强震条件下层状岩体斜坡动力失稳机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汶川地震在龙门山地区诱发形成了大量崩塌、滑坡地质灾害,造成了严重的人员伤亡和财产损失,同时也为强震区斜坡失稳机理研究提供了丰富的案例。开展强震区斜坡动力失稳机理研究,对于开展强震区的防灾减灾工作具有重要意义。
     本文作者通过对龙门山地区茶坪河、雎水河、绵远河、石亭江流域地震次生崩滑灾害现场调查,系统研究了崩滑灾害发育分布规律及影响因素,同时结合对典型层状结构滑坡的调查,对不同结构层状斜坡的失稳机理进行了研究。在此基础上,利用大型振动台试验,对比了软硬不同介质的陡倾顺层及反倾斜坡的强震破坏过程机制及动力响应特征。并结合数值模拟分析和力学计算对强震斜坡的破坏在何处、破坏面如何扩展贯通及贯通后坡体如何失稳的相关问题进行了分析和探讨。论文的主要成果及结论如下:
     (1)通过对强震数字台网记录数据的分析,研究了龙门山地区地震波加速度峰值的分布特征。研究发现,地震波加速度峰值等值线分布为一个长轴平行断层,短轴与断裂带近垂直发育的椭圆。垂直向震动在传播过程中的峰值衰减远高于水平向,且具有发震断裂汶川卧龙至绵竹清平段上盘垂直向峰值接近或大于水平向的特点。并结合崩滑灾害解译数据提出了用速度峰值作为崩滑灾害发育密度衡量的描述方法。
     (2)通过对遥感解译的地质灾害资料的分析,阐述了地震次生灾害的分布特征,分析了崩滑灾害在不同断层距、高程、坡度、滑动方向、岩性以及坡体结构等地质要素中的发育分布规律,并进一步采用多元统计方法分析了灾害分布的关键因素。研究认为,强震区的地震波加速度峰值加速度幅值决定崩滑灾害的区域分布,而斜坡结构特征则决定斜坡具体如何失稳。
     (3)在调查研究区内典型崩塌滑坡破环形态和失稳机理的基础上,总结了不同结构斜坡的失稳机理。研究表明反倾斜坡在强震下具有拉裂—滑移(岩层倾角>50°)和拉裂—剪出(岩层倾角<20°)两种失稳模式;顺层斜坡则表现为简单顺层面滑移(层面倾角大于坡脚)和滑移后溃曲或剪断坡脚两种模式。
     (4)为了研究斜坡结构对斜坡震动响应的控制作用,开展了陡倾斜坡的大型振动台试验。对硬岩的顺层反倾、软岩的顺层反倾四类斜坡结构的动力破坏特征和响应特征进行了分析研究。对边坡模型的PGA放大效应,损伤发育过程、模态特性分别开展研究,研究发现:
     ①斜坡的坡体结构与岩性对斜坡的加速度高程放大效果存在显著影响。层状斜坡在拉裂贯通后的锁固段破坏过程中,顺层斜坡表现为坡脚的溃曲,而反倾斜坡则呈现坡体中部剪出错断的特点。
     ②斜坡对地震波的放大显著出现于1/2坡高以上,且水平震动的放大显著强于垂直震动。顺层斜坡的加速度放大主要产生于于斜坡浅表层,而反倾斜坡则趋向于具有更大的影响深度和破坏。
     ③损伤分析能够较好的分析斜坡的破坏过程:不同斜坡在地震过程中的损伤发育流程具有显著的差异,顺层斜坡的损伤影响区域位于坡顶至坡脚一定深度部位,反倾斜坡的破坏影响区则主要位于斜坡中上部,具有较深的横向深度。研究结果同时也说明了软岩介质斜坡由于具有一定的变形性能,震动过程中一定程度上能够弥补体系的损伤。
     ④通过模态分析手段确定的系统阻尼变化能够体现不同斜坡失稳模式的差异:硬岩斜坡中阻尼变化波动剧烈,软岩则较为平缓,反倾斜坡的阻尼变化比硬岩斜坡显著,表明其失稳时带来了更多的整体结构变化。
     (5)采用数值计算和力学推导方法针对地震斜坡的独特地质现象进行了分析和探讨,针对斜坡会在何处产生破坏,破裂面如何扩展,破裂面贯通后如何失稳的一系列问题开展了分析。
     ①采用离散元方法对斜坡在动力响应过程中的材料应力增幅和节理应力增幅进行了计算,据此分析了不同结构斜坡的破坏敏感区域,其中顺层斜坡位于坡脚,反倾斜坡则趋位于斜坡中部。
     ②采用断裂力学理论结合有限元方法对动力条件下斜坡的坡内破裂扩展模式进行了分析,建立了斜坡后缘拉裂和前缘破裂走势与加速度幅值的对应关系,揭示了强震滑坡形成陡立后缘拉裂和平缓前缘剪出口的力学机理。
     ③通过对考虑垂直加速度条件下的滑块模型进行分析,推导了块体失稳的力学公式,结合高位边坡的形态特征进行反算分析,据此提出高位大型滑坡底面失稳优先以跳动方式前进的推断。
Lots of landslides have been triggered by the Wenchuan earthquake, whileprovides plenty of sample for mechanism analysis in the strong earthquake area.In thispaper.The studied on the rock slope failure machanism of the strong earthquake area isimported to the disaster prevention work of the similar area.
     Based on field investigation data of the four basin(Jushuihe River, ChapingheRiver, Mianyuanhe River and Shitingjiang River), the author studied the distributionlaw of the landslides in the study area, with further analysis of the key factor whichinfluenced on it. While typical stratiform rock slope has been studied and modeled forshaking table test. Thought out the data collected from the test, a comparative analysisof slope with different lithology and structure has been carried on.Besides, withnumerical simulation and mechanics theory calculation of the slope under strongearthquake, the failure development location, the rupture expansion direction andslide behavior after failure also was analysed. Main conclusions are as follows:
