单纯密网孔支架治疗兔动脉瘤的血流动力学数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:兔特异性动脉瘤数值模型的建立及血流动力学分析
     目的:基于兔动脉瘤模型的三维旋转造影资料,建立兔特异性动脉瘤数值模型,应用计算流体力学的方法分析动脉瘤模型的血流动力学特征。
     方法:通过外科手术结合弹性酶建立兔动脉瘤模型,获取16例动脉瘤模型的三维旋转造影资料,初步剪切、加工后,经3DMAX软件转换、定标,再通过GEOMAGIC进一步切割、截取和光滑处理,所得结果在ANSYS CFD中建立有限元网格,即数值模型。在一定的假设前提下,有限元网格在ANSYS CFX配置边界条件后并进行计算,得出动脉瘤模型的壁面切应力、流线、速度场、压力场等多种结果,并对这些动脉瘤血流动力学特征与病人特异性颅内动脉瘤的血流动力学特征进行分析比较。
     结果:兔动脉瘤高壁面切应力位于流入道、动脉瘤内流场复杂多样、冲击域位于流入道,压力场分布均匀,与病人特异性动脉瘤的血流动力学特征相吻合。结论:通过外科手术结合弹性酶建立兔动脉瘤模型的血流动力学特征很好的模拟了病人特异性颅内动脉瘤血流动力学特征,可以用于不同治疗方法的实验研究。
     第二部分:单纯密网孔支架植入对动脉瘤内血流动力学影响的数值模拟研究
     目的:通过数值模拟的方法,研究单纯密网孔支架植入后对动脉瘤内血流动力学特征的影响。
     方法:共获得14例兔特异性动脉瘤模型的三维旋转造影资料及所植入支架的MICRO-CT扫描的影像资料。用兔动脉瘤模型的3DRA资料建立动脉瘤血管模型。用MIMICS10.01建立支架模型。再通过GEOMAGIC进一步将支架的覆盖瘤颈的区域截取,采用布尔运算的方法将支架释放到动脉瘤模型中。所得结果在ANSYS CFD中建立有限元网格,即数值模型。在一定的假设前提下,对支架植入前后的有限元网格分别在ANSYS CFX相同的配置边界条件后并进行计算,得出支架植入前后的动脉瘤模型的壁面切应力、流线、速度场、压力场等的结果,并对支架植入前后的动脉瘤血流动力学特征与进行分析比较并得出统计学结果。
     结果:支架植入后动脉瘤的壁面切应力明显降低,动脉瘤内的复杂流场变成简单流场,动脉瘤壁的压力场无明显变化。支架术前后动脉瘤远侧壁、动脉瘤顶的壁面切应力有统计学差异(P=0.003,P=0.001);支架术前后动脉瘤近侧壁的壁面切应力无统计学差异(P=0.13);支架术前后动脉瘤远侧壁、动脉瘤顶、动脉瘤近侧壁的压力的无统计学差异(P>0.01)。
     结论:支架植入术后可改变动脉瘤的壁面切应力和动脉瘤内流场等血流动力学参数,可能对动脉瘤的愈合创造有利条件。
     第三部分:支架植入对动脉瘤内血流动力学影响的数值模拟研究与动物实验对比研究
     目的:通过支架植入术后血流动力学数值模拟研究结果与实验研究结果的比较探索支架植入后的血流动力学变化与动脉瘤愈合的关系。
     方法:将动脉瘤模型根据复查造影是否显影分为两组:愈合组10例,未愈合组4例。对两组的支架术前后的壁面切应力和压力等血流动力学变化进行比较并得出统计学结果。
     结果:愈合组和未愈合组的支架术前后的壁面切应力和压力等血流动力学的变化有明显差别,但是无统计学差异(P>0.01)。
     结论:本研究表明数值模拟研究中发现的支架术后壁面切应力的变化与动脉瘤的愈合相关,需更更大样本的数值模拟研究模型进一步对血流动力学的变化及其与临床结果的相关性进行研究。
Part one:Establishment of rabbit-specific numerical intracranial aneurysm model and analysis of hemodynamics
     Objective:To establish a numerical model of rabbit-specific aneurysm model based on 3D rotation angiography image and analyze the hemodynamic characters of the aneurysms.
     Methods:we established histologically simulating human aneurysms by using elastase to digest the right common carotid artery.The 3DRA images of 16 rabbit-specific aneurysm models were transferred into 3 DM AX then GEOMAGIC for being segmented and smoothed surface data. The surface data was imported into ANSYS CFD in order to create finite element grids. After meshing, we applied ANSYS CFX to create configuration files for fluid field computations and structural mechanics computations respectively, which include the setting of material properties, boundary condition and time step. At last we obtained the hemodynamic parameters including wall shear stress, streamline, velocity profile and pressure profile.
     Results:We analyzed hemodynamic characters of rabbit-specific aneurysm models including WSS distribution, maximum WSS, streamline, intra-aneurysmal flow pattern, velocity profile, velocity and width of inflow jet, location and size of impaction zone.
     Conclusion:The hemodynamic characters of rabbit-specific aneurysm model are well consistent with that of the human intracranial aneurysm.
     Part two:Study of hemodynamic changes induced by virtual placement of the high porocity stent across rabbit-specific aneurysm
     Objective:The goal was to study the effects of the high porocity stent on aneurysm hemodynamics using computational fluid dynamics.
     Methods:We obtained the DRA images of 14 rabbit-specific aneurysm models and the Micro-computed tomographic angiography images of the stent samples extracted from rabbits treated by solo stent.computed tomographic angiography images. The geometries of rabbit-specific aneurysm models were reconstructed from the DRA images. The geometry of high porocitystents were reconstructed from the computed tomographic angiography images.To deploy the stent in the aneurysm models, the part geometries of the stents were virtually deformed to fit into the parent vessel lumen across the aneurysm neck. The separately reconstructed aneurysm and stent geometries were merged in a single model in ICEM-CFD and meshed. After meshing, we applied ANSYS CFX to create configuration files for fluid field computations and structural mechanics computations respectively, which include the setting of material properties, boundary condition and time step. At last we obtained the hemodynamic parameters including wall shear stress, streamline, velocity profile and pressure profile of both the stented and the unstented aneurysms Some comparisons of the hemodynamic characters of the stented aneurysms with that of the unstented aneurysms including WSS, streamline, intra-aneurysmal flow pattern, velocity profile, velocity and width of inflow jet, location and size of impaction zone were also made
     Results:the elevated WSS area was more significantly reduced by stenting,The complex flow pattern observed in the unstented aneurysm was suppressed by stenting.but the pressure on the inner wall of the pressure of the aneurysm was not suppressed by stenting. Stent placement lowered the wall shear stress in the aneurysm, In the stented and unstented aneurysms paring research, there was significant statistic difference in the WSS magnitude on the dome and the distal pouch of the aneurysm between the stented aneurysms group and the unstented aneurysms group (P<0.01),but there was no significant statistic difference in the WSS on the proximal wall near the neck(P=0.13).There was also no significant statistic difference in the pressure on the dome and that on the inner wall of the aneurysm near the proximal and distal pouch of the aneurysm(P>0.01).
