反倾岩质滑坡成因机制及动力响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
罐滩滑坡位于四川省安县雎水镇团结电站雎水河右岸,受汶川地震及震后暴雨作用,于2008年5月12日晚22:00~23:00发生大规模整体滑移破坏,堵塞河道,形成安县罐滩堰塞湖。滑坡滞后地震8h,属典型地震后效滑坡。天然斜坡发育于存在软弱基座的反倾斜坡中,且坡体岩性上部为白云岩、下部为泥岩,对于这种上“硬”下“软”结构的反倾岩质斜坡发生地震后效型滑坡的成因机制及地震动力响应特征研究有一定的意义。因此通过野外详细地质调查,在阐明滑坡地质环境条件的基础上,描述了滑坡的基本特征及坡体结构特征,结合滑坡变形破坏特征,定性分析滑坡的成因机制演化,最后用3DEC离散元数值模拟软件对滑坡破坏过程进行模拟,得出斜坡在地震作用下的动力响应特征及在降雨作用下的破坏过程,综合定量分析了滑坡的成因机制。具体研究内容及成果如下:
     (1)罐滩滑坡发育于存在软弱基座的反倾斜坡中,位于龙门山江油-灌县断裂上盘,自然斜坡走向与断裂带近平行,其分支断裂F_(3-1)滑坡坡体下部通过,上部基岩为T_2j+l弱风化中厚层状白云岩,下部为T1f+t薄层紫红色泥岩和泥质粉砂岩互层,岩体破碎。滑坡前缘高程708m,后缘高程1180m,高差472m,沿河宽400m,纵向长度800m,滑坡总体坡度约45°,前缘由于开挖坡度65°,主滑方向99°,平面面积1.82×10~5m2,滑坡体积468万m~3,形成的安县堰塞湖蓄水量约145×10~4m~3,回水约2km。
     (2)滑坡变形破坏迹象主要表现为后缘拉裂及前缘压缩-倾倒。后缘分布多条长大拉裂缝,而前缘由于堰塞湖开挖揭露岩层有与基岩相同的层序,但倾角发生明显变化,表明斜坡有向河谷方向倾倒的趋势。
     (3)滑坡形成机制和发展过程可以定性分为3个阶段:自然斜坡的压缩-倾倒变形、地震作用潜在滑面形成但并未完全贯通,降雨作用滑面贯通斜坡整体破坏阶段。
     (4)数值模拟显示地震作用下,斜坡动力响应特征表现为对输入地震波存在垂直放大和临空面放大作用,且垂直放大效应较临空面放大效应更为显著。斜坡加速度放大系数总体上水平加速度放大系数大于竖向加速度放大系数,即水平加速度放大效应更为显著,速度放大效应亦有同样规律。
     (5)数值模拟结果显示地震作用下最小主应力值在坡表可达1.75Mpa,即坡面出现拉应力,拉裂缝出现;从位移特征来看,X向位移最大7.5cm,Y向位移最大21cm,滑坡塑性区并未完全贯通,因此滑坡并未发生;而降雨作用下的数值模拟结果显示滑坡塑性区完全贯通,滑坡发生破坏。
     因此,调查和分析表明,下软上硬的坡体结构是滑坡产生的基础,强烈的地质构造活动背景是其产生的重要条件,强烈的地面震动和高强度暴雨是导致滑坡产生的主要因素。
The Guantan landslide, which is located in the right bank of the Jushui river at Tuanjie hydropower station in Jushui town of Anxian country in Sichuan province. The landslide integrally failed at 22 to 23 in May 12, 2008 and clogged the Jushui river, then formed the Anxian country Guantan quake lakes. The landslide was occurred 8 hours after the earthquake and is a typical landslide that reacted to after-earthquake effect. The landslide is happened in counter-tilt rock slope with weak rock base, which forms the boundary of dolomite rocks in the upper part and the mudstone in the lower part. So for the counter-tilt rock slope with rigid upper layers and weak lower layers, it is significance to research its formation mechanism and dynamic response reacted to after-earthquake effect. Based on the geological conditions, basic characteristics and slope structures characteristics, combined with the formation mechanism qualitative analysis by the characteristics of deformation damage of the slope, this paper simulated the failure process using the 3DEC numerical simulation software and comprehensive- ly and quantitatively analysed the formation mechanism, then obtained the dynamic response to earthquake and failure process under rain. All the research contents and achievements as follows:
     (1) Guantan landslide is located in counter-tilt slope with weak base and on the upper plate of the Jiangyou-Guanxian Fault. The orientation of the slope is parallel to the fault. Taking the branch of the Jiangyou-Guanxian fault F_(3-1) as dividing line, the upper layer is T_2j+l dolomite with weak weathering and medium thickness seam and the lower layer is T1f+t interbed purplish red mudstone and muddy siltstone of which the rock mass is broken. The elevation of the leading edge of the landslide is 708m, and the posterior edge is 1180m. So the lacks is 472 meters. The length along the river is about 400m, and longitudinal length is about 800m. The slope angle is about 45 degree. the leading edge angle is about 65 degree due to excavation. The glide direction is 99 degree, and the area of plane is 18.2 million square meter. Its volume is up to 4.68 million m3, the storage capacity of the lake is about 1.45 million cubic meters, and the backwater is about 2 kilometers.
