考虑三维波动的饱和土中桩纵向耦合振动理论
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桩纵向振动理论是动力机器基础设计、桩基抗震设计、基桩动力检测等工作的理论基础。迄今为止,这一理论已经历了近四十年的研究发展,取得了较为丰富的成果,但与工程应用的要求相比,仍存在很多问题,其中一个重要方面是以往关于土中孔隙水对桩振动特性的影响研究甚少。在这一背景下,本文考虑了饱和土的三维波动效应,采用解析方法对三维轴对称成层饱和土中完整桩及各类变阻抗桩的纵向耦合振动理论进行系统研究。主要工作包括:
     1、单层饱和土中完整桩纵向振动理论研究。建立饱和土中端承桩和摩擦桩在任意激振力作用下的理论模型,利用位移势函数及微分算子分解方法,得到饱和土层Biot动力固结方程的分离变量解。进而根据桩土动力耦合作用,得到了饱和土中桩纵向振动频域解析解和时域响应半解析解。然后利用上述解析解分析了饱和土层复阻抗,并从饱和土波动理论出发,建立了桩纵向振动引起的饱和土层振动模式,剖析了辐射阻尼产生机理,研究了桩纵向振动引起的饱和土层中剪应力及孔隙水压力分布。对影响桩振动特性的主要因素进行了分析,结果表明,长径比、桩土模量比及桩底支承系数对桩的动力响应影响显著,而渗透系数作为饱和土的一个重要参数,由于荷载作用时间问题,对桩的动力响应影响较小。
     2、根据Rayleigh-Love杆理论,计及桩身的径向变形,研究了饱和土中考虑横向惯性效应的大直径嵌岩桩纵向耦合振动理论,分别在考虑与不考虑横向惯性效应下,比较了大直径桩纵向振动的特性。研究表明,长径比越小,两者区别越显著,同样条件下,前者的时域底反峰值小于后者,且对激振频率有依赖性,频率越高,底反峰值越小,而后者不能反映这一现象。
     3、建立了饱和土中忽略径向运动影响的简化模型,得到简化模型下桩土纵向耦合振动解析解,并与考虑径向运动影响的模型及胡昌斌的模型加以比较,分析了几种模型的异同及适用性。结果表明,在低频范围内考虑径向运动的解与简化解有较大差别,而在较高频率下两者基本吻合。因此在基础动力设计中应采用较为严格的解,对基桩动测则可以采用简化理论。
     4、成层土中变阻抗桩纵向振动理论研究。基于土层层问相互作用,提出了饱和成层土中任意变阻抗桩的纵向振动问题简化层间模型,利用单层土中提出的解析方法,基于这一简化层间模型,求得饱和成层土中任意段变阻抗桩的桩顶频域解析解和时域响应半解析解,并论证了模型的合理性。基于所得解,对饱和成层土中的完整桩及各类变阻抗桩的振动特性进行了分析。研究表明,不仅桩身变阻抗特性会对桩的动力响应产生影响,土层参数的变化也会产生相应的影响。
    
     本文通过建立桩与饱和土层纵向祸合振动模型及其解析解,深入剖析了土中孔隙
    水的存在对桩土藕合振动的影响,进一步完善了基桩振动理论,为桩基抗震设计及完
    整性检测的反演提供了更加严格的理论支持。
The dynamic soil-pile interaction has been a subject of considerable interest in past four decades. The theory of pile longitudinal vibration investigates dynamic responses of pile under vertical loads. It finds its applications in machinery foundations, pile driving and structures exposed to seismic excitation. And it is also the basis of any kinds of methods in dynamic pile testing. Although many soil-pile interaction models have been developed using a variety of analytical and numerical techniques, how to model soil layer accurately is still a major difficult in pile dynamics. Based on 3D axis-symmetrical soil model and the theory of saturated porous medium originally presented by Biot, an integral pile and pile with variable impedance embedded in layered saturated soil are analytically studied in this dissertation. The principal work includes four items.
    Firstly, dynamic interactions between an integral pile and saturated soil are studied. A dynamic interaction schematic of an end bearing or elastic bearing pile with arbitrary force at pile top is founded. By using Helmholtz resolution and the operator decomposition method, Biot's equations governing motions of a porous solid saturated with interstitial fluid are decoupled. Then the rigorous solutions for soil layer vibration are analytically derived by virtue of the separation of variables. By means of the orthogonal expansion technique, the coupling system solutions are finally obtained. Then the dynamic model of saturated soil layer caused by pile longitudinal vibration is founded. Incorporated wave propagations into saturated soil layer, the characteristics of soil resistance factor and the mechanism of the radial damping are analyzed, as well as distributions of shear stress and pore pressure in saturated soil caused by pile vibration. Meanwhile, dynamic responses at pile head are investigated. It is sh
    own that the effects of pile slenderness, bearing stiffness of pile toe and the pile-soil modulus ratio on pile impedance are major whereas the ones of the permeability and the soil reaction coefficient are minor.
    Secondly, on the basis of the theory of Rayleigh-Love bar, the longitudinal vibration of a large diameter end-bearing pile in saturated soil is investigated considering transverse inertial effect. The vibration of pile considering transverse inertial effect is different from the one not considering this effect significantly at a smaller slenderness. Under the same conditions, the reflective peak of pile toe in time domain in the former is smaller than in
    the latter and decreases gradually with the increase of exciting frequencies.