     Conclusion:Aneurysm hemodynamic parameters were significantly modified by placement of low porocity stents.
     Part three:Comparison of the results of numerical and experimental studies in the stented rabbit-specific aneurysm model
     Objective:To investigate the different hemodynamic characters in the healed and the unhealed aneurysms and characterize possible associations with the occlusion of the aneurysms.
     Methods:We devided the 14 rabbit-specific aneurysm models intotwo groups:the healed group (n=10) and the unhealed group (n=4), according to the follow-up angiography. Some comparisons of the hemodynamic characters of the healed aneurysms with that of the unhealed aneurysms including WSS, pressure were made.
     Results:In the paring research, There was significant difference between the two groups,although there was no significant statistic difference in the WSS magnitude on the dome and the distal pouch of the aneurysm between the heaed aneurysms group and the unhealed aneurysms group (P>0.01).
     Conclusion:The computed results are verified by experimental studies.further investigation are needed in this area in larger series.
引文
1. Rinkel GJ, Djibuti M, Algra A, et al. Prevalence and risk of rupture of intracranial aneurysms: a systematic review. Stroke 1998; 29(1):251-256.
    2. Rooij, N.K., Linn, F.H., van der Plas, et al. Incidence of subarachnoid haemorrhage:a systematic reviewwith emphasis on region, age, gender and time trends. Journal of Neurology, Neurosurgery and Psychiatry 2007,78:1365-1374.
    3. Tomasello, F., DAvella, D., Salpietro, F.M., et al. Asymptomatic aneurysms. Literature meta-analysis and indications for treatment. Journal of Neurosurgical Sciences 1998,42: 47-51.
    4. D. Sforza, C.M. Putman, J.R. Cebral, Hemodynamics of Cerebral Aneurysms,Ann. Rev. Fluid Mech.2009,41,91-107.
    5. Cebral, J. R., M. A. Castro, S. Appanaboyina, et al. Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics:technique and sensitivity. IEEE Trans. Med. Imaging2005; 24:457-467.
    6. Cebral, J. R., M. A. Castro, J. E. Burgess, et al. Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. AJNR Am. J. Neuroradiol.2005;26:2550-2559.
    7. Hashimoto, T., H. Meng, and W. L. Young. Intracranial aneurysms:links among inflammation, hemodynamics and vascular remodeling. Neurol. Res.2006; 28:372-380.
    8. Liou, T. M., and S. N. Liou. Pulsatile flows in a lateral aneurysm anchored on a stented and curved parent vessel. Exp. Mech.2004; 44:253-260.
    9. Liou, T. M., S. N. Liou, and K. L. Chu. Intra-aneurysmal flow with helix and mesh stent placement across side-wall aneurysm pore of a straight parent vessel. J. Biomech. Eng.2004; 126:36-43.
    10. Shojima M, Oshima M, Takagi K, et al. Magnitude and role of wall shear stress on cerebral aneurysm:Computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke,2004; 35:2500-2505.
    11. Tzima E, Del Pozo MA, Kiosses WB, et al. Activation of Racl by shear stress in endothelial cells mediates both cytoskeletal reorganization and effects on gene expression. EMBO J, 2002,21:6791-6800.
    12. Hashimoto S, Nishiguchi K, Abe Y, et al.Thrombus formation under pulsatile flow:Effect of periodically fluctuating shear rate. Jpn J Artif Organs,1990; 19:1207-1210.
    13. Hashimoto T, Meng H, Young WL:Intracranial aneurysms:Links among inflammation, hemodynamics and vascular remodeling. Neurol Res 28:372-380,2006.
    14. Guglielmi G, Vinuela F, Dion J, Duckwiler G. Electrothrombosis of saccular aneurysms via an endovascular approach. Part 2:preliminary clinical experience. J Neurosurg 1991; 75: 8-14.
    15. Brilstra EH, Rinkel GJE, van der Graaf Y, et al. Treatment of intracranial aneurysms by embolization with coils:a systematic review. Stroke 1999; 30:470-76.
    16. Molyneux A, Kerr R, Stratton I, et al. International Subarachnoid Aneurysm Trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms:a randomised trial. Lancet 2002; 360:1267-1274.
    17. Zenteno MA, Murillo-Bonilla LM, Guinto G, et al. Sole stenting bypass for the treatment of vertebral artery aneurysms:technical case report. Neurosurgery2005; 57 (1 Suppl):E208.
    18. Robert Juszkat, Stanis aw Nowak, Micha Wieloch, et al. Complete obliteration of a basilar artery aneurysm after insertion of a self-expandable leo stent into the basilar artery without coil embolization. Korean J Radiol 2008; 9:371-374
    19. Fiorella D, Albuquerque FC, Deshmukh VR,et al. Endovascular reconstruction with the Neuroform stent as monotherapy for the treatment of uncoilable intradural pseudoaneurysms. Neurosurgery 2006; 59:291-300
    20. Marco Antonio Zenteno, Jorge Arturo Santos-Franco, Jose Maria Freitas-Modenesi, et al. Use of the sole stenting technique for the management of aneurysms in the posterior circulation in a prospective series of 20 patients. J Neurosurg 2008; 108:1104-1118
    21. Wakhloo AK, Schellhammer F, de Vries J, et al. Self-expanding and balloon-expandable stents in the treatment of carotid aneurysms:An experimental study in a canine model. AJNR Am J Neuroradiol 1994; 15:493-502
    22. Barath K, Cassot F, Rufenacht DA, et al. Anatomically shaped internal carotid artery aneurysm in vitro model for flow analysis to evaluate stent effect. AJNR Am J Neuroradiol 2004;25:1750-1759
    23. Liou TM, Liou SN, Chu KL:Intra-aneurysmal flow with helix and mesh stent placement across side-wall aneurysm pore of a straight parent vessel. J Biomech Eng 2004; 126:36-43
    24. Doerfler A, Wanke I, Egelhof T, et al. Double-stent method:therapeutic alternative for small wide-necked aneurysms. Technical note. J Neurosurg 2004; 100:150-154
    25. Fiorella D, Albuquerque FC, Han P, et al. Preliminary experience using the Neuroform stent for the treatment of cerebral aneurysms. Neurosurgery 2004; 54:6-16
    26. Szikora I, Berentei Z, Kulcsar Z, et al. Endovascular treatment of intracranial aneurysms with parent vessel reconstruction using balloon and self expandablestents. Acta Neurochir (Wien) 2006; 148:711-723
    27. Benndorf G, Herbon U, Sollmann WP, Campi A:Treatment of a ruptured dissecting vertebral artery aneurysm with double stent placement:case report. AJNR Am J Neuroradiol 2001; 22:1844-1848
    28. Alzamora, M.G., Rosahl, S.K., Lehmberg, J., Klisch, J. Lifethreatening bleeding from a vertebral artery pseudoaneurysm after anterior cervical spin approach:endovascular repair by a triple stentin-stent method. Case report. Neuroradiology,2005,47,282-286.
