of the BEEI imaging method is investigated. The study of relationship between varying scanning step size and image quality for the BEEI imaging method is presented for the seal defects embedded in bonded 2-sheet polyethylene film. It show that the image quality degraded as the scanning step size increased in the direction parallel to the edge of the heat seal, and the reasonable scanning step size is small than -6dB focal beam diameter. Theoretical analysis for the influence of the transducer lateral resolution on ultrasonic result are made while scanning step size is less than -6dB lateral resolution of the transducer, and the relation between ultrasonic result and defects actual size is given in the different scope of size. The experimental results are in good agreement with the theoretical analysis.
     (4) Study of defects detection mechanism for bonding structure
     Defects detection mechanism for bonding structure is studied for the seal defects embedded in bonded 2-sheet polyethylene film from three aspects of reconstructed acoustic impedance, finite element heat conduction analysis and experiment. The BEEI imaging method is able to reliably inspect defects as small as 52-μm in diameter. The main reason is an annular impedance transition region surrounding the defect. The annular region is produced by material compounding during the heat sealing process. Because of the material compounding, this region with an impedance value higher than that of its surrounding medium. The impedance difference between the annular region and the defect region causes reflection. The reflection strength from annular region is strong compared with that of from defect.
引文
1赵延伟.软包装发展现状及加入WTO后面临的形势[J].塑料包装. 2005, 15(4):1~12
    2 K. Raum, A. Ozguler, S. A. Morris, et al. Channel defect detection in food packages using integrated backscatter ultrasound imaging[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 1998, 45(1):30~40
    3 Z. Zeng, R. Whalley and J. B. Hull. Monitoring and control of a retail food container filling machine[J]. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. 1995, 209(E2):101~115
    4 A. Barwicz, J.-L. Dion. Electronic measuring system for ultrasonic analysis of solutions[J]. IEEE Transactions on Instrumentation and Measurement. 1990, 39(1):269~273
    5程存弟.超声技术——功率超声及其应用[M].陕西师范大学出版社, 1993, 163:298~301
    6赵茜,高大维,秦贯丰.在食品结晶成核中应用超声探讨[J].食品工业科技. 1997, 18(5):71~72
    7 E. Action, G. J. Morris. A new technique of keeping fruits to have fresh texture [P]. World PatentWO92/20420,1992
    8 D.Jullan, A. McClements. Advances in the application of ultrasound in food analysis and processing[J]. Trends in food&Technology, 1995, 22(6):293~299
    9丘泰球,张喜梅.超声处理溶液中蔗糖晶体的生长[J].华南理工大学学报(自然科学版). 1996, 24(6):107~111
    10 GB/T15171—1994《软包装件密封性能试验方法》[S]. 1994:349~351
    11李家伟,陈积慰.无损检测手册[M].机械工业出版社, 2002
    12冯若,超声手册[M].南京大学出版社, 2001
    13夏金东.金属材料超声探伤缺陷智能识别方法的初步研究[D].中国矿业大学. 2000
    14 S. W. Keller, J. E. Marcy, B. A .lakistone, et al. Bioaerosol exposure method for package integrity testing[J]. J. Food prot. 1995, 59(7):768~717
    15 C. L. Harper, B. S. Blakistone, J. B. Litchfield, et al. Developments in food package integrity testing[J]. Food Technol. 1995, 6(10):336~340
    16 R. A. Lampi. Retort pouch: the development of a basic package concept intoday’s high technology[J]. J. food process eng. 1980,4:1~18
    17 C. Chen, B. Harte, C. Lai, et al. Assessment of package integrity using a spray cabinet technique[J]. Journal of Food Protection. 1991, 54(8):643~647