     (2) The signs of deformation and failure manifested as tension in the trailing edge and compression-dump in the heading edge. In the trailing edge, several tension cracks distributed. In the heading edge, the rock, exposed by the lake excavation, has the same sequence with bedrock, but the dip has significant change. This showed that the slope has the tendency toward the river valley.
     (3) The formation mechanism and development process could be separated into 3 phases: compression-dump deformation of the nature slope; potential landslide face formed but not completely transfixed under earthquake, the landslide face completely transfixed and the whole slope failed under rain.
     (4) The numerical simulation result showed that the dynamic response manifested vertical amplification and free face amplification to the seismic wave, and the vertical amplification effect is magnified more obvious. The amplifying effect of the acceleration is that horizontal acceleration amplification coefficient is greater than vertical acceleration amplification coefficient, it means the horizontal acceleration amplification effect is more obvious, speed amplification effect also have the same law.
     (5) The numerical simulation showed that, under the earthquake effect, the minimum principal stress appeared and the range is bigger than in nature condition. That means new tension fracture appeared under earthquake and old expanded deeply. Seeing the displacement under earthquake of the slope, the maximum displacement of the X-direction is 7.5cm, the Y-direction is 21cm, but the plastic zone of the slope is not completely transfixed. So the landslide is not happened. Under the rain effect, the simulated result showed that the plastic zone completely transfixed and the slope developed large-scale failure.
     Based on the research results, the survey and the analysis indicated that the slope structure with rigid upper layers and weak lower layers is the basis of the landslide, the strong tectonic activity is the important condition and the intensity ground shaking and strong rain is the root.
引文
[1]黄润秋,李为乐.汶川地震触发崩塌滑坡数量及密度特征分析[J].地质灾害与环境保护, 2009, 20(3):1~7.
    [2]黄润秋.“5·12”汶川大地震地质灾害的基本特征及其对灾后重建影响的建议[J].中国地质教育, 2008,(2): 21~24.
    [3]许强,裴向军,黄润秋等.汶川地震大型滑坡研究[M].北京:科学出版社, 2009.
    [4]王思敬,肖远,杜永廉等.反倾向层状结构岩质边坡分类及稳定性评判准则[R].“八.五”国家重点科技攻关项目. 1995.
    [5] Goodman R E, Bray J W. Toppling of rock slopes[A]. Proceedings, Specialty Conference on Rock Engineering for Foundations and Slopes[C]. 1977: 201–34.
    [6]唐世强.反倾向岩质边坡变形机制分析及治理设计—以汤屯高速公路班标四号坡为例[D].成都理工大学硕士论文. 2007.
    [7]邹丽芳,徐卫亚,宁宇等.反倾层状岩质边坡倾倒变形破坏机理综述[J].长江科学学院院报. 2009,26(5):25-30.
    [8]黄润秋,许强等.中国典型灾难性滑坡[M].北京:科学出版社, 2008.
    [9]程东幸,刘大安,丁恩保等.层状反倾岩质边坡影响因素及反倾条件分析[J].岩土工程学报, 2005, 27(11): 1362-1366.