    29.戴建华,丁光宏,龚剑秋,等。颅内动脉瘤血流动力学数值模拟。复旦大学学报(自然科学版),2004,43(3):392-396.
    30.赵军伟,殷文义,丁光宏,等。二维弹性动脉瘤模型的血流动力学数值模拟与分析。中国生物医学工程,2007,26:730-738.
    31. Jou L. D., Wong G., Dispensa B., et al.Correlation between luminal geometry changes and hemodynamics in fusiform intracranial aneurysms, AJNR,2005,26:2357-2363.
    32. Cebral J. R., Hernandez M., and Frangi A. F. Computational analysis of blood flow dynamics in cerebral aneurysms from CTA and 3D rational angiography image data. Proc. SPIE Med. Imag. vol.2004,5369:319-329.
    33. Castro MA, Putman CM, Cebral JR. Computational Fluid Dynamics Modeling of Intracranial Aneurysms:Effects of Parent Artery Segmentation on Intra-Aneurysmal Hemodynamics. AJNR,2006,27:1703-09.
    34.黄清海,张星,施洋,等。不同类型脑动脉瘤内流体力学的三维数值模拟研究。中华神经外科疾病研究杂志,2009,2:69-72.
    35. Hassan T., Tieofeev E. V., Saito T., et al. Computational replicas:anatomic reconstructions of cerebral vessels as volume numerical grids at three-dimensional angiography, AJNR, 2004,25:1356-1365.
    36.张星,刘建民,黄清海,等。支架网孔率对脑动脉瘤血流动力学影响的三维数值模拟研究。介入放射学杂志,2009,3:213-216.
    37. M. Ohta, S.G. Wetzel, P. Dantan, et al. Rheological changes after stenting of a cerebral aneurysm:a finite element modeling approach, Cardiovasc Intervention. Radiol.2005, 28:768-772.
    38. S.C.M. Yu, J.B. Zhao, A steady flow analysis on the stented and non-stented sidewall aneurysm models, Med. Engrg. Phys.1999,21:133-141.
    39. A.K. Wakhloo, B.B. Leiber, Alteration of hemodynamics in aneurysm models by stenting: influence of stent porosity, Ann. Biomed. Engrg.1997,25:460-469.
    40. K. Barath, F. Cassot, J.H. Fasel, Influence of stent properties on the alteration of cerebral intra-aneurysmal hemodynamics:flow quantification in elastic sidewall aneurysm models, Neurol. Res.2005,27:120-128.
    41. Liou, T.M., Liou, S.N., Chu, K.L. Intra-aneurysmal flow with helix and mesh stent placement across side-wall aneurysm pore of a straight parent vessel. Journal of Biomechanical Engineering,2004,126,36-43.
    42. Liou, T.M., Li, Y.C., Juan, W.C. Numerical and experimental studies on pulsatile flow in aneurysms arising laterally from a curved parent vessel at various angles. Journal of Biomechanics,2007,40,1268-1275.
    43. Rudin, S., Z. Wang, I. Kyprianou, et al. Measurement of flow modification in phantom aneurysm model:comparison of coils and a longitudinally and axially asymmetric stent-initial findings. Radiology,2004,231:272-276.
    44. Lieber, B.B., Stancampiano, A.P., Wakhloo, A.K. Alteration of hemodynamics in aneurysm models by stenting:influence of stent porosity. Annals of Biomedical Engineering,1997,25, 460-469
    45. Yu, S.C.M., Zhao, J.B. A steady flow analysis on the stented and non-stented sidewall aneurysm models. Medical Engineering and Physics,1999,21,133-141
    46. Rhee, K., Han, M.H., Cha, S.H. Changes of flow characteristics by stenting in aneurysm models:influence of aneurysm geometry and stent porosity. Annals of Biomedical Engineering,2002; 30,894-904.
    47. A.G. Radaelli, L. Augsburger, J.R. Cebral, M. Ohta, D.A. et al. Reproducibility of haemodynamical simulations in a subject-specific stented aneurysm model-a report on the Virtual Intracranial Stenting Challenge 2007, J. Biomech.2008,41:2069-2081.
    48. M. Kim, E.I. Levy, H. Meng, L.N. Hopkins, Quantification of hemodynamic changes induced by virtual placement of multiple stents across a wide-necked basilar trunk aneurysm, Neurosurgery61 (6) (2007) 1305-1312.
    49. S. Appanaboyina, F. Mut, R. Loner, C.M. Putman, J.R. Cebral, Computational fluid dynamics of stented intracranial aneurysms using adaptive embedded unstructured grids, Int. J. Numer. Methods Fluids 2008,57:475-493.
    50. M. Ohta, C. He, T. Nakayama, A. Takahashi, D.A. Rufenacht, Three-dimensional reconstruction of a cerebral stent using micro-CT for computational simulation, J. Intell. Mater. Syst. Struct. (2007)
    51. J.R. Cebral, R. Lohner, S. Appanaboyina, C.M. Putman, Image-based computational hemodynamics methods and their application for the analysis of blood flow past endovascular devices, in:C.T. Leondes (Ed.), Biomechanical Systems Technology:(1) Computational Methods, vol.1, World Scientific,2007,1:29-85.