     (1)The distribution law of the peak value of ground acceleration(PGA) analysiswas carried on based on strong motion records of the digital strong earthquakenetwork in sichuan and its neighbouring region. The analysis proved that the PGAcontour line is an elliptic whose major axis is parallel to the fault belts ofLongmenshan. The vertical seismic wave reduction is more significant that thehorizontal direction.And in the upfaulted district of the seismogenic faults betweenWolong to Qingping, the PGA value of vertical direction is close or even bigger thatthe horizontal direction. The author also proposes a method to describe landslidedensity with peak value of the ground velocity.
     (2)Thought out imagery interpretation, distribution law of the landslides was explained, and the key factor which has significant influence on it has beenselected.The research discovered that the PGA value controlled the regionaldistribution of the landslides, while the structure of the slope controlled the type of thelandslides itself.
     (3)Based on failure patten field investigation of the typical landslides in thestudy area, the author summarized the mechanism of different slope structure. Theanti-dip slope were crack-slide(dip angle>50) and crack-cut through(dip angle<20),while the dip slope were simply slide(dip angle      (4)Large scale shaking table test is used to analyze the dynamic response of theslope with different lithology and structure.Four different types were tested, includinghard rock dip slope, hard rock anti-dip slope, soft rock dip slope and soft rock anti-dipslope.Thought PGA amplification analysis, structural damage recognition analysis,modal analysis, the conclusions were as following:
     ①The lithology and structure of the slope has a significant influence on themechanism of a landslide. After cracking in the rear edge of the slope top, there is abucking at the the bottom of the dip slope, while malposition at the middle position.
     ②PGA amplification is larger on the upper half parts of the slope, and theamplification factor of horizontal vibration is larger than the vertical one. The dipslope has a significant amplification on the shallow surface, while the anti-dip one isinfluenced in the deeper parts.