    18 R. C. McMaster. Nondestructive Testing Handbook[M]. 2nd Ed. Amer. Soc. for Nondestructive Testing, 1982
    19 D. K. Morton, N. G. Lordi, L. H. Troutman, et al. Quantitative and mechanistic measurements of container/closure integrity. Bubble, 1iquid and microbial leakage tests[J]. J. Parenteral Sci. and Technol. 1989, 43(3):104~108
    20 J. D. Floros, V. Gnanasekharan. Principles, technology and applications of destructive and nondestructive package integrity testing[J]. In Advances in Aseptic Processing Technologies. R.K Singh, and P. E. Nelson (Ed.). Elsevier Applied Science, New York, NY. 1992:157~188
    21 V. Gnanasekharan, J. D. Floros. Package integrity evaluation: Criteria for selecting a method[J]. Packaging Technology & Engineering.1994,3(6):44~48
    22 R. A. Lampi, G. L. Schulz, T. Ciavarini, et al. Performance and integrity of retort pouch seals[J]. Food Technology.1976, 30(2):38~48
    23 D. Warrick. Aseptics: the problems revealed[J]. Food Manufac. 1995, 65(10):63~66
    24张红普.密封性测试在软包装行业的应用与探讨[J].广东印刷. 2004, 5:17
    25张红普.复合软包装质量检测技术探讨[J].中国包装工业. 2002, 98(8):22
    26张红普.软包装材料密封性能测试及分析[J].广东包装. 2004, 3:48~49
    27王家驹.复合软包装袋密封性的检测[J].出口商品包装:软包装. 2004, 12:60~61
    28 M. A. Pascall, J. Richtsmeier, J. Riemer, et al. Non~destructive packaging seal strength anslysis and leak detection using ultrasonic imaging[J]. Packaging technology and science. 2002, 15:275~282
    29张怀智,高廷如.关于包装密封性的非破坏性检测方法[J].包装工程. 2002, 23(4):23~24
    30王康明.红外检测[M].国防工业出版社, 1986: 8~9
    31 R. W. Gould. Non-destructive egg shell thickness measurements using ultrasonic energy. Poultry Science[J]. 1972, 51:1460~1461
    32 R. Ahvenian, G. Wirtanen, and M. Manninen. Ultrasound imaging-A non-destructive method for monitoring the microbiological quality of aseptically-picked milk products[J]. Lebensm.Wiss.U.Technol. 1989a, 22:382~386
    33 R. Ahvenian, G. Wirtanen, and M. Manninen. Ultrasound imaging-A non-destructive method for monitoring the microbiological quality of aseptically packed food stuffs[J]. Lebensm. Wiss. U. Technol. 1989b, 22:382~386
    34 S. A. Morris, A. Ozguler and W.D. O'Brien Jr. New sensors help improve heat-seal microleak detection; part 1[J]. Packaging Technology & Engineering. 1998, 7(7):42~49
    35 A.Ozguler, S. A. Morris and W. D. O'Brien Jr. Ultrasonic Imaging of Micro-Leaks and seal contsminstion in flexible food packages by Pulse-Echo Technique[J]. Journal of Food Science. 1998, 63(4):673~678
    36 A. Ozguler, S. A. Morris, and W. D. O’Brien Jr. Evaluation of defects in seal region of food package using the backscattered amplitude integral (BAI) technique[J]. IEEE Ultrasonics Symposium Proc. 1997:689~692
    37 K. Raum, A. Ozguler, S. A. Morris, et al. Channel defect detection in food packages using integrated backscatter ultrasound imaging[J]. IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 1998, 45(1):30~40
    38 A. Ozguler, S. A. Morris and W. D O'Brien. Jr. Ultrasonic Imaging of Micro~Leaks and seal contsminstion in flexible food packages by Pulse-Echo Technique[J]. Journal of Food Science. 1998, 63(4):673~678
    39 A.Ozguler, S. A. Morris and W. D. O'Brien, Jr. Evaluation of defects in seal region of food packages using the ultrasonic contrast descriptor,ΔBAI [J]. Packaging Technology and Science. 1999, 12(4):161~171
    40 X. T. Yin. The study of ultrasonic pulse-echo subwavelength defect detection mechanism [D]. University of Illinois, Urbana,IL,2003
    41 C. H. Frazier, Q.Tian, A. Ozguler, et al. High contrast ultrasound images of defects in food package seals[J]. IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 2000, 47(3):530~539