    1. Suzuki, J., Ohara, H., Clinicopathological study of cerebral aneurysm:origin, rupture, and growth. Journal of Neurology 1978.20,74-78.
    2. Krings T, Moller-Hartmann W, Han FJ, et al. A refined method for creating saccular aneurysms in the rabbit. Neuroradiology.2003; 45:423-429.
    3. Abruzzo T, Shengelaia GG, Dawson RC, et al. Histologic and morphologic comparison of experimental aneurysms with human intracranial aneurysms. AJNR Am J Neuroradiol.1998; 19:1309-1314.
    4. Kallmes DF, Helm GA, Hudson SB, et al. Histologic evaluation of platimum coil embolization in an aneurysm model in rabbits. Radiology.1999; 213:217-222.
    5. Mason RG, Read MS. Some species differences in fibrinolysis and blood coagulation. J Biomed Mater Res.1971; 5:121-128.
    6. Kallmes DF, Fujiwara NH, Yuen D, et al. A collagen-based coil for embolization of saccular aneurysms in a New Zealand white rabbit model. AJNR Am J Neuroradiol.2003; 24:591-596.
    7. Fujiwara NH, Kallmes DF. Healing response in elastase-induced rabbit aneurysms after embolization with a new platinum coil system. AJNR Am J Neuroradiol.2002; 23:1137-1144.
    8. Heilman C B,Kwan ESK,Wu JK:Aneurysms recurrence following endovascular balloon occlusion.[J].J Neurosurg 1992,77:260-264
    9. Nagasawa, S., Kawanishi, M., Tada, Y., Kawabata, S., Ohta, T., Intra-operative measurement of cortical arterial flow volumes in posterior circulation using Doppler sonography. Neurological research 2000.22:194-196
    10. Aenis M.,Stancampiano A.P.,Wakhloo A.K.,et,al.Modeling of Flow in A Straight Stented and Nonstented Side Wall Aneurysm Model. J of Biomech Eng,1997,119:206-212.
    11. Perktold K., Peter R., Resch M., Pulsatile non-Newtonian blood flow simulation through a bifurcation with an aneurysm, Biorheology,1989,26:1011-1030.
    12. Low M., Perktold K., Raunig R.. Hemodynamics in Rigid and Distensible Saccular Aneurysms:A Numerical Study of Pulsatile Flow Characteristics. Biorheology,1993, 30:287-298.
    13. Alvaro Valencia, Pedro Torrens, Rodrigo Rivera,et al.A mechanical study of patient-specific cerebral aneurysm models:The correlations between stress and displacement with geometrical indices Mechanics Research Communications12 February 2009
    14. Castro MA, Putman CM, Cebral JR, Computational Fluid Dynamics Modeling of Intracranial Aneurysms:Effects of Parent Artery Segmentation on Intra-Aneurysmal Hemodynamics. AJNR,2006,27:1703-09
    15. Drexler H, Hornig B. Endothelial dysfunction in human disease. J MolCell Cardiol 1999; 31:51-60.
    16. Gibbons GH, Dzau VJ. The emerging concept of vascular remodeling.N Engl J Med 1994; 330:1431-8.
    17. Tateshima S, Murayama Y, Villablanca JP, et al. In vitro measurementof fluid-induced wall shear stress in unruptured cerebral aneurysmsharboring blebs. Stroke 2003; 34:187-92.
    18. Tateshima S, Murayama Y, Villablanca JP, et al. Intraaneurysmal flowdynamics study featuring an acrylic aneurysm model manufacturedusing a computerized tomography angiogram as a mold. J Neurosurg2001;95:1020-7
    19. Berthiaume F, Frangos JA. Flow-induced prostacyclin production ismediated by a pertussis toxin-sensitive G protein. FEBS Lett 1992;308:277-9
    20. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells inthe relaxation of arterial smooth muscle by acetylcholine. Nature 1980; 288:373-6.
    21. Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its rolein atherosclerosis. Jama 1999; 282:2035-42.
    22. Miller VM, Burnett JCJ. Modulation of NO and endothelin by chronic increase in blood flow in canine femoral arteries. Am J Physiol 1992; 263:103-8.
    23. Greenhill NS, Stehbens WE. Scanning electron microscopic investigation of the afferent arteries of experimental femoral arteriovenous fistulae in rabbits. Pathology 1977; 19:22-7.
    24. Matsuda H, Zhuang YJ, Singh TM,et al. Adaptive remodeling of internal elastic lamina and endothelial lining during flow-induced arterial enlargement. Arterioscler Thromb Vase Biol 1993,19:2298-307.
    25. Fukuda S, Hashimoto N, Naritomi H, et al. Prevention of rat cerebral aneurysm formation by inhibition of nitric oxide synthase. Circulation 2000,101:2532-8.
    26. Sadamasa N, Nozaki K, Hashimoto N. Disruption of gene for inducible nitric oxide synthase reduces progression of cerebral aneurysms. Stroke 2003,34:2980-4.
    27. Meng H, Wang Z, Hoi Y, et al.Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation. Stroke 2007, 38:1924-31.
    28. Masaaki Shojima,Marie Oshima,Magnitueude and Role of Wall Shear Stress on Cerebral Aneurysm Computational Fluid Dynamic Study of 20 Middle Cerebral Artery Aneurysms[J].Stroke.2004,35:2500.
    29. Liepsch, D.W., Steiger, H.J., Poll, A., Reulen, H. J.. Hemodynamic stress in lateral saccular aneurysms. Biorheology,1987; 24,689-710
    30. Liou, T.M., Liao, C.C.. Flowfields in lateral aneurysm arising from parent vessels with different curvatures using PTV. Experiments in Fluids 1997,23:288-298.
    31. Burleson AC,Strother CM,Ttlritto VT.Computer modeling of intracranial saccular and lateral aneurysms for the study of their hemodynamics. Neurosurgery,1995,37:774-784.
    32. Cebral JR,Castro MA,Burgess JE,et al. Characterization of Cerebral Aneurysms for Assessing Risk of Rupture By Using Patient-Specific Computational Hemodynamics Models. AJNR Am J Neuroradiol,2005,26:2550-2559.
    33. Brownlee, R.D., Tranmer, B.I., Sevick, R.J.,et al. Spontaneous thrombosis of an unruptured anterior communicating artery aneurysm. Stroke,2003,26,1945-1949
    34. Steiger HJ, Reulen HJ. Low frequency flow fluction in aneurysm. Acta Neurochir,1986,83: 131-137.
    35. T.M., Liao, C.C., Flowfields in lateral aneurysm arising from parent vessels with different curvatures using PTV. Experiments in Fluids.1997,23,288-298.