     ③Damage identification base on HTT method shows that the damage depth ofthe hard dip slope is not as deeper as the anti-dip one, even more longer in thevertical direction.Due to the better deformational properties, the soft rock slope canpartly repair its damage in the process.
     ④The damping ratio variety which calculated from the modal analysis canexpress the natural property change of the slope in the whole process. The moreacute variety of the hard rock slope than the soft rock means the former one hasexperienced more structural change than the latter.
     (5) Numerical simulation and mechanics theory calculation are used to explainthe unique phenomenon of the landslides triggered by the strong earthquake.As thefailure development location of different type of slope, the rupture expansiondirection and slide behavior after failure can be explained.
     ①Based on stress increase magnitude results which are calculated with DiscreteElement Method, failure development parts of the dip slope and anti-dip slope aredifferent.The dip slope is in the foot section, while the anti-dip slope is in the middle section.
     ②Fracture mechanics and finite element analysis are used to obtain the ruptureexpansion direction inside the slope. The relationship between which and the PGAmagnitude is built to explain the form of steep back-wall and gentle shear outlets.
     ③Based on mechanism analysis of the blocks system of the landslide on thestrong earthquake, equations are deduced, with further inversely calculation using thetypical landslides of the strong earthquake region. The author proposed that afterformation of sliding surface, the landslide movement is more likely in a "Jumping"way.
引文
[1]黄润秋.汶川8.0级地震触发崩滑灾害机制及其地质力学模式[J].岩石力学与工程学报.2009(6);28.6.
    [2]许强.四川省8.13特大泥石流灾害特点、成因与启示[J].工程地质学报.2010/18(5).
    [3]宋立胜.历史地震与滑坡灾害[J]山西地震1994(2)
    [4]周本刚等.中国西南地区地震滑坡的基本特征.西北地震学报1994滑坡文集(兰州滑坡会议论文选集)[C].中国铁道出版社
    [5]孙绍崇,蔡红卫,我国历史地震时崩塌滑坡的发育及分布特征,自然灾害学报[J],6(1),26~30,1997.2
    [6]张秋文地理信息系统(GIS)在地震危险性分析中的应用地壳形变与地震1999/01
    [7]唐川GIS支持下的地震诱发滑坡危险区预测研究地震研究2001/01
    [8]陈晓利利用GIS进行地震滑坡分析山西地震2003/02
    [9]余世舟基于GIS的地震次生灾害数值模拟自然灾害学报2003/04
    [10]张景发卫星遥感技术应用于减轻地震灾害地壳构造与地壳应力文集2000/00
    [11]王治华“5.12”汶川大地震震中区映秀镇地震灾情及次生地质灾害遥感初步调查国土资源遥感2008/02
    [12]龚建华四川汶川地震应急无人机遥感信息获取与应用城市发展研究2008/03
    [13]范建容基于多源遥感数据的512汶川地震诱发堰塞体信息提取山地学报2008/03
    [14]杨军杰汶川县地震次生山地地质灾害遥感调查山地学报2008/06
    [15]宋立胜,历史地震与滑坡灾害[J],山西地震,1994.5
    [16]李忠生,国内外地震滑坡灾害研究综述[J],灾害学,2003,12,Vol.18(4)
    [17] Keefer D.V. Landslides caused by earthquakes[J].Geological Society of AmericaBulletin,1984,95(4).
    [18] Papadopoulous G.A,and Plessa A.Magnitude-distance relations for earthquake-inducedlandslide in Greece[J].Engineering Geology,Special Issue,2000,58(3-4)
    [19] Richter C.F. Elementary seismology[M].San Francisco: W.H. Freeman and Co.,1958
    [20] David K.Keefer.Investigating
    [21] Landslides Caused By Earthquakes-A historical Review.SURVEYS INGEOPHYSICS.Volume23, Number6,473-510.