    
    
    Thirdly, a simplified model neglecting the radial displacement of saturated soil is established and an analytical solution for vertical vibration of the soil-pile system is obtained. By comparison the solution with available viscoelastic solution, the differences are illustrated as well as its applications. The results show that there is significant difference between the solution considering and neglecting the radial displacement at lower frequencies but they are identical at higher ones. So, it is suitable to use the former for aseismic design of pile foundation but the latter for dynamic pile testing.
    Finally, dynamic compliances of a pile with variable impedance embedded in layered saturated soil are studied. A simplified layered model is put forward on the basis of the single layer elastic bearing model. By using the same method, analytical solutions in frequency domain hence semi-analytical solutions in time domain representing the dynamic responses at pile head are obtained. By comparison with the single layer solution, the rationality of layered model is verified. Based on these solutions, the dynamic responses of integral pile and pile with various impedances are investigated. The results show that not only variations of pile impedance but also parameters of soil layer can make effects on the dynamic compliances at pile head.
    The coupled soil-pile dynamic interaction model and the corresponding
引文
[1] Abascal, R. &Dominguez, J.(1986). Vibrations of footings on zoned viscoelastic soils[J]. J. Engng. Mech. 112(5): 433-447.
    [2] Alamgir, M., Miura, N. & Poorooshasb, H.B. et al.(1996). Deformation analysis of soft ground reinforced by columnar inclusions[J]. Computers & Geotech., 18(4): 267-290.
    [3] Banerjee, P.K., Ahmad, S. & Manolis, G.D.(1986). Transient elastodynamic analysis of three dimensional problems by boundary element method[J]. Earthq. Engng. Struct. Dyn., 14(4): 933-949.
    [4] Bardet, J.P. & Sayed, H.(1992a). Velocity and attenuation of compressional waves in nearly saturated soils[J]. Soil Dyn. Earthq. Engng., 12:391-401.
    [5] Bardet, J.P.(1992b). A viscoelastic model for the dynamic behavior of saturated poroelastic soils[J]. J. Applied Mech. ASME, 59:128-135.
    [6] Bardet, J.P.(1994). A viscoelastic model for the dynamic behavior of saturated poroelastic soils[J]. Proc. Of 8th. Int. Conf. Computer Methods and Advances in Geomech., 519-524.
    [7] Berrones, R.F. & Whiteman, R.V.(1982). Seismic response of end-bearing piles[J]. J. Geotechnical Engng. 108(GT4): 554-569.
    [8] Berryman, James.G.(1983). Dispersion of extensional waves in fluid-saturated porous cylinders at ultrasonic frequencies[J]. J. Acoust. Soc. Am., 74(6): 1805-1812.
    [9] Biot, M.A.(1941). General theory of three-dimensional consolidation[J]. J. Appl. Phys. 12: 155-164.
    [10] Biot, M.A.(1955). Theory of elasticity and consolidation for a porous anisotropic solid[J]. J. Appl. Phys. 26(2): 182-185.
    [11] Biot, M.A.(1956a). Theory of propagation of elastic waves in a fluid-saturated porous solid Ⅰ. low-frequency range[J]. J. Acoust. Society America, 28(2): 168-178.
    [12] Biot, M.A.(1956b). Theory of propagation of elastic waves in a fluid-saturated porous solid Ⅱ.higher frequency range[J]. J. Acoust. Society America, 28(2): 179-191.
    [13] Biot, M.A.(1956c). Theory of deformation of a porous viscoelastic anisotropic solid[J]. J. Appl. Phys. 27(5): 459-467.
    [14] Biot, M.A.(1962). Mechanics of deformation and acoustic propagation in porous media[J]. J. Appl. Phys. 33(4): 1482-1498.
    [15] Blaney, G.W., Kausel, E. & Rosesset, J.M.(1976). Dynamic stiffness of piles[J]. Proc. of 2nd Int. Conf. Numer. Methods Geomech. ASCE: 1001-1012.
    [16] Bose,S.K. & Haldar, S.S.(1985). Soil impedance in vertical vibration of a floating pile[J]. Soil Dynamics Earthquake Engng, 4(4):224-228.
    [17] Bougacha, S. &Roesset, J.M.(1993). Dynamic stiffness of foundations on fluid-filled poroelastic stratum[J]. J. Engng. Mech. 119(8): 1649-1662.
    [18] Bowen, R.M. & Reinicke, K.M.(1978). Plane progressive waves in a binary mixture of linear elastic materials[J]. J. Appl. Mech., 45: 493-499.
    [19] Bowen, R.M. (1982). Compressible porous media models by use of the theory of mixture[J]. Int. J. Engrg. Sci., 20(6): 697-735.
    [20] Bowen, R.M. (1983). Plane progressive waves in a heat conducting fluid saturated porous material with relaxing porosity[J]. Acta. Mechanica., 46:189-206.
    [21] Chang, Der-Wen. &Yeh, Shing-Hung.(1999). Time-domain wave equation analyses of single piles utilizing transformed radiation damping[J]. Soil & Found., 39(2): 31-44.
    
    
    [22] Chang, Der-Wen, Roesset, J.M. & Wen, Chan-Hua.(2000). A time-domain viscous damping model based on frequency dependent damping ratios[J]. Soil Dynamics Earthquake Engng, 19:551-558.