    36. Niimi, H., Kawano, Y., Sugiyama, I.Structure of blood flow through a curved vessel with an aneurysm. Biorheology 1984.21,603-615.
    37. T.M., Liao, C.C.. Study of pulsatile flows in lateral aneurysm models on a straight parent vessel using particle tracking velocimetry. Journal of Flow Visualization and Image Processing 1997,3:207-223.
    38. Matthew D.Ford, Sang-Wook Lee, Stephen P.Lownie et al On the effect of parent-aneurysm angle on flow patterns in basilar tip aneurysm:Towards a surrogate geometric marker of intra-aneurysmal hemodynamics Journal of Biomechanics2008,41:241-248
    39. H. Ujiie, H. Tachibana, O. Hiramatsu, et al, Effects of size and shape (aspect ratio) on the hemodynamics of saccular aneurysms:a possible index for surgical treatment of intracranial aneurysms, Neurosurgery 1999,45:119-130.
    40. S.M. Russel, K. Lin, S.A. Hahn, J.J. Jafar, Smaller cerebral aneurysms producing more extensive subarachnoid hemorrhage following rupture:a radiological investigation and discussion of theoretical determinants, J. Neurosurg.2003,99:248-253.
    41. H. Zakaria, H. Yonas, A.M. Robertson, Analysis of the importance of the ratio of aneurysm size to parent artery diameter on hemodynamic condition, J. Biomech.2006,39:S272
    42. J.R. Cebral, M.A. Castro, J.E. Burgess, R.S. Pergolizzi, et al Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models, Am. J. Neuroradiol.2005,26:2550-2559.
    43. Tateshima S, Murayama Y, Villablanca JP, et al. Intraaneurysmal flow dynamics study featuring an acrylic aneurysm model manufactured using a computerized tomography angiogram as a mold. J Neurosurg 2001; 95:1020-7.
    44. B., Harbaugh, R., Raghavan, M.. Three-dimensional geometrical characterization of cerebral aneurysms. Annals of Biomedical Engineering.2004,32:264-273.
    45. Juvela, S. Prehemorrhage risk factors for fatal intracranial aneurysm rupture. Stroke,2003,34: 1852-1857
    1. D. Sforza, C.M. Putman, J.R. Cebral,et al.Hemodynamics of Cerebral Aneurysms,Ann. Rev. Fluid Mech.2009,41:91-107.
    2. Rooij, N.K., Linn, F.H., van der Plas, et al. Incidence of subarachnoid haemorrhage:a systematic reviewwith emphasis on region, age, gender and time trends. Journal of Neurology, Neurosurgery and Psychiatry 2007,78:1365-1374.
    3. Tomasello, F., D'Avella, D., Salpietro, F.M.,et al. Asymptomatic aneurysms. Literature meta-analysis and indications for treatment. Journal of Neurosurgical Sciences 1998,42: 47-51.
    4. Wardlaw, J.M., White, P.M.. The detection and management of unruptured intracranial aneurysms. Brain,2000,123:205-221.
    5. A. Ringer, D. Lopes, A. Boulos, et al. Current techniques for endovascular treatment of intracranial aneurysms, Semin. Cerebrovasc. Dis. Stroke 1(1) (2001).
    6. Molyneux A, Kerr R, Stratton I, et al. International Subarachnoid Aneurysm Trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms:a randomised trial. Lancet 2002; 360:1267-1274
    7. P. Lylyk, A. Ferrario, B. Pasbon, et al. Buenos Aires experience with the Neuroform self-expanding stent for the treatment of intracranial aneurysms, J. Neurosurg. 2005,102(2)235-241.
    8. K.O. Lobald, H. Yilmaz, A. Chouiter, et al. Intracranial aneurysm stenting:follow-up with MR angiography, J. Magn. Reson. Imag.2006,24:418-422.
    9. I. Szikora, Z. Berentei, Z. Kulcsar,et al. Endovascular treatment of intracranial aneurysms with parent vessel reconstruction using balloon and self expandable stents, Acta Neurochir. 2006,148:711-723.
    10. Zenteno MA, Murillo-Bonilla LM, Guinto G, et al. Sole stenting bypass for the treatment of vertebral artery aneurysms:technical case report. Neurosurgery2005; 57 (1 Suppl):E208
    11. Vanninen R, Manninen H, Ronkainen A,et al. Broad-based intracranial aneurysms: thrombosis induced by stent placement. AJNR Am J Neuroradiol 2003; 24:263-266
    12. Fiorella D, Albuquerque FC, Deshmukh VR,et al. Endovascular reconstruction with the Neuroform stent as monotherapy for the treatment of uncoilable intradural pseudoaneurysms. Neurosurgery 2006; 59:291-300
    13. Boris Lubicz, Laurent Collignon, Florence Lefranc, et al. Circumferential and fusiform intracranial aneurysms:reconstructive endovascular treatment with self-expandable stents. Neuroradiology 2008; 50:499-507
    14. Rinkel GJ, Djibuti M, Algra A, et al. Prevalence and risk of rupture of intracranial aneurysms: a systematic review. Stroke 1998; 29(1):251-256
    15. Linn FH, Rinkel GJ, Algra A, et al. Incidence of subarachnoid hemorrhage:role of region year and rate of CT scanning:a metaanalysis. Stroke 1996; 27:625-29
    16. M. Ohta, S.G. Wetzel, P. Dantan, et al. Rheological changes after stenting of a cerebral aneurysm:a finite element modeling approach, Cardiovasc Intervention. Radiol. 2005,28:768-772.
    17. S.C.M. Yu, J.B. Zhao, A steady flow analysis on the stented and non-stentedsidewall aneurysm models, Med. Engrg. Phys.1999,21:133-141.
    18. A.K. Wakhloo, B.B. Leiber, Alteration of hemodynamics in aneurysm models by stenting: influence of stent porosity, Ann. Biomed. Engrg.1997,25:460-469.
    19. K. Barath, F. Cassot, J.H. Fasel, Influence of stent properties on the alteration of cerebral intra-aneurysmal hemodynamics:flow quantification in elastic sidewall aneurysm models, Neurol. Res.2005,27:120-128.