    [22] PrestininziA,and RomeoR. Earthquake-induced ground failures in Ttaly[J].EngineeringGeology,Special Issue,2000,58(3-4)
    [23]李天池.地震与滑坡的关系及地震滑坡预测的探讨[J].铁道部科学研究院西北研究所主编.<滑坡文集>(二).北京.人民铁道出版社.1979.
    [24]孙绍崇,蔡红卫,我国历史地震时崩塌滑坡的发育及分布特征[J].自然灾害学报,6(1),26~30,1997.2
    [25]周本刚等.中国西南地区地震滑坡的基本特征[J].西北地震学报.1994滑坡文集(兰州滑坡会议论文选集)[C].中国铁道出版社
    [26]艾南山,刘百篪,周俊喜.历史地震滑坡与新构造应力场关系新知[J].兰州大学学报(自然科学版).1984,20(1)
    [27]乔建平等.川滇地震滑坡分布规律探讨.地震研究[J]1992.10
    [28]黄润秋.“5.12”汶川大地震触发地质灾害的发育分布规律研究[J].岩石力学与工程学报2008,27(12)
    [29]许强裴向军黄润秋等/著汶川地震大型滑坡研究科学出版社2009/12
    [30]许强李为乐.汶川地震诱发大型滑坡分布规律研究[J].工程地质学报.2010.06.
    [31]李为乐黄润秋唐川许强.汶川地震触发的绵远河流域崩塌滑坡的特征[J].山地学报.2011.04.
    [32]祁生文,许强等.汶川地震极重灾区地质背景及次生斜坡灾害空间发育规律[J].工程地质学报2009/17(1)
    [33]解朝娣.M_s8.0汶川地震产生的应力变化空间分布及其对地震活动性的影响[J].中国科学:地球科学2010/06
    [34]彭瑛.基于遥感调查的汶川地震极重灾区次生地质灾害分布特征[J].长江流域资源与环境2010/01
    [35]谢洪.“5.12”汶川地震次生山地灾害的分布与特点[J].山地学报2008/04
    [36]苏凤环.汶川地震山地灾害遥感快速提取及其分布特点分析[J].遥感学报2008/06
    [37]庄建琦,崔鹏,葛永刚等.5.12汶川地震崩塌滑坡分布特征及影响因子评价——以都江堰至汶川公路沿线为例[J].地质科技情报,2009.3,28(2):16~22.
    [38]程强,王然平,马洪生.川甘界—广元高速公路沿线汶川“5.12”地震次生崩滑灾害发育规律及防治对策[J].资源环境与工程,2009.9,23(专刊):124~128.
    [39]许冲,戴福初,陈剑等.汶川8.0级地震重灾区次生次生灾害遥感精细解译[J].遥感学报,2009,13(4):754~761.
    [40]秦绪文,张志,杨军杰,黄庭.5.12汶川地震四川省平武县次生次生灾害遥感分析[J].地质科技情报,2009.3,28(2):12~15.
    [41]田述军,孔纪名,阿发友,崔云.汶川地震山地灾害对环境因素的响应机制[J].四川大学学报(工程科学版),2010.9,42(5):92~98.
    [42]向灵芝,崔鹏,张建强等.汶川县地震诱发崩滑灾害影响因素的敏感性分析[J].四川大学学报(工程科学版),2010.9,42(5):105~112.
    [43]王庆安.汶川地震生态环境破坏严重区地形高程和起伏度分布特点[J].科技导报2009/16
    [44]李智广.汶川地震受灾严重区域崩塌与滑坡体空间分布研究[J].中国水土保持科学2009/04
    [45]王秀英,聂高众,张玲.汶川地震触发崩滑与Arias强度关系研究[J].应用基础与工程科学学报,2010.8,18(4):645~656.