    [23] Chen, J. (1994a). Time domain fundamental solution to Biot's complete equations of dynamic poroelasticity, Part Ⅰ: Two-dimensional solution[J]. Int. J. Solids Struct. 31 (10): 1447-1490.
    [24] Chen, J. (1994b). Time domain fundamental solution to Biot's complete equations of dynamic poroelasticity, Part Ⅱ: Three-dimensional solution[J]. Int. J. Solids Struct. 31 (2): 169-202.
    [25] Chen, L.Z. &Wang, G.C.(2002). Torsional vibrations of elastic foundation on saturated media, Soil Dynamics Earthq. Engng., 22: 223-227.
    [26] Crouse, C.B., Liang, G.C., &Martin, G.R.(1985). Experimental foundation impedance functions[J], J. Geotechnical Engineering, 111(6): 819-822.
    [27] Davis, T.G., Sen, R. & Banerjee, P.K.(1984). Dynamic behavior of pile groups in inhomogeneous soil[J]. J. Geotechnical Engineering, 111(12): 1335-1339.
    [28] Decks, A.J. & Randolph, M.F. (1993). Analytical Modelling of Hammer Impact for Pile Driving[J]. Int. J. Numer. & Analyt. Meth. in Geomech., 17: 279-302.
    [29] Deresiewicz,H.(1960). The effect of boundaries on wave propagation in a liquid-filled porous solid: Ⅰ. Reflection of plane waves at a free plane boundary(Non-dissipative case)[J]. Bull. Seism. Soc. Am., 50: 599-607.
    [30] Deresiewicz,H.(1961). The effect of boundaries on wave propagation in a liquid-filled porous solid: Ⅱ. Love waves in a porous layer[J]. Bull. Seism. Soc. Am., 51: 51-59.
    [31] Deresiewicz,H. & Rice, J.T.(1962a). The effect of boundaries on wave propagation in a liquid-filled porous solid: Ⅲ. Reflection of plane waves at a free plane boundary(General case)[J]. Bull. Seism. Soc. Am., 52(3): 595-625.
    [32] Deresiewicz,H.(1962b). The effect of boundaries on wave propagation in a liquid-filled porous solid: Ⅳ. Surface waves in a half-space[J]. Bull. Seism. Soc. Am., 52(3): 627-638.
    [33] Deresiewicz,H.(1962c). A note on Love waves in a homogeneous crust overlying an inhomogeneous substratum[J]. Bull. Seism. Soc. Am., 52(3): 639-645.
    [34] Deresiewicz,H.(1963). On uniqueness in dynamic poroelasticity[J]. Bull. Seism. Soc. Am., 53(4): 783-788.
    [35] Dunn, Keh-Jim.(1986). Acoustic attenuation in fluid-saturated porous cylinders at low frequencies[J], J. Acoust. Soc. Am., 79(6): 1709-1721.
    [36] Durbin, F.(1974). Numerical inversion of laplace transforms: an efficient improvement to Dubner and Abate's method[J], Comput. J, 17: 371-376.
    [37] EI Naggar, M.H. & Novak, M.(1994). Non-linear model for dynamic axial pile response[J]. J. Geotechnical Engineering, 120(2): 308-329.
    [38] Fowler, G.F.(1978). The longitudinal harmonic excitation of a circular bar embedded in an elastic half-space [J]. Int. J. Solids structures, 14: 999-1012.
    [39] Gajo, A.(1995). Influence of viscous coupling in propagation of elastic waves in saturated soil[J]. J. Geotechnical Engineering, 121 (9): 636-644.
    [40] Garg, S.K., Nayfeh, H. & Good, A.J.(1974). Compressional waves in fluid-saturated elastic porous media[J]. J. Appl. Phys. 45: 1968-1974.
    [41] Gazetas, G.(1984a). Horizontal response of piles in layered soils[J]. J. Geotechnical Engineering, 110(1): 20-40.
    [42] Gazetas, G.(1984b). Simple radiation damping model for piles and footings[J]. J. Engng. Mech. 110(6): 937-956.
    [43] Gazetas, G.(1984c). Seismic response of end-bearing single piles[J]. Soil Dyn. Earthq. Engng, 3:
    
    82-93.
    [44] Gazetas, G. & Makris, N.(1991a). Dynamic pile-soil-pile interaction. Part Ⅰ: Analysis of axial vibration[J]. Earthq. Engng. Struct. Dyn., 20:115-132.
    [45] Gazetas, G., Fan, K., Kaynia, A. & Kausel, E.(1991b). Dynamic interaction factors for floating pile groups[J]. J. Geotechnical Engineering, 117(10): 1531-1548.
    [46] Hache, R.A.G. & Valsangkar, A.J.(1988). Torsional resistance of single pile in layered soil[J]. J. Geotechnical Engineering, 114(2): 216-220.
    [47] Halpern, M.R. & Christiano, P. (1986). Steady state harmonic response of a rigid plate bearing on a liquid-saturated poroelastic halfspace[J]. Earthq. Engng. Struct. Dyn., 14(3): 439-454.
    [48] Han, Y.C. & Sabin, G.C.W.(1995). Impedances for radially inhomogenous viscoelastic soil media[J]. J. Engng. Mech. 121(9): 939-947.