    42 I. A. Hein, W. D. O’Brien,Jr. Current time-domain method for assessing tissue motion by analysis from reflected ultrasound echoes-A review[J], IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 1993, 47(3):635~643
    43《数学手册》编写组.数学手册[M].高等教务出版社, 2004:837
    44 Q. Tian, B. Sun, A. Ozguler, et al. Parametric modeling in food package defect imaging[J]. IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 2000, 47,(3):635~643
    45宋贵彩.基于ARMA模型的结构识别[D].重庆大学, 2005
    46 J. N. Wangncr. Inspccting the impossible [J]. Food Eng. 1983, 55(6):79~92
    47 G. R. Gagliardi, D. Sullivam and N. F. Smith. Computer aided video in spection[J]. Food Technology. 1984, 38(4):53~59
    48 J. D. Floros, V. Gnanasekharan. Priciples, Technology and applications of destructive and nondestructive package integrity testing [J]. In Advances in Aseptic Processing Technologies, Applied Science. 1992, 157~188
    49 T. Stauffcr. On-line leak and seal integrity testing of Plastic containers[J]. Pack. Tech. Eng. 1992, 1(1):30~37
    50 R. A. Lampi, G. L. Schulz, T. Ciavarini, et al. Performance and integrity of retort pouch seals [J]. Food tech. 1976, 30(2):38~48
    51梅林,张广明,王裕文.红外热成象无损检测技术及其应用现状[J].无损检测. 1999, 21(10):466~468
    52黄冬梅,王志伟.热封封口缺陷红外无损检测的有限元分析[J].包装工程. 2005, 26(6):5~7
    53赵惠蓉,赵克熙.喷管台阶形壳体粘接面脱粘超声探伤研究[J].宇航材料工艺. 2001, 31(6):77~81
    54 G. Luca, R. Massimo. Ultrasonic testing of adhesive bonds of thin metal sheets [J]. NDT&E International. 1999, 32:323~331
    55 R. Billson. Ultrasonic testing adhesively bonded layers using shear waves[J]. Ultrasonics Internationa. 1991, 6(16): 412~416
    56唐明州,张记龙.粘接结构超声信号的小波分解与特征提取[J].测试技术学报. 2003, 17(4):363~366
    57 J. L. San Emeterio, A. Ramos, E. Pardo, et al. Ultrasonic pulse propagation in a bonded three-layered structure[J]. Acoustics. 2008, 94(9):4639~4644
    58陆德炜.对固体火箭发动机粘结界面声学无损检测的探讨[J].上海航天. 1996, 1:48~52
    59李辉.超声波检测固体火箭发动机绝热层界面粘接[J].无损探伤. 1999(5):12~15
    60王召巴,杨风暴,陈军.火箭发动机装药包覆质量诊断的超声新技术[J].华北工学院测试技术学报. 2001, 15(3):9~13
    61张吉堂,路宏年,吕国松.多界面结构粘接质量检测中干扰信号的消除方法[J].无损检测. 2003, 25(4):178~183
    62郭洪涛,曹付齐.固体火箭发动机装药界面胶接质量超声波检测[J].航空兵器. 2006, 6(12):49~52
    63张吉堂,路宏年.火箭发动机多层粘接结构的双模式检测[J].固体火箭技术. 2003, 26(4):79~82
    64 L. Adler, M. Billy and G. Quentin. Evaluation of fricition-welded aluminum-steelbonds using dispersive guided modes of a layered substrate[J]. J. Appl. Phys. 1990, 68(12):6072~6076
    65邓明晰.分层结构中兰姆波二次谐波发生的模式展开分析[J].声学学报. 2005, 30(2):132~141
    66邓明晰.一种定征复合板材粘接层性质的非线性超声兰姆波方法[J].声学学报. 2005, 30(6):542~551
    67李剑,刘松平.钢/橡胶胶接结构脱粘缺陷Lamb波检测的模式选择[J].航空制造技术. 2009, 5:78~81
    68张建生,李明轩.多层粘接结构中脱粘界面的人工神经网络余弦变换谱特征识别[J].声学学报. 2001, 26(4):349~354
    69张建生,李明轩.层状粘接结构超声检测信号的同态解卷积脱粘界面定征[J].应用声学. 2001, 20(1):23~29
    70 W. Gao, B. L. Li. Wavelet analysis of coherent structures at the atmosphere-forest interface [J]. Journal of Applied Meteorology. 1993, 32(11):1717~1725
    71 D. A. Slesarev, V. A. Barat. Use of wavelet transformation for signal analysis in the testing of steel cables [J]. Measurement Techniques. 2001: 44(1):41~43
    72 R. L. Coulter, B. L. Li. A technique using the wavelet transform to identify and isolate coherent structures in the planetary boundary layer[J]. In Proceedings of the 11 th Symposium on Boundary Layers and Turbulence. Charlotte, 1995, 291~294
    73 D. V. Perov, A. B. Rinkevich and Ya. G. Smorodinskii. Wavelet filtering of signals from ultrasonic flaw detector [J]. Russian Journal of Nondestructive Testing. 2002, 38(12):869~882.