    [46]张倬元,王士天,王兰生,工程地质分析原理[M].北京,地质出版社,1993
    [47]李天池.地震与滑坡的关系及地震滑坡预测的探讨[M].滑坡文集(第二集).北京:人民铁道出版社
    [48] Hadley J B. Landslides and related phenomena accompanying the Hebgen Lake earthquake ofAugust17,1959.U.S[J]
    [49] Masahiro Chigira,Wen-Neng Wangb,Takahiko Furuyac,Toshitaka Kamai.Geological causesand geomorphological precursors of the Tsaoling landslide triggered by the1999Chi-Chiearthquake, Taiwan Engineering Geology.Volume68, Issues3–4, March2003, Pages259–273
    [50]黄润秋.汶川8.0级地震出发崩滑灾害机制及其地质力学模式[J].岩石力学与工程学报.2009/06.Vol.28(6)
    [51]许强,黄润秋.“5.12”汶川大地震诱发大型崩滑灾害动力特征初探[J].工程地质学报.16(6)
    [52]许强.汶川大地震诱发地质灾害主要类型与特征研究[J].地质灾害与环境保护.2009/02
    [53]黄润秋.汶川地震触发大光包巨型滑坡基本特征及形成机理分析[J].工程地质学报.2008/06
    [54]黄润秋.再论大光包滑坡特征与形成机制[J].工程地质学报.2009/06
    [55]殷跃平.汶川八级地震滑坡特征分析[J].工程地质学报.2009/01
    [56]殷跃平.斜倾厚层山体滑坡视向滑动机制研究——以重庆武隆鸡尾山滑坡为例[J].岩石力学与工程学报.2010/02
    [57]唐春安,左宇军,秦泗风,等,汶川地震中的边坡浅层散裂与抛射模式及其动力学解释[C].汶川大地震工程镇海调查分析与研究.2009.
    [58]王运生,徐鸿彪,罗永红.地震高位滑坡形成条件及抛射运动程式研究[J].岩石力学与工程学报.2009年11期.
    [59]胡卸文,黄润秋等.唐家山滑坡堵江机制及堰塞坝溃坝模式分析[J].岩石力学与工程学报.2009.28(01):181~189.
    [60] Boore.A note on the effect of simple topography on seismic SH waves[J].Bull.Seis.Soc.Am.1972,62:275-284.
    [61] Lawarence,L.Davis,Lewis,R.West.Observed effects of topography on ground motion.Bull[J].Seis.Soc.Am.1973,63:283-298.
    [62]祁生文、伍法权,边坡动力响应规律研究[J],中国科学E辑技术科学,2003,33(增刊),28-40;
    [63] Donald W.Griffiths, G.A.Bollinger. The effect of Appalachian mountain topography onseismic waves.[J],Bul1.Seis.Soc.Am.1979.69:1081~1105.
    [64] Celebi M.Topographic and geological amplification detemined from strong-motion andaftershock records of3March1985Chile earthquake[J]. Bull.Seis.Soc.Am.1987,77:1147-1157.
    [65] Tien-Chien Chen, Meei-Ling Lin, Ju-Jiang Hung.Pseudostatic analysis of Tsao-Lingrockslide caused by Chi-Chi earthquake[J].Engineering Geology, Volume71, Issues1-2,January2004, Pages31-47
    [66] Ching-WeeiLina,et al. Impact of Chi-Chi earthquake on the occurrence of landslides anddebris flows: example from the Chenyulan River watershed,Namtou,Taiwan[J].EngineeringGeology,2003,(71)
    [67] Chao-Lung Tang, Jyr-Ching Hu, Ming-Lang Lin, Jacques Angelier, Chia-Yu Lu, Yu-ChangChan, Hao-Tsu Chu.The Tsaoling landslide triggered by the Chi-Chi earthquake[J],Taiwan.Engineering Geology, Volume106, Issues1-2,28May2009, Pages1-19
    [68]王存玉,王思敬.斜坡模型震动试验研究[J].岩体工程地质力学问题(七).北京.科学出版社,1987
    [69]何蕴龙.岩石边坡地震作用计算方法研究[J].长江科学院院报-1998年4期
    [70]彭定,陈玲玲.长江三峡船闸高边坡地震稳定性分析[J].长江科学学院院报.2001.12.vol18(6)
    [71] Jean-Francois Semblat,Marc Kham, Pierre-Yves Bard.Seismic-Wave Progagation in AlluvialBasins and Influence of Site-City Interaction[J].Bulletin of Seismological Society ofAmerica.Vol.98.No.6.PP2664-2679.December2008.