    [49] Hasheminejad, S.M. & Hosseini, H.(2002a). Radiation loading of a cylindrical source in a fluid-filled cylindrical cavity embedded within a fluid-saturated poroelastic medium[J], J. Applied Mech. ASME, 69: 675-683.
    [50] Hasheminejad, S.M. & Hosseini, H.(2002b). Dynamic stress concentration near a fluid-filled permeable borehole induced by general modal vibrations of an internal cylindrical radiator[J], Soil Dynamics Earthquake Engng, 22: 441-458.
    [51] Issacs, D.V.(1931). Reinforced concrete pile formulate[J]. J. Inst. Engineers Aus., 3(9):305-323.
    [52] Japon, B.R., Gallego, R. &Dominguez, J.(1997). Dynamic stiffness of foundations on saturated poroelastic soils[J], J. Engng. Mech. 123(11): 1121-1129.
    [53] Jeng, D.S.(2001). Numerical modeling for wave-seabed-pipe interaction in a non-homogeneous porous seabed[J]. Soil Dyn. Earthq. Engng., 21:699-712.
    [54] Ji, F. &Pak, R.Y.S.(1996). Scattering of vertically-incident P-waves by an embedded pile[J], Soil Dynamics Earthquake Engng, 15:211-222.
    [55] Jin, B. (1999a). The vertical vibration of an elastic circular plate on a fluid-saturated porous half space[J]. Int. J. Engrg. Sci., 37(3): 379-393.
    [56] Jin, B. & Liu, H. (1999b). Vertical dynamic response of a disk on saturated poroelastic half space[J]. Soil Dynamics Earthquake Engng, 18(6): 437-443.
    [57] Jin, B. & Liu, H. (2000a). Horizontal vibrations of a disk on a poroelastic half space[J]. Soil Dynamics Earthquake Engng, 19(4): 269-275.
    [58] Jin, B. & Liu, H. (2000b). Rocking vibration of a rigid disk on saturated poroelastic medium[J]. Soil Dynamics Earthquake Engng, 19(4): 469-472.
    [59] Jin, B., Zhou, D. & Zhong,Z.(2001). Lateral dynamic compliance of pile embedded in poroelastic half space[J]. Soil Dynamics Earthquake Engng, 21:519-525.
    [60] Jones, J.P.(1969). Pulse propagation in a poroelastic soild[J]. J. Appl. Mech. 36(4): 879-880.
    [61] Kassir, M.K.&Xu,J.M.(1988). Interaction functions of a rigid strip bonded to saturated elastic half-space[J], Int. J. Solids Struct. 24(9): 915-936.
    [62] Kassir, M.K., Bandyopadhyay, K.K. &Xu, J.(1989). Vertical vibration of a circular footing on a saturated half-space[J], Int. J. Engng. Sci, 27(4): 353-361.
    [63] Konagai, K. & Nogami, T.(1994). Subgrade model for transient response analysis of multiple embedded bodies[J], Earthq. Engng. Struct. Dyn., 23:1097-1114.
    [64] Krishnan, R., Gazetas, G. & Velez, A.(1983). Static and dynamic lateral deflexion of piles in non-homogeneous soil stratum[J]. Geotechnique, 33(3): 307-325.
    [65] Kuhlemeyer, R.L.(1979a). Vertical vibration of piles[J]. J. Geotechnical Engineering, 105(GT2): 273-287.
    [66] Kuhlemeyer, R.L.(1979b). Static and dynamic laterally loaded floating piles[J]. J. Geotechnical
    
    Engineering, 105(GT2): 289-304.
    [67] Lee, S.L., Kog, Y.C. &Karunaratne, G.P.(1987). Axially loaded piles in layered soil[J]. J. Geotechnical Engineering, 113(4): 366-381.
    [68] Lee, S.L., Chow, Y.K. & Karunaratne, G.P., et al.(1988). Rational wave equation model for pile-driving analysis[J]. J. Geotechnical Engineering, 114(3): 306-325.
    [69] Liu, Weiming &Novak, M.(1994). Dynamic response of single piles embedded in transversely isotropic layered media[J]. Earthq. Engng. Struct. Dyn., 23: 1239-1257.
    [70] Luco, J.E.(1986). On the relation between radiation and scattering problems for foundations embedded in an elastic half-space[J], Soil Dynamics Earthquake Engng, 5: 97-101.
    [71] Madsen, O.S.(1978). Wave-induced pore pressures and effective stresses in a porous bed[J]. Geotechnique, 28(4): 377-393.
    [72] Makris, N. & Gazetas, G.(1993). Displacement phase differences in a harmonically oscillating pile[J], Geotechnique, 43(1): 135-150.
    [73] Mamoon, S.M. & Banerjee, P.K.(1992). Time-domain analysis of dynamically loaded single piles[J]. J. Engng. Mech. 118(1): 140-160.
    [74] Mei, C.C. & Foda, M.A.(1981a). Wave-induced responses in a fluid-filled poro-elastie solid with a free surface-a boundary layer theory[J]. Geophys. J. R. astr. Soc., 66:597-631.
    [75] Mei, C.C. & Foda, M.A.(1981b). Wave-induced stresses around a pipe laid on a poro-elastic sea bed[J]. Geotechnique, 31 (4): 509-517.
    [76] Militano, G. & Rajapakse, R.K.N.D.(1999). Dynamic response of a pile in a multi-layered soil to transient torsional and axial loading[J], Geotechnique, 49(1): 91-109.