    [10]苏立海.反倾层状岩质边坡破坏机制研究-以锦屏一级水电站左岸边坡为例[D].西安理工大学硕士论文,2006.
    [11]韩贝传,王思敬.边坡倾倒变形的形成机制与影响因素分析[J].工程地质学报, 1999, 7(3): 213-217.
    [12]位伟,段绍辉,姜清辉等.反倾边坡影响倾倒稳定的几种因素探讨[J].岩土力学,2008,29增刊:431-434.
    [13]谭儒蛟,杨旭朝,胡瑞林等.反倾岩体边坡变形机制与稳定性评价研究综述[J].岩土力学, 2009, 30(增2):479-484.
    [14]张倬元,王士天,王兰生.工程地质分析原理[M].北京:地质出版社,1994.
    [15]黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J].岩石力学与工程学报, 2007, 26(32): 433-454.
    [16]黄润秋,王峥嵘,许强.反倾向层状结构岩体边坡失稳破坏规律研究[C].成都理工学院工程地质研究所工程地质研究进展(二).成都:西南交通大学出版社, 1994: 47-51.
    [17]陈红旗,黄润秋.反倾层状边坡弯曲折断的应力及挠度判据[J].工程地质学报, 2004, 12(3): 243-246.
    [18]黄润秋.汶川8.0级地震触发崩滑灾害机制及其地质力学模式[J].岩石力学与工程学报. 2009, 28(6): 1239-1249.
    [19]祁生文,伍法权,刘春玲等.地震边坡稳定性的工程地质分析[J].岩石力学与工程学报, 2004, 23(6): 2792-2797.
    [20] PRITCHARD M A. Numerical modeling of large scale toppling[M]. Vancouver, B. C: The University of British Columbia, 1989.
    [21]肖远.边坡层状岩体弯曲蠕变机理及分析方法[D].北京:中国科学院地质研究所, 1989.
    [22]李强.鄂西山区地下采掘与山体稳定性岩体力学研究[D].成都:成都地质学院, 1990.
    [23]许强,黄润秋,秦四清.弯曲拉裂型斜坡的尖点突变模型[C].工程地质-传统与未来,第三届全国青年工程地质大会论文集.成都:成都科技大学出版社, 1993.
    [24]蒋良潍,黄润秋.反倾层状岩体斜坡弯曲-拉裂两种失稳破坏之判据[J].工程地质学报, 2006, 14(3): 289-294.
    [25]巨能攀.大跨度高边墙地下洞室群围岩稳定性及支护方案的系统工程地质研究[D].成都理工大学博士论文, 2005.
    [26]李世贵.汶川地震汶川5.12地震诱发大光包巨型滑坡形成机理及运动特征研究[D].成都理工大学硕士论文, 2010.
    [27]白永健.瀑布沟水电站卡尔沟料场高陡边坡稳定性评价及支护对策研究[D].成都理工大学硕士论文, 2009.
    [28]严明,黄润秋,徐佩华等.某水电站坝前左岸高边坡深部破裂形成机制分析[J].成都理工大学学报(自然科学版), 2005, 32(6): 609-613.
    [29]纪玉石,申力,刘晶辉.采矿引起的倾倒滑移变形机理及其控制[J].岩石力学与工程学报, 2005, 24(19): 3594-3598.
    [30]任光明,宋彦辉,聂德新等.软弱基座型斜坡变形破坏过程研究[J].岩石力学与工程学报, 2003, 22(9): 1510-1513.
    [31]程东幸,刘大安,丁恩保等.反倾岩质边坡变形特征的三维数值模拟研究[J].工程地质学报, 2005, 13(2): 222-226.
    [32]孙东亚,彭一江,王兴珍. DDA数值方法在岩质边坡倾倒破坏分析中的应用[J].岩石力学与工程学报, 2002, 21(1): 39-42.
    [33]郝建斌,门玉明,彭建兵等.层状岩体边坡动力稳定性模型试验研究[J].公路交通科技, 2005, 22(6): 72-75.
    [34]汪小刚,张建红,赵毓芝等.用离心模型研究岩石边坡的倾倒破坏[J].岩土工程学报, 1996. 18 (5): 14-21.