    [72] Bielak,J.,J. Xu and O.Ghattas(1999).Earthquake ground motion and structural response inalluvial valleys. J.Geotech Geoenviron. Eng.125,413-423.
    [73] Shiann-Jong Lee,Dimitri Komatitsch,Bor-Shouh Huang,and Jeroen Tromp. Effects ofTopography on Seismic-Wave Propagation: An Example from Northern Taiwan.Bulletin ofthe Seismological Society of America.Vol.99,No.1,pp.314-325
    [74] Lindholm, LM. Yeakley, A. Nagy.The dynamic strength and fracture properties of dresserbasalt[J].International Journal of Rock Mechanics and Mining Sciences&GeomechanicsAbstracts.Volume11, Issue5, May1974, Pages181–191.
    [75] DE. Grady,RE. Hollenbach. Dynamic fracture strength of rock[J].GEOPHYSICALRESEARCH LETTERS. VOL.6, NO.2, PP.73-76,1979.
    [76] J Zhao. Applicability of Mohr-Coulomb and Hoek-Brown strength criteria to the dynamicstrength of brittle rock[J]. International Journal of Rock Mechanics and Mining Sciences.Volume37, Issue7, October2000, Pages1115–1121.
    [77]闫长斌,李国权,陈东亮,刘振红,刘建磊.基于岩体爆破累积损伤效应的Hoek-Brown准则修正公式[J].岩土力学.2011.10,Vol.32,No.10.
    [78]钱七虎,戚承志.岩石、岩体的动力强度与动力破坏准则[J].同济大学学报(自然科学版.)2008.12,Vol36.No.12.
    [79]费鸿禄,赵昕普.爆破振动对岩质边坡累积损伤影响实验研究[J].爆破.2009.12,Vol.26,No.4.
    [80]闫长斌.基于声速变化的岩体爆破累积损伤效应[J].岩石力学与工程学报.2010.8,Vol.31,Supp.1.
    [81]闫长斌,王贵军,石守亮,徐国元.岩体爆破损伤声波测试信号频谱特征的小波(包)分析[J].岩石力学与工程学报.2010.7,Vol29,No7.
    [82]闫长斌,王贵军,张辉,王泉伟,徐国元.岩体爆破累积损伤效应的声波形态变化特征[J].岩石力学.2009.10.Vol32,No10.
    [83]胡刚.基于岩体声波损伤特性的露天台阶爆破试验[J].煤炭学报.2009.7,Vol34,NO7.
    [84]祝文化;明锋;宋成梓.爆破荷载作用下岩体损伤破坏的分形研究[J].岩土力学.2011.10.Vol32,No10.
    [85]孟凡兵;林从谋;蔡丽光;李博.小净距隧道爆破开挖中夹岩累积损伤计算方法及其应用[J].岩土力学.2011.5.Vol32,No5.
    [86]姚金阶.基于爆炸裂隙分形维的损伤岩体爆破参数计算[J].固体力学学报.2008.12.Vol29,S.Issue.
    [87]孙广忠.岩体结构力学[M].北京,科学出版社,1988
    [88]黄润秋.反倾向岩质边坡变形破坏规律分析[J].1993-1994年学术年报.工程地质研究进展.
    [89]龙红兵赵风新荣棉水.地震波斜入射时水平层状场地的非线性地震反应[J]岩土工程学报.2009/2.Vol.31,No,2.