    [77] Mylonakis, G.(2001). Winkler modulus for axially loaded piles[J], Geotechnique, 51 (5): 455-461.
    [78] Mylonakis, G.(2002). Kinematic pile response to vertical P-wave seismic excitation[J], J. Geotech. Geoenv. Engng, 128(10): 860-867.
    [79] Nakagawa, K., Soga, K. & Mitchell, J. K.(1997). Observation of Blot compressional wave of the second kind in granular soils[J], Geotechnique, 47(1): 133-147.
    [80] Narayanan, G.V. &Beskos, D.E.(1982). Numerical operational methods for time-dependent linear problems[J], Int. J. Num. Methods in Engng., 18: 1829-1854.
    [81] Nogami, T. &Konagai, K.(1986). Time domain axial response of dynamically loaded single piles[J]. J. Engng. Mech., 112(11): 1241-1252.
    [82] Nogami, T. &Konagai, K.(1987). Dynamic response of vertically loaded nonlinear pile foundations[J], J. Geotech. Engng. 113(2): 147-160.
    [83] Nogami, T. &Konagai, K.(1988). Time domain flexural response of dynamically loaded single piles[J]. J. Engng. Mech., 114(9): 1521-1525.
    [84] Nogami, T. &Novak, M.(1976). Soil-pile interaction in vertical vibration[J], Earthq. Engng. Struct. Dyn., 4: 277-293.
    [85] Nogami, T. &Novak, M.(1980). Coefficients of soil reaction to pile vibration[J], J. Geotech. Engng. 106(GT5): 565-570.
    [86] Nogami, T.(1983). Dynamic group effect in axial responses of grouped piles[J], J. Geotech. Engng. 109(2): 228-243.
    [87] Nogami, T.(1996). Simplified subgrade model for three-dimensional soil-foundation interaction analysis[J]. Soil Dyn. Earthq. Engng, 15: 419-429.
    [88] Nogami T., Ren F.Z. &Chen J.W.(1997). Vertical vibration of pile in vibration-induced excess pore pressure field[J]. J. Geotech. Geoenv. Engng., 123(5): 422-429.
    [89] Novak, M.(1977a). Vertical vibration of floating piles[J], J. Engng. Mech. 103(EM1): 153-168.
    [90] Novak, M. & Nogami, T.(1977b). Resistance of soil to a horizontally vibration pile[J],
    
    Earthquake Engng. Struct. Dyn., 5(3): 249-262.
    [91] Novak, M. & Nogami, T.(1977c). Soil-pile interaction in horizontal vibration[J], Earthquake Engng. Struct. Dyn., 5(3): 263-281.
    [92] Novak, M., Nogami, T. &Fakhry Aboul-Ella.(1978a). Dynamic soil reactions for plane strain case[J], J. Engng. Mech. 104(EM4): 953-959.
    [93] Novak, M. &Fakhry Aboul-Ella.(1978b). Impedance functions of piles in layered media[J], J. Engng. Mech. 104(EM6): 643-661.
    [94] Novak, M. &Sharnouby, Bahaa EI.(1983). Stiffness constants of single piles[J], J. Geotechnical Engng. 109(7): 961-974.
    [95] Novak, M. &Han, Y.C.(1990). Impedances of soil layer with boundary zone[J]. J. Geotechnical Engng. 116(6): 1008-1014.
    [96] Oweise, I.S.(1977). Response of piles to vibratory loads[J]. J. Geotechnical Engng. 103(2): 136-142.
    [97] Pak, R.Y.S.(1987). Asymmetric wave propagation in an elastic half-space by a method of potentials[J], J. Appl. Mech., 54:121-126.
    [98] Parnes, R.(1982). Applied tractions on the surface of an infinite cylindrical bore[J], Int. J. Solids Structures, 19(2): 165-177.
    [99] Parnes, R.(1986). Steady-state ring-load pressure on a bore hole surface[J], Int. J. Solids Structures, 22(1): 73-86.
    [100] Philippacopoulos, A.J.(1987a). Waves in a partially saturated layered half-space analytic formulation [J], Bulletin of the Seismological Society of America, 77(5): 1838-1853.
    [101] Philippacopoulos, A.J.(1988a). Lamb's problem for fluid-saturated, porous media [J], Bulletin of the Seismological Society of America, 78(2): 908-923.
    [102] Philippacopoulos, A.J.(1988b). Waves in a partially saturated medium due to surface loads[J], J. Engrg. Mech., 114(10): 1838-1853.
    [103] Philippacopoulos, A.J.(1997b). Buried point source in a poroelastic half-space [J]. J. Engng. Mech., 123(8): 860-869.
    [104] Philippacopoulos, A.J.(1998). Spectral Green's dyadic for point sources in poroelastic media [J], J. Engng. Mech., 124(1): 24-31.
    [105] Piessens, R. &Huysmans, R.(1984). Automatic numerical inversion of the laplace transform[J], ACM Trans. Math. Software, 10(3): 348-353.
    [106] Plona, T.J. (1980). Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies[J]. Appl. Phys. Lett., 36(4): 259-261.
    [107] Popovics, J.S.(1997). Effects of Poisson's Ratio on Impact-Echo Test Analysis[J]. J. Engng. Mech., 123(8): 843-851.
    [108] Poulos,H.G.(1989). Pile behaviour—theory and application[J]. Geotechnique, 39(3): 365-415.