    20. L.D. Jou, C.M. Quick, W.L. Young, et al.Computational approach to quantify hemodynamic forces in giant cerebral aneurysms, Amer. J. Neuroradiol.2004,24(9) 1804-1810.
    21. D. Steinman, J. Milner, C. Norley, et al. Image-based computational simulation of flow dynamics in a giant intracranial aneurysm, Amer. J. Neuroradiol.2003,24(4) 559-566.
    22. J.R. Cebral, M. Hernandez, A.F. Frangi. Computational analysis of blood flow dynamics in cerebral aneurysms from CTA and 3D rotational angiography image data, in:ICCB03, Zaragoza, Spain, September,2003.
    23. J.R. Cebral, M. Hernandez, A.F. Frangi, et al. Subject-specific modeling of intracranial aneurysms, in:SPIE Medical Imaging 2004, San Diego, California, February 2004.
    24. J.R. Cebral, M.A. Castro, J.E. Burgess, et al. Cerebral aneurysm hemodynamics modeling from 3D rotational angiography, in:ISBI2004, Arlington, Virginia, April 2004.
    25. A.G. Radaelli, L. Augsburger, J.R. Cebral, et al. Reproducibility of haemodynamical simulations in a subject-specific stented aneurysm model-a report on the Virtual Intracranial Stenting Challenge 2007, J. Biomech.2008,41(10) 2069-2081.
    26. M. Kim, E.I. Levy, H. Meng, et al.Quantification of hemodynamic changes induced by virtual placement of multiple stents across a wide-necked basilar trunk aneurysm, Neurosurgery2007,61(6) 1305-1312.
    27. S. Appanaboyina, F. Mut, R. Loner, et al. Computational fluid dynamics of stented intracranial aneurysms using adaptive embedded unstructured grids, Int. J. Numer. Methods Fluids 2008,57:475-493.
    28. M. Ohta, C. He, T. Nakayama, et al. Three-dimensional reconstruction of a cerebral stent using micro-CT for computational simulation, J. Intell. Mater. Syst. Struct. (2007).
    29. Robert Juszkat, Stanis aw Nowak, Micha Wieloch, et al. Complete obliteration of a basilar artery aneurysm after insertion of a self-expandable leo stent into the basilar artery without coil embolization. Korean J Radiol 2008; 9:371-374
    30. Marco Antonio Zenteno, Jorge Arturo Santos-Franco, Jose Maria Freitas-Modenesi, et al. Use of the sole stenting technique for the management of aneurysms in the posterior circulation in a prospective series of 20 patients. J Neurosurg 2008; 108:1104-1118
    31. Benndorf G, Herbon U, Sollmann WP, Campi A:Treatment of a ruptured dissecting vertebral artery aneurysm with double stent placement:case report. AJNR Am J Neuroradiol 2001; 22:1844-1848
    32. Zhao WY, Krings T, Alvarez H, et al.Management of spontaneous haemorrhagic intracranial vertebrobasilar dissection:review of 21 consecutive cases. Acta Neurochir (Wien). 2007;149(6):585-96; discussion 596.
    33. Wakhloo AK, Schellhammer F, de Vries J, et al. Self-expanding and balloon-expandable stents in the treatment of carotid aneurysms:An experimental study in a canine model. AJNR Am J Neuroradiol 1994; 15:493-502
    34. Geremia G, Haklin M, Brennecke L:Embolization of experimentally created aneurysms with intravascular stent devices. AJNR Am J Neuroradiol 1994; 15:1223-1231
    35. Wakhloo AK, Tio FO, Lieber BB, et al. Self-expanding nitinol stents in canine vertebral arteries:Hemodynamics and tissue response. AJNR Am J Neuroradiol 1995; 16:1043-1051
    36. Lieber BB, Gounis MJ:The physics of endoluminal stenting in the treatment of cerebrovascular aneurysms. Neurol Res 2002; 1:[24 Suppl]:S33-S42
    37. Barath K, Cassot F, Rufenacht DA,et al. Anatomically shaped internal carotid artery aneurysm in vitro model for flow analysis to evaluate stent effect. AJNR Am J Neuroradiol 2004; 25:1750-1759
    38. Liou TM, Liou SN, Chu KL. Intra-aneurysmal flow with helix and mesh stent placement across side-wall aneurysm pore of a straight parent vessel. J Biomech Eng 2004; 126:36-43
    39. Liu J, Zhao W, Zhang X, et al. Pathology of Stented Common Carotid Aneurysm in Dogs Comparison between Stenting and Stent-Assisted Coiling. Interventional Neuroradiology 2005;11:333-340
    40. Doerfler A, Wanke I, Egelhof T, et al. Double-stent method:therapeutic alternative for small wide-necked aneurysms. Technical note. J Neurosurg 2004; 100:150-15
    41.张星,刘建民,黄清海,等。支架网孔率对脑动脉瘤血流动力学影响的三维数值模拟研究。介入放射学杂志,2009,3:213-216。
    42. J.R. Cebral, R. Lohner, S. Appanaboyina, et al.Image-based computational hemodynamics methods and their application for the analysis of blood flow past endovascular devices, in: C.T. Leondes (Ed.), Biomechanical Systems Technology:(1) Computational Methods, vol.1, World Scientific,2007,2:29-85.
    43. R. Loner, J. Baum, E. Mestreau, et al. Adaptive embedded unstructured grid methods, Int. J. Numer. Methods 2003,60:641-660.
    44. J.R. Cebral, R. Loner, Efficient simulation of blood flow past complex nendovascular devices using an adaptive embedding technique, IEEE Trans. Med. Imag. (2005). special issue on Vascular Imaging
    45. Sunil Appanaboyina, Fernando Mut, Rainald Loner, et al.Simulation of intracranial aneurysm stenting:Techniques and challengesComput. Methods Appl. Mech. Engrg.2009
    46. R. Loner, Regridding surface triangulations, J. Comput. Phys.1996,126:1-10,
    47. R. Loner, Automatic unstructured grid generators, Finite Elem. Anal. Des.1997:111-134.
    48. K. Perktold, G. Rappitsch, Computer Simulation of Arterial Blood Flow, Vessel Diseases Under the Aspect of Local Hemodynamics, Biological Flows Plenum Press,1995,.83-114.
    49. J.R. Cebral, M.A. Castro, S. Appanaboyina, et al. Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics:technique and sensitivity, IEEE Trans. Med. Imag.2005,24:457-467.