    [90]罗刚等,平面滑动型岩质边坡地震动力响应研究[J],长江科学院院报,2009,15(4):35~38.
    [91]郭学彬肖正学张志呈蒲传金.层状岩体爆破地震效应的测试[J].矿业研究与开发.2005/04.Vol.25,No.4.
    [92]汪茜.地震作用下顺层岩质边坡变形破坏机理研究[D].吉林大学.2010
    [93]许强.斜坡加速度动力响应特性的大型振动台试验研究[J].岩石力学与工程学报.2010/12.Vol.29,No.12.
    [94]董金玉杨国香伍法权祁生文.地震作用下顺层岩质边坡动力响应和破坏模式大型振动台试验研究[J].岩土力学.2011.10.Vol.32,No.10.
    [95]陈运泰,许力生,张勇等2008年5月12日汶川特大地震震源特性分析报告(R),2008
    [96]陈运泰汶川特大地震的震级和断层长度[J].科技导报2008.10
    [97]李勇黄润秋周荣军等龙门山地震带的地质背景与汶川地震的地表破裂[J].工程地质学报2009(17)
    [98]周荣军黄润秋雷建成等四川汶川8.0级地震地表破裂与震害特点[J].岩石力学与工程学报2008(Nov) Vol.27
    [99]徐锡伟闻学泽叶建青等汶川MS8.0地震地表破裂带及其发震构造[J].地震地质2008.09第30卷第三期
    [100]刘汉超等.库区环境地质评价研究[M].成都科技大学出版社.1993.6
    [101]黄炎.工程弹性力学[M].清华大学出版社.1982
    [102]周荣军,赖敏,余桦,等.汶川Ms8.0地震四川籍邻区数字强震台网记录.[J].岩石力学与工程学报.2010.29.9
    [103] Seismosoft [2011]"SeismoSignal-A computer program for signal processing oftime-histories". Available from URL: www.seismosoft.com
    [104]张勇,冯万鹏,许力生,周成虎,陈运泰.2008年汶川大地震时空破裂过程[J].中国科学D辑:地球科学.2008年38卷10期:1186-1194
    [105]杜海林,许力生,陈运泰.利用阿拉斯加台阵资料分析2008年汶川大地震的破裂过程[J].地球物理学报.2009.2.52,(2).
    [106]余金生,李裕伟.地质因子分析[M].地质出版社.1985.2.P161
    [107] Pearson, K. On Lines and Planes of Closest Fit to Systems of Points in Space[J].PhilosophicalMagazine2.1901(6):559–572.
    [108] A. T. Miesch.Scaling variables and interpretation of eigenvalues in principal componentanalysis of geologic data[J].Mathematical Geology,1980, Volume12, Number6, Pages523-538.
    [109] B. D. Ripley and D. J. Murdoch.R for Windows FAQ&R LanguageDefinition[J/OL].http://CRAN.R-project.org/doc/FAQ/R-FAQ.html
    [110]王斌会著.多元统计分析及R语言建模[M].暨南大学出版社.2010.1
    [111]高惠璇.统计计算[M].北京大学出版社.1995
    [112]克劳德巴克豪斯本德埃里克森伍尔夫普克林等.多元统计方法-用SPSS工具[M].格致出版社,上海人民出版社.2009.4
    [113] W.N.Venables,D.M.Smith.R-Guide.The R Development Core Team.V2.03.2006/04/24.
    [114]孔明卞冉张厚粲.平行分析在探索性因素分析中的应用[J].心理科学.2007.30(4).924-
    [115]王松涛.探索性因素分析与验证因子分析比较研究[J].兰州学刊.2006.05
    [116] ITASCA Consulting group.Inc.Fast Lagrangian Analysis of Continua in3Dimensions User’sGuide.2005.09
    [117]谢俊斐等译.地震工程和土动力问题译文集
    [118]孙广忠.岩体结构力学[M].北京,科学出版社,1988
    [119]罗先启,葛修润.滑坡模型试验理论及其应用.北京.中国水利水电出版社.2008.12.