    74张建生,李明轩.脱粘界面超声检测信号的小波多分辨率分析与重构[J].声学学报. 2001, 26(3):231~238
    75 J. L. Rose. Ultrasonic Waves in Solid Media [M]. Cambridge University Press, 1999:346~356
    76石井勇五郎著.吴义,王东江,沐志成译.无损检测学[M].机械工业出版社, 1986: 18~36
    77李喜梦.无损检测[M].机械工业出版社, 2001: 10~28
    78史亦韦.超声检测[M].机械工业出版社, 2005: 7~31;85~93
    79王慕冰,袁泽惠.超声波在医学中的应用[J].中国西部科技.2004, 10:125~126
    80中国机械工程学会无损检测分会.超声波检测[M].机械工业出版社, 2000
    81胡建恺.超声检测原理和方法[M].中国科学技术大学出版社, 1993
    82邵长金.含蜡原油的超声背散射[J].石油大学学报(自然科学版). 1999, 23(1):111~114
    83 C. G. Rafael, E. W. Richard著.阮秋琦,阮宇智译.数字图像处理(第二版)[M].电子工业出版社, 2003: 40~48
    84 J. H. Charles. Handbook of Nondestructive Evaluation [M]. McGraw~Hill Professional, 2001:1.1~1.27
    85 M. O’Donnell, S. Y. Emelianov, A. R. Skovoroda, et al. Quantitative elasticity imaging [J]. In Proc. IEEE Ultrason. Symp. 1993, 893~903
    86 J. Ophir, I. Cesoedes, H. Ponnekanti, et al. Elastography: A quantitative method for imaging the elasticity of biological tissues[J]. Ultrasonic imaging. 1991, 13:111~134
    87 D. Ramazan, S. Jafar. Model-based estimation of ultrasonic echoes partⅡ: nondestructive evaluation applications [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2001, 48(3):787~802
    88胡广书.数字信号处理——理论、算法与实现(第二版)[M].清华大学出版社, 2003: 157~162
    89刘卫国. MATLAB程序设计教程[M].中国水利水电出版社, 2005: 127~128
    90 National Instruments Corp. The PXI system architecture[Z].Texas:National Instruments, 1997
    91 National Instruments Corp.NI Motion User Manual[Z].Texas:National Instruments, 2005
    92 National Instruments Corp. NI Scope software User Manual [Z]. Texas:National Instruments, 2001
    93何存富,袁红梅,吴斌.基于LabVIEW的软包装热封性超声检测系统的软件开发[J].仪器仪表学报. 2007, 28(8):97~100
    94 C. F. He, H. M. Yuan, B. Wu, et al. An Ultrasonic System for Detecting Channel Defects in Flexible Packages[J]. IEEE Computer Society. 2008, 1: 974~977
    95宋国荣,何存富,魏晓玲等.小试件材料弹性常数超声测量系统的研制[J].仪器仪表学报. 2006, 27(9):1012~1015
    96 Olympus NDT Inc. Ultrasonic Transducers Technical Notes [EB/OL]. 2006-3. http://www.olympusndt.com/zh/panametrics-ndt-ultrasonic/immersion/
    97 A. Ozguler. Inspection of defects in the seal region of flexible food packages using the ultrasonic pulse-echo technology [D]. University of Illinois, Urbana,IL, 1999
    98曹玲芝,王光照,吴刚.现代测试技术及虚拟仪器[M].南京航空航天大学出版社, 2003
    99汤秀芬.虚拟仪器及其构建技术[J].计量与测试技术. 2001, 28(1):28~30
    100 W. J. Gary, J. Richard. LabVIEW图形编程[M].武嘉澍,陆劲昆译.北京大学出版社,2002
    101高占凤,杜彦良,苏木标等.基于虚拟仪器的桥梁远程状态数据采集系统[J].仪器仪表学报. 2006, 27(10): 1361~1364
    102施毅,黄卫,路小波.基于Labview的车辆跟踪系统[J].交通与计算机. 2006, 24,(3): 27~29
    103徐昆良,杜海涛,全海燕等.基于LabVIEW的生物医学信号数据采集程序设计[J].云南大学学报(自然科学版). 2006, 28(S1):110~112
    104 X. T. Yin, S. A. Morris and W. D. O'Brien, Jr. Investigation of spatial sampling resolution of the real-time ultrasound pulse-echo BAI-mode imaging technique [J]. In Proc. IEEE Ultrasound Symp. 2001, 729~732
    105 X. T. Yin, S. A. Morris and W. D. O'Brien, Jr. Experimental spatial sampling study of the real–time ultrasonic pulse-echo BAI-mode imaging technique [J]. IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 2003, 50(4):428~440
    106 C. F. He, H. M. Yuan, B. Wu. Influence of Spatial Sampling on the Ultrasonic Pulse-Echo BEEI-mode Imaging Technique[J]. Proceedings of SPIE. 2009, 7375:73755R-1~73755R-6