    50. L"ow M, Perktold K and Raunig R Hemodynamics in rigid and distensible saccular aneurysms:a numerical study of pulsatile flow characteristics Biorheology 1993,30:287-98
    51. Dempere-Marco, Oubel, Castro, et al. CFD analysis incorporating the influence of wall motion:application to intracranial aneurysms. Lecture Notes in Computer Science,2006, 4919,438-445
    52. Oubel, E., De Craene, M., Putman, C.M., et al. Analysis of intracranial aneurysm wall motion and its effects on hemodynamic patterns. In:Proceedings of SPIE Medical Imaging:Physics of Medical Imaging Image Reconstruction,,2007.6511:65112A, San Diego, CA
    53. Benard, N., D. Coisne, E. Donal, et al.. Experimental study of laminar blood flow through an Effect of Stent Design 739 artery treated by a stent implantation:characterisation of intra-stent wall shear stress. J. Biomech.,2003,36:991-998
    54. LaDisa, J. F., Jr., I. Guler, et al. Three dimensional computational fluid dynamics modeling of alterations in coronary wall shear stress produced by stent implantation. Ann. Biomed. Eng., 200331:972-980.
    55. LaDisa, J. F., Jr., L. E. Olson, et al. Stent design properties and deployment ratio influence indexes of wall shear stress:a three-dimensional computational fluid dynamics investigation within a normal artery. J. Appl. Physiol.,2004,97:424-430:discussion 416.
    56. LaDisa, J. F., Jr., L. E. Olson, et al. Circumferential vascular deformation after stent implantation alters wall shear stress evaluated with time-dependent 3D computational fluid dynamics models. J. Appl. Physiol.,2005,98:947-957.
    57. LaDisa, J. F., Jr., L. E. Olson, et al. Alterations in wall shear stress predict sites of neointimal hyperplasia after stent implantation in rabbit iliac arteries. Am. J. Physiol. Heart Circ. Physiol.,2005,288:H2465-2475
    58. Liffman, K., M. M. Lawrence-Brown, J. B. Semmens, et al. Analytical modeling and numerical simulation of forces in an endoluminal graft. J. Endovasc. Ther.,2001,8:358-371
    59. Yu, S. C., and J. B. Zhao. A steady flow analysis on the sented and non-stented sidewall aneurysm models. Med. Eng. Phys.,1999,21:133-141.
    60. Minsuok Kim, Dale B. Taulbee, Markus Tremmel,et al.Comparison of Two Stents in Modifying Cerebral Aneurysm HemodynamicsAnnals of Biomedical Engineering.2008,36: 726-741
    61. Krings, T., F. J. Hans, W. Moller-Hartmann, et al.. Treatment of experimentally induced aneurysms with stents. Neurosurgery,2005,56:1347-1359:discussion 1360.
    62. Alzamora, Rosahl, Lehmberg, et al. Lifethreatening bleeding from a vertebral artery pseudoaneurysm after anterior cervical spin approach:endovascular repair by a triple stentin-stent method. Case report. Neuroradiology,2005,47,282-286.
    63. Burbelko, M. A., L. A. Dzyak, N. A. Zorin, et al. Stent-graft placement for wideneck aneurysm of the vertebrobasilar junction. AJNR Am. J. Neuroradiol,2004,25:608-610.
    64.4Rudin, S., Z. Wang, I. Kyprianou, et al. Measurement of flow modification in phantom aneurysm model:comparison of coils and a longitudinally and axially asymmetric stent-initial findings. Radiology,2004,231:272-276.
    65. Yu, S.C.M., Zhao, J.B.. A steady flow analysis on the stented and non-stented sidewall aneurysm models. Medical Engineering and Physics,1999,21,133-141
    66. Rhee, K., Han, M.H., Cha, S.H.. Changes of flow characteristics by stenting in aneurysm models:influence of aneurysm geometry and stent porosity. Annals of Biomedical Engineering,200230,894-904.
    67. Liou, T.M., Li, Y.C., Juan, W.C.. Numerical and experimental studies on pulsatile flow in aneurysms arising laterally from a curved parent vessel at various angles. Journal of Biomechanics,2007,40,1268-1275.
    68. Bando, K., Berger, S.A.. Research on fluid-dynamic design criterion of stent used for treatment of aneurysms by means of computational simulation. Computational Fluid Dynamics Journal,2003,11,527-531.
    69. Stuhne, G.R., Steinman, D.A.. Finite-element modeling of the hemodynamics of stented aneurysms. Journal of Biomechanical Engineering,2004,126:382-387.
    70. Tong-Miin Liou, Yi-Chen Li. Effects of stent porosity on hemodynamics in a sidewall aneurysm model Journal of Biomechanics 2008,41:1174-1183
    71. Hashimoto, T., H. Meng, and W. L. Young. Intracranial aneurysms:links among inflammation, hemodynamics and vascular remodeling. Neurol. Res.,2006,28:372-380
    72. Meng, H., D. D. Swartz, Z. J. Wang, et al. A model system for mapping vascular responses to complex hemodynamics at arterial bifurcations in vivo. Neurosurgery,2006,59:1094-1101.
    73. Shojima, M., M. Oshima, K. Takagi, et al. Magnitude and role of wall shear stress on cerebral aneurysm:computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke, 2004,35:2500-2505.
    74. Vanninen, R., H. Manninen, and A. Ronkainen. Broadbased intracranial aneurysms: thrombosis induced by stent placement. AJNR Am. J. Neuroradiol,2003,24:263-266.
    75. A.M. Malek, S.L. Alper, S. Izumo, Hemodynamic shear stress and its role in atherosclerosis, J. Am. Med. Assoc.1999,282:2035-2042
    76. Miller VM, Burnett JCJ. Modulation of NO and endothelin by chronic increase in blood flow in canine femoral arteries. Am J Physiol 1992; 263:H103-8.
    77. Greenhill NS, Stehbens WE. Scanning electron microscopic investigation of the afferent arteries of experimental femoral arteriovenous fistulae in rabbits. Pathology 1977; 19:22-7.
    78. Matsuda H, Zhuang YJ, Singh TM, et al. Adaptive remodeling of internal elastic lamina and endothelial lining during flow-induced arterial enlargement. Arterioscler Thromb Vasc Biol 1993;19:2298-307.
    79. Tateshima S, Tanishita K, Omura H, et al. Intra-aneurysmal hemodynamics during the growth of an unruptured aneurysm:in vitro study using longitudinal CT angiogram database. AJNR Am J Neuroradiol 2007;28:622-7.