    [120] Huang N.E,Shen Z,Long R.S,et al.The expirical mode decomposition and Hilbert spectrumfor nonlinear and nonstationary time series analysis.[J].Proceedings Rayal Society of LondonA,1998,454:903-995.
    [121] Huang N.E,Shen Z,and Long R.S.A new view of nonlinear water wave-hilbertspectrum.[J].Annual Review of Fluid Mechanics,1991,31:417-459.
    [122] Huang N.E,et al.A new spectral representation of earthquake data:Hilbert spectral analysis ofstation TCU129,Chi-Chi,Taiwan,21,September1999[J].Bulletin of the Seismological Societyof Americal.2001.91(5).
    [123] Zhang R.R,Ma S,Safak E and Hartzel S. Hilbert-Huang transform analysis of dynamic andeearthquake motion recordings[J]. ASCE Journal of Engineering Mechanices.2003.129(8).
    [124] Yang J N,Agrawal A K.Semi-active hybrid control systems for nonlinear buildings againstnear-field earthquakes[J].Engineering Structures,2002,24[J]:271-280.
    [125] Loh C H,Wu T C and Huang N E. Application of the empirical mode decomposition-Hilbertspectrum method to identify near-fault ground-motion characteristics and structuralresponses[J]. Bulletin of the Seismological Society of Americal,2001,91*5):1339-1357.
    [126]王伟.近断层地震动的频谱特性和能量谱分析.[D].大连.大连理工大学.2010.
    [127]陈子雄,吴琛,周瑞忠.希尔伯特-黄变换谱及其在地震信号分析中的应用[J].福州大学学报(自然科学版).2006.4.
    [128]张义平.爆破震动信号的HHT分析与研究应用.[D].长沙.中南大学.2006.
    [129]刘佳.爆破振动对高陡边坡的作用及其计算方法的研究.[D].北京.北方工业大学.2010.
    [130]李夕兵,张义平,刘志祥,左宁军,王卫华.爆破震动信号的小波分析与HHT变换[J].爆炸与冲击.2005.11.Vol25No6.
    [131]刘珍.基于震动信号的结构模态参数识别与损伤分析[D].西安.西安电子科技大学.2010.
    [132]陈婷艳.航天器运动部件振动特性与故障诊断方法研究[D].上海.上海交通大学.2010.
    [133]刘强,周瑞忠,刘宇航.基于HHT变换的结构地震响应与能量计算分析[J].武汉大学学报(工学版).2009.12.42(6).
    [134]胡聿贤,张郁山,梁建文.应用HHT方法从竖向地震动记录识别场地液化的物理过程[J].地震工程与工程震动.2004.6.24(3).
    [135]石春香,李胡生,罗奇峰,施卫星.振动台试验模型地震反应的HHT研究[J].地震学报.2011.1.33(1).
    [136]蒋良潍,姚令侃,吴伟,徐光兴.传递函数分析在边坡振动台模型试验中的应用探讨[J].岩土力学.2010.5.31(5).
    [137]许光兴,姚令侃,高召宁,李朝红.边坡动力特性与动力响应的大型振动台模型试验研究[J].岩石力学与工程学报.2008.3.27(3).
    [138] Erin Iesulauro.FRANC2D/L:A Crack Propagation Simulator for Plane LayeredStructures[J/OL].New York.CornellUniversity.1993.http://www.cfg.cornell.edu/education/educaton.htm.
    [139] Paul Wawrzynek,Anthony Ingraffea. FRANC2D User’s Guide V3.1[J/OL].NewYork.Cornell University.1993.http://www.cfg.cornell.edu/education/educaton.htm
    [140]李庆芬.断裂力学及其工程应用[M].哈尔滨.哈尔滨工程大学出版社.2007.10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700