    107何存富,袁红梅,吴斌.软包装热封缺陷的超声无损检测[J].仪器仪表学报. 2009, 30(4):750~755
    108 P. C. Pedersen, L. Lifshitz. Ultrasound system for acoustic impedance profile reconstruction[J]. Engineering in Medicine and Biology Society.Proceedings of the Annual International Conference of the IEEE. 1988,1:468~469
    109 A. Kumar, B. Kumar and Y. Kumar. A novel method to determine the acoustic impedance of membrane material[J]. Ultrasonics. 1997, 35(1):53~56
    110 H.V. Zhang, B. N. Lu. Acoustic impedance inversion via wavelet transform constraints[J]. Communications in Nonlinear Science and Numerical Simulation. 1998, 3(1):35~39
    111李功燕.材料声阻抗高精度重建关键技术的研究[D].浙江大学, 2004
    112 M. J. S. Lowe. Matrix techniques for modeling ultrasonic waves in multi layered media[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 1995, 42(4):525~542
    113 P. Palanichamy, A. Joseph, T. Jayakumar, et al. Ultrasonic velocity measurements for estimation of grain size in austenitic stainless steel[J]. NDT&E International.1995, 28(3):179~185
    114 P. W. A. Stijnman. Determination of the elastic constants of some composites by using ultrasonic velocity measurements[J]. Composites. 1995, 26(8):597~604
    115 B. Drinkwater, P. Cawley. Measurement of the frequency dependence of the ultrasonic reflection coefficient from thin interface layers and partially contacting interfaces[J]. Ultrasonics. 1997, 35(7):479~488
    116 A. L. Lavrentyev, S. I. Rokhlin. An ultrasonic method for determination of elastic moduli, density, attenuation and thickness of a polymer coating on a stiff plate[J]. Ultrasonics. 2001, 39(3):211~221
    117张慧燕,杨小萍.小波变化在波阻抗反演中的应用[J].西安石油学院学报. 1997, 14(4):6~9
    118杨克己,项占琴,程耀东.利用神经网络重建材料声阻抗的新方法[J].中国机械工程.1998, 9(1):84~86
    119王德增,白净,杨福生.检测和分离生物组织超声反射波和散射波的方法——相关系数平方包络线峰值阈值法[J].清华大学学报(自然科学版). 1993, 33(1):39~46
    120白净,祈文康.粘结结构声阻抗图的重建算法[J].电子学报. 1992,20(1):9~15
    121白净,祈文康.一维粘结结构的声阻抗图重建系统[J].应用声学. 1993, 12(1):41~45
    122 J. Bai, W. K. Qi. Acoustic impedance reconstruction of layered media with high resolution[J]. Engineering in Medicine and Biology Society. Proceedings of the Twelfth Annual International Conference of the IEEE. 1990,12(1):283~284
    123 W. K. Qi, J. Bai. An Acoustic impedance reconstruction system[J]. Engineering in Medicine and Biology Society. Proceedings of the Annual International Conference of the IEEE. 1991,13(1):47~48
    124白净.医学超声成像机理[M].清华大学出版社, 1998
    125王助成,邵敏.有限单元法基本原理和数值方法(第二版)[M].清华大学出版社, 1997: 21~422
    126孔祥谦.有限单元法在传热学中的应用(第三版)[M].科学出版社,1998
    127伍义生,吴永礼.有限元方法基础教程[M].电子工业出版社, 2003
    128奥齐西克.热传导[M].俞昌铭译.高等教育出版社, 1984:6
    129唐兴伦,范群波,张朝晖等. ANSYS工程应用教材——热与电磁学篇[M].中国铁道出版社, 2003:3~4
    130 L. Li, L.Y. Zhang, X. Yao, et al. Computer simulation of temperature field of multilayer pyroelectric thin film IR detector [J]. Ceramics International. 2004,30:1847~1850
    131 V. Vavilov, E.Grinzato , P. G. Bison, et al. Surface transient temperature inversion for hidden corrosion characterization: theory and application [J]. Int J Heat Mass Transfer. 1996, 39(2):335~371
    132黄冬梅.包装热封缺陷的红外无损检测[D].江南大学, 2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700