    [109] R. de Boer & W. Ehlers.(1988). A historical review of the formulation of porous media theories[J]. Acta Mechanica, 74: 1-8.
    [110] Rajapakse, R.K.N.D.(1993). Stress analysis of borehole in poroelastic medium[J], J. Engng. Mech., 119(6): 1205-1227.
    [111] Rajapakse, R.K.N.D., Shah, A.H.(1987). On the longitudinal harmonic motion of an elastic bar embedded in an elastic half-space[J]. Int. J. Solids Structures, 23(2): 267-285.
    [112] Rajapakse, R.K.N.D., Senjuntichai, T.(1995). Dynamic response of a multi-layered poroelastic medium[J], Earthquake Engng. Struct. Dyn., 24: 703-722.
    [113] Rausche, F., Goble, G.G. & Likins, G.E.(1985). Dynamic determination of pile capacity[J]. J. Geotechnical Engng. 111(3): 367-383.
    
    
    [114] Richart, F. E.(1962). Foundation vibrations. Transaction, ASCE, 127(1):863-898.
    [115] Saha, S. & Ghosh, D.P.(1986). Vertical vibration of tapered piles[J]. J. Geotechnical Engng.112(3): 290-301.
    [116] Selvadurai, A.P.S. & Rajapakse, R.K.N.D.(1987). Variational scheme for analysis of torsion of embedded nonuniform elastic bars[J]. J. Engng. Mech., 113(10): 1534-1550.
    [117] Sen, R., Davies, T.G. & Banerjee, P.K.(1985). Dynamic analysis of piles and pile groups embedded in homogeneous soils[J]. Earthquake Engng. Struct. Dyn., 13(1): 53-65.
    [118] Senjuntichai, T. &Rajapakse, R.K.N.D.(1993). Transient response of a circular cavity in a poroelastic medium [J]. Int. J. Numer. & Anal. Methods Geomech., 17: 357-383.
    [119] Senjuntichai, T. &Rajapakse, R.K.N.D.(1994). Dynamic Green's functions of homogeneous poroelastic half-space [J]. J. Engng. Mech., 120(11): 2381-2404.
    [120] Simon, B.R., Zienkiewicz, O.C. & Paul, D.K.(1984). An analytical solution for the transient response of saturated porous elastic solids[J]. Int. J. Numer. & Anal. Methods Geomech., 8: 381-398.
    [121] Smith, E.A.L. (1960). Pile-Driving Analysis by the Wave Equation[J]. J.Soil Mech. Found., 86(SM4): 35-61.
    [122] Stoll, R. D.(1970). Wave attenuation in saturated sediments[J]. J. Acoust. Soc. Am., 47: 1440-1447.
    [123] Thompson, C.D. & Thompson, D.E.(1985). Real and apparent relaxation of driven piles[J]. J. Geotechnical Engng. 111(2): 225-237.
    [124] Veletsos, A.S. & Dotson, K.W.(1988). Vertical and torsional vibration of foundations in inhomogenous media[J]. J. Geotechnical Engng. 114(9): 1002-1021.
    [125] Veletsos, A.S. & Younan, A.H.(1994a). Dynamic soil pressures on rigid vertical walls[J]. Earthquake Engng. Struct. Dyn., 23(3): 275-301.
    [126] Veletsos, A.S. & Younan, A.H.(1994b). Dynamic soil pressures on rigid cylindrical vaults[J]. Earthquake Engng. Struct. Dyn., 23(6): 645-669.
    [127] Veletsos, A.S. & Younan, A.H.(1994c). Dynamic modeling and response of soil-wall systems[J]. J. Geotechnical Engng. 120(12): 2155-2179.
    [128] Veletsos, A.S. & Younan, A.H.(1995). Dynamic modeling and response of rigid embedded cylinders[J]. J. Engng. Mech. 121(9): 1026-1035.
    [129] Wang T., Wang K.H. &Xie K.H.(2001). An analytical solution to longitudinal vibration of a pile of arbitrary segments with variable modulus, ACTA Mechanica Solida Sinica, 14(1): 67-73.
    [130] Wang, J.T.(2003). Wavelet analysis for stress wave detection of piles[J]. Science in china(Series E), 46(2): 113-119.
    [131] Warrington, D.C. (1997) Closed Form Solution of the Wave Equation for Piles. Master's Thesis, University of Tennessee at Chattanooga.
    [132] Wu, A.K.H., Kuhlemeyer, R.L. & To, C.W.S.(1989). Validity of Smith model in pile driving analysis[J]. J. Geotechnical Engng. 115(9): 1285-1302.
    [133] Yang, J. & Sato, T.(2000). Computation of individual contributions of two compression waves in vibration of water-saturated soils[J], Computers and Geotechnics, 27: 79-100.
    [134] Yang, J. & Sato, T.(2001). Analytical study of saturation effects on seismic vertical amplification of a soil layer[J], Geotechnique, 51(2): 161-165.
    [135] Yue, Z.Q. &Selvadurai, A.P.S.(1995). Contact problem for saturated poroelastic solid, J. Engng. Mech., 121(4): 502-512.
    [136] Zeng, X.&Cakmak, A.S.(1984a). Dynamic structure-soil interaction under the action of vertical ground motion, Part I: the axisymmetric problem[J]. Soil Dyn. Earthq. Engng., 3: 200-210.