    [35]蔡国军,裴钻.反倾互层岩质边坡开挖物理模拟实验研究[J].水土保持研究, 2007. 14(5): 126-130.
    [36]左保成,陈从新,刘小巍等.反倾岩质边坡破坏机理模型试验研究[J].岩石力学与工程学报, 2005, 24(19): 3505-3511.
    [37]徐光兴、姚令侃等.边坡地震动力响应规律及地震参数影响研究[J].岩石力学与工程学报, 2008, 30(6): 918~923.
    [38]徐光兴等.边坡动力特性与动力响应的大型振动台模型试验研究[J].岩石力学与工程学报, 2008, 27(3): 624~632.
    [39]秋仁东,石玉成,付长华等.高边坡在水平动荷载作用下的动力响应规律研究[J].世界地震工程, 2007, 23(2): 131~137.
    [40]陈祖煜,张建红,汪小刚.岩石边坡倾倒破坏稳定分析的简化方法[J].岩土工程学报, 1996, 18(6): 92-95.
    [41]赵建军,巨能攀等.汶川地震诱发罐滩滑坡形成机制初步分析[J].地质灾害与环境保护, 2010, 21(2): 92~96.
    [42] Itasca Consulting Group Inc. 3-Dimensional Distinct Element Code User’s Guide [M]. 2003.
    [43] BOBET A. Analytical solutions for toppling failure[J]. Int.J. Rock Mech. Min. Sci., 1999, (36): 971-980.
    [44] ADHIKARY D P, DYSKIN A V. Modelling of Progressive and Instantaneous Failures of Foliated Rock Slopes[J]. Rock Mechanics and Rock Engineering , 2007, 40(4) : 349- 362.
    [45] Newmark N M. Effects of earthquakes on dams and embankments[J].Geotechnique. 1965,15(2):139~160.
    [46] Keefer D K. Landslides caused by earthquakes[J]. Geological Society of America Bulletin,1984,95(4):406-421.
    [47]祁生文,伍法权,孙进忠.边坡动力响应规律研究[J].中国科学, 2003, 46(supp.): 28-4.
    [48]王思敬.金川露天矿边坡变形机制及过程[J].岩土工程学报, 1982, 4(1):76-83.
    [49]孔纪名,阿发友,吴文平.汶川地震滑坡类型及典型实例分析[J].水土保持学报, 2009,23(6): 66-70.
    [50]黄润秋,李为乐.“5.12”汶川大地震触发地质灾害的发育分布规律研究[J].岩石力学与工程学报, 2008,27(12): 2285–2592.
    [51]孙广忠.中国典型滑坡[M].北京:科学出版社. 1998.
    [52]谷德振.岩体工程地质力学基础[M].北京:科学出版社, 1979.
    [53]蔡国军,黄润秋等.反倾向边坡开挖变形破裂响应的物理模拟研究[J].岩土力学与工程学报, 2004, 17(2): 32~36.
    [54]黄润秋.中国西南岩石高边坡的主要特征及其演化[J].地球科学进展, 2005, 20(3): 292~297.
    [55]殷跃平.汶川八级地震地质灾害研究[J].工程地质学报. 2009, 16(4): 29~38.
    [56]许强.汶川大地震诱发地质灾害主要类型与特征研究[J].地质灾害与环境保护,2009, 20(2): 86~93.
    [57]许强,黄润秋. 5.12汶川大地震诱发大型崩滑灾害动力特征初探[J].工程地质学报, 2008,721~729.
    [58]汪小刚,贾志欣,陈祖煜.岩石边坡的倾倒破坏的稳定分析方法[J].水利学报, 1996, (3): 7-12.
    [59]王秀英.汶川MS 8.0级地震诱发崩滑特点及其与地震动参数对应关系初析[J].岩土工程学报2009,31(9)1378~1383.
    [60]黄润秋,邓荣贵.高边坡物质运动全过程模拟[M].成都:科技大学出版社,1993.
    [61]黄润秋等.汶川地震地质灾害研究[M].北京:科学出版社, 2009.
    [62]王彦东.岩质高边坡关键块体的确定及稳定性评价研究[D].成都理工大学硕士论文. 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700