    
    
    [137] Zeng, X.&Cakmak, A.S.(1984b). Dynamic structure-soil interaction under the action of vertical ground motion, Part Ⅱ: the plane problem[J], Soil Dyn. Earthq. Engng., 3:211-219.
    [138] Zeng, X. &Rajapakse, R.K.N.D.(1999). Dynamic axial load transfer from elastic bar to poroelastic medium [J]. J. Engng. Mech., 125(9): 1048-1055.
    [139] Zienkiewicz, O.C., Chang, C.T. &Bettess, P.(1980). Drained, undrained, consolidating and dynamic behaviour assumptions in soils [J], Geotechnique, 30(4): 385-395.
    [140] 《现代数学手册》编委会(2000,).现代数学手册·经典数学卷[M].武汉:华中科技大学出版社.
    [141] 艾龙根,A.C.[美],舒胡华,E.S.[土耳其](1984).弹性动力学(第二卷):线性理论[M].北京:石油工业出版社.
    [142] 柴华友(1996).波动理论在基桩完整性定量分析中的应用[J].振动工程学报,9(3):286-291.
    [143] 陈光敬、赵锡宏(1999).横观各向同性非均质地基的Biot固结轴对称问题求解[J].土木工程学报,32(1):14-20.
    [144] 陈龙珠,吴世明,曾国熙(1987).弹性波在饱和土层中的传播[J].力学学报,19(3):276-282.
    [145] 陈少林、廖振鹏(2002).两相介质动力学问题的研究进展[J].地震工程与工程振动,22(2):1-8.
    [146] 陈少林,廖振鹏(2002).关于两相介质动力学问题建模的注记[J].地震工程与工程振动,2002,vol.22(4):1-8
    [147] 陈胜立(2000).饱和地基上基础与板的竖向振动特性研究[D].浙江大学博士学位论文.
    [148] 陈胜立,张建民,陈龙珠(2001).饱和地基中埋置点源荷载的动力Green函数[J].岩土工程学报,23(4):423-426.
    [149] 陈胜立、张建民(2002).横观各向同性饱和地基轴对称Biot固结问题的解析解[J].岩土工程学报,24(1):26-30.
    [150] 丁伯阳、樊良本、吴建华(1999a).两相饱和介质中的集中力点源位移场解与应用[J].地球物理学报,42(6):800-807.
    [151] 丁伯阳、吴建华(1999b).饱和两相介质动力基础半空间理论地表波场基本解[J].地震工程与工程振动,19(3):79-86.
    [152] 丁伯阳、丁翠红、孟凡丽(2001).集中力作用下的两相饱和介质位移场Green函数[J].力学学报,33(2):234-241.
    [153] 方诗圣、王建国、杨永华等(2001).层状饱和半空间轴对称Biot固结问题[J].水利学报,12:79-84.
    [154] 龚晓南(1996).高等土力学[M].杭州:浙江大学出版社.p.66
    [155] 顾尧章、金波(1992).轴对称荷载下多层地基的Biot固结及其变形[J].工程力学,9(3):81-94
    [156] 胡昌斌(2003).考虑土竖向波动效应的桩土纵向耦合振动理论[D].浙江大学博士学位论文.
    [157] 胡昌斌(2003).考虑桩土耦合作用时弹性支承桩纵向振动特性分析及应用[J],工程力学,20(2):146-154.
    [158] 胡昌斌,王奎华,谢康和(2003).基于平面应变假定基桩振动理论适用性研究[J].岩土工程学报,25(5):595-601.
    [159] 胡海岩(1993).结构阻尼模型及系统时域动响应[J].应用力学学报,10(1):34-43.
    [160] 胡亚元(1998).横观各向同性饱和土中波的传播[D].浙江大学博士学位论文.
    [161] 孔令伟(1998).流固耦合介质轴对称动力问题解法的改进[J].力学学报,30(2):229-232.
    [162] 李强,王奎华,谢康和(2003).冻土声学测试中的异常现象分析[J].煤炭学报,28(5):517-521.
    
    
    [163] 梁国钱(1994).桩的振动特性及其检测方法的研究[D].浙江大学博士学位论文.
    [164] 刘东甲(2000).不均匀土中多缺陷桩的轴向动力响应[J].岩土工程学报,22(4):391-395.
    [165] 刘东甲(2001).纵向振动桩侧壁切应力频率域解及其应用[J].岩土工程学报,23(5):544-546.
    [166] 刘凯欣,刘颖(2003).横观各向同性含液饱和多孔介质中瑞利波的特性分析[J].力学学报,35(1):100-104.
    [167] 刘银斌,李幼铭,吴如山(1994).横观各向同性多孔介质中的地震波传播[J].地球物理学报,37(4):499-513.
    [168] 门福录(1981).波在饱含流体的孔隙介质中的传播问题[J].地球物理学报,24(1):65-76.
    [169] 门福录(2001).岩土力学研究观点、方法若干问题之我见[J].岩土工程学报,23(3):380-382.
    [170] 苗天德、朱久江、丁伯阳(1995).对饱和多孔介质波动问题中本构关系的探讨[J].力学学报,27(5):536-543.
    [171] 钱家欢,殷宗泽(1996).土工原理与计算[M].北京:中国水利水电出版社.
    [172] 钱伟长(2000).格林函数和变分法在电磁场和电磁波计算中的应用(修订版)[M].上海:上海大学出版社.
    [173] 沈珠江(2000).理论土力学[M].北京:中国水利水电出版社.
    [174] 田波、马松林、徐光辉等(2000).求解层状轴对称课题的传递矩阵法[J].岩土工程学报,22(5):572-575.
    [175] 王建华、陆建飞、沈为平(2001).半空间饱和土在内部简谐垂直力作用下的Green函数[J].水利学报,3:54-63.
    [176] 王奎华,谢康和,曾国熙(1997).有限长桩受迫振动问题解析解及应用[J].岩土工程学报,19(6):27-35.
    [177] 王奎华,谢康和,曾国熙(1998).变截面阻抗桩受迫振动问题解析解及应用[J].土木工程学报,31(6):56-67.
    [178] 王奎华(2001).变截面阻抗桩纵向振动问题积分变换解[J].力学学报,33(4):479-490.
    [179] 王奎华,应宏伟(2003).广义Voigt土模型条件下桩的纵向振动响应与应用[J].固体力学学报,24(3):293-303.
    [180] 王立忠,吴世明(1995).波在饱和土中传播的若干问题[J].岩土工程学报,17(6):96.102.
    [181] 王立忠、陈云敏、吴世明、丁皓江(1996),饱和弹性半空间在低频谐和集中力下的积分形式解[J].水利学报,2:84-88.
    [182] 王盛源(1998).饱和多孔介质粘弹性理论[J].中国科学(A辑),7:739-748.
    [183] 王腾,王奎华,谢康和(2000).任意段变截面桩纵向振动的半解析解及应用[J].岩土工程学报,22(6):654-658.
    [184] 王腾(2001).成层土中桩纵向振动理论及其在PIT中的应用[D],浙江大学博士论文.
    [185] 王腾,王奎华,谢康和(2002).成层土中桩的纵向振动理论研究应用[J].土木工程学报,35(1):83-87.
    [186] 王载舆(1991).数学物理方程及特殊函数[M].北京:清华大学出版社.
    [187] 吴世明,陈龙珠(1989).饱和土中弹性波的传播速度[J].应用数学和力学,10(7):605-611.
    [188] 谢康和,周健(2002).岩土工程有限元分析理论与应用[M].北京:科学出版社.
    [189] 徐攸在,刘兴满(1989).桩的动测新技术[M].北京:中国建筑工业出版社.
    [190] 徐长节(1997).非饱和土中及准饱和土中波的传播[D].浙江大学博士论文.
    [191] 徐长节,蔡袁强(2001).粘弹性饱和土中球空腔的动力响应[J].土木工程学报,34(4):88-92.
    [192] 严人觉,王贻荪,韩清宇(1981).动力基础半空间理论概论[M].北京:中国建筑工业出版
    
    社.
    [193] 杨桂通,张善元(1988).弹性动力学[M].北京:中国铁道出版社.
    [194] 杨军,宋二祥,陈肇元(2001).饱和土动力反应中两类压缩波的独立作用分析[J].岩土力学,22(2):199-203.
    [195] 杨军,宋二祥,陈肇元(2002).桩在饱和土水平振动的辐射阻尼简化算法[J].岩土力学,23(2):179-183.
    [196] 杨军,宋二祥,陈肇元(2003).饱和土一维简谐响应解析解的求解和应用:Ⅰ求解[J].岩土力学,24(4):505-509.
    [197] 杨峻,宫全美,吴世明等(1996).饱和土体中圆柱形孔洞的动力分析[J].上海力学,17(1):37-44.
    [198] 杨峻,吴世明,蔡袁强(1996).饱和土中弹性波的传播特性[J].振动工程学报,9(2):128-137.
    [199] 张德文,李咸亨,欧阳金福(2000).时域垂直载重桩反应与土体模式应用[J].岩土工程学报,22(2):162-169.
    [200] 张良均,王靖涛,李国成(2002).小波变换在桩基完整性检测中的应用[J].岩石力学与工程学报,21(11):1736-1738.
    [201] 张献民,蔡靖,王建华(2003).基桩缺陷量化低应变动测研究[J].岩土工程学报,25(1):47-50.
    [202] 张引科,黄义(2002).弹性饱和多孔介质在非轴对称荷载下的稳态动力响应[J].土木工程学报,35(3):41-45.
    [203] 张玉红,黄义(2000).饱和土与结构动力相互作用分析[J].西安公路交通大学学报,20(4):11-14.
    [204] 张玉红,黄义(2000).饱和土与结构动力相互作用影响函数[J].中国公路学报,13(4):26-28.
    [205] 张玉红,黄义(2001).二相介质饱和土中群桩动力阻抗分析[J].地震工程与工程振动,21(3):113-116.
    [206] 张玉红,黄义(2001).流体渗透系数对饱和土中桩基础阻抗函数的影响[J].西安交通大学学报,35(4):407-410.
    [207] 赵成刚,杜修力,崔杰(1998).固体、流体多相孔隙介质中的波动理论及其数值模拟的进展,力学进展,28(1):83-92.
    [208] 钟伟芳,聂国华(1997).弹性波的散射理论[M].武汉:华中理工大学出版社.
    [209] 钟阳,王哲人,郭大智(1992).求解多层弹性半空间轴对称问题[J].土木工程学报,25(6):37-43

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700