    80. Drexler H, Hornig B. Endothelial dysfunction in human disease. J Mol Cell Cardiol 1999;31:51-60.
    81. Gibbons GH, Dzau VJ. The emerging concept of vascular remodeling. N Engl J Med 1994;330:1431-8.
    82. Langille BL, O'Donnell F. Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Science 1986;231:405-7
    83. Malek AM, Izumo S. Molecular aspects of signal transduction of shear stress in the endothelial cell. J Hypertens 1994; 12:989-99.
    84. Malek AM, Jackman R, Rosenberg RD, et al. Endothelial expression of thrombomodulin is reversibly regulated by fluid shear stress. Circ Res 1994;74:852-60.
    85. Shyy YJ, Hsieh HJ, Usami S, et al. Fluid shear stress induces a biphasic response of human monocyte chemotactic protein 1 gene expression in vascular endothelium. Proc Natl Acad Sci USA1994;91:4678-82.
    86. Fukuda S, Hashimoto N, Naritomi H, et al. Prevention of rat cerebral aneurysm formation by inhibition of nitric oxide synthase. Circulation 2000;101:2532-8.
    87. Sadamasa N, Nozaki K, Hashimoto N. Disruption of gene for inducible nitric oxide synthase reduces progression of cerebral aneurysms. Stroke 2003;34:2980-4.
    88. Meng H, Wang Z, Hoi Y,et al. Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation. Stroke 2007;38:1924-31.
    89. Hashimoto N, Handa H, Hazama F. Experimentally induced cerebral aneurysms in rats. Surg Neurol 1978;10:3-8.
    90. Hashimoto N, Handa H, Hazama F. Experimentally induced cerebral aneurysms in rats:part Ⅱ. Surg Neurol 1979; 11:243-6.
    91. Hashimoto N, Handa H, Hazama F. Experimentally induced cerebral aneurysms in rats:Part Ⅲ. Pathology. Surg Neurol 1979; 11:299-304.
    92. Berthiaume F, Frangos JA. Flow-induced prostacyclin production is mediated by a pertussis toxin-sensitive G protein. FEBS Lett 1992;308:277-9.
    93. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980; 288:373-6.
    94. Honda HM, Hsiai T, Wortham CM, et al. A complex flow pattern of low shear stress and flow reversal promotes monocyte binding to endothelial cells. Atherosclerosis 2001;158:385-90.
    95. Kataoka K, Taneda M, Asai T, et al. Structural fragility and inflammatory response of ruptured cerebral aneurysms. a comparative study between ruptured and unruptured cerebral aneurysms. Stroke 1999;30:1396-401.
    96. Jin D, Sheng J, Yang X, et al. Matrix metalloproteinases and tissue inhibitors of metalloproteinases expression in human cerebral ruptured and unruptured aneurysm. Surg Neurol 2007;68(Suppl 2):S11-7.
    97. Pannu H, Kim DH, Guo D, et al. The role of MMP-2 and MMP-9 polymorphisms in sporadic intracranial aneurysms. JNeurosurg 2006; 105:418-23.
    98. Wilson WR, Anderton M, Schwalbe EC, et al. Matrix metalloproteinase-8 and-9 are increased at the site of abdominal aortic aneurysmrupture. Circulation 2006;113:438-45.
    99. Kosierkiewicz TA, Factor SM, Dickson DW. Immunocytochemical studies of atherosclerotic lesions of cerebral berry aneurysms. J Neuropathol Exp Neurol 1994;53:399-406.
    100. Ohno K, Arai T, Isotani E, et al. Ischaemic complication following obliteration of unruptured cerebral aneurysms with atherosclerotic or calcified neck. Acta Neurochir (Wien) 1999; 141:699-706.
    101. Bruno G, Todor R, Lewis I, et al. Vascular extracellular matrix remodeling in cerebral aneurysms. J Neurosurg 1988;89:431-40.
    102. Brooks AR, Lelkes PI, Rubanyi GM. Gene expression profiling of vascular endothelial cells exposed to fluid mechanical forces:relevance for focal susceptibility to atherosclerosis. Endothelium 2004; 11:45-1157.
    103. Cooke, J.P., Stamler, J., Andon, N., et al. Flow stimulates endothelial cells to release a nitrovasodilator that is potentiated by reduced thiol. American Journal of Physiology 1990,259, H804-H812.
    104. Tong-Miin Liou, Yi-Chen Li,Te-Chuan Wang. Hemodynamics altered by placing helix stents in an aneurysm at a 45° angle to the curved vessel Phys. Med. Biol.2008,53: 3763-3776
    105. Brown C H, Leverett L B, Lewis CW,et al Morphological, biochemical, and functional changes in human platelets subjected to shear stress J. Lab. Clin. Med.1975,86:462-71
    106. Benard N, Coisne D, Donal E and Perrault R Experimental study of laminar blood flow through an artery treated by a stent implantation:characterisation of intra-stent wall shear stress J. Biomech.2003,36:991-8
    107. Cebral, J. R., M. A. Castro, J. E. Burgess, et al. Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. AJNR Am. J. Neuroradiol,2005,26:2550-2559.
    108. Liou, T. M., and S. N. Liou. Pulsatile flows in a lateral aneurysm anchored on a stented and curved parent vessel. Exp. Mech 2004,44:253-260.
    109. Steiger HJ, Reulen HJ. Low frequency flow fluction in aneurysm. Acta Neurochir,1986,83:131-137
    110. T.M., Liao, C.C.. Flowfields in lateral aneurysm arising from parent vessels with different curvatures using PTV. Experiments in Fluids 1997,23:288-298.
    111. Ujiie H, Tachibana H, Hiramatsu O, et al. Effects of size and shape (aspect ratio) on the hemodynamics of saccular aneurysms:Apossible index for surgical treatment of intracranial aneurysms. Neurosurgery,1999,45:119-130.
    112. Ujiie H, Tamano Y, Sasaki K,et al. Is the aspect ratio a reliable index for predicting the rupture of a saccular aneurysm? Neurosurgery,2001,48:495-503.
    113. Burleson, A. C., and V. T. Turitto. Identification of quantifiable hemodynamic factors in the assessment of cerebral aneurysm behavior. On behalf of the Subcommittee on Biorheology of the Scientific and Standardization Committee of the ISTH. Thromb. Haemost.1996,76: 118-123.
    114. Hashimoto, S., S. Manabe, Y. Matsumoto, et al. The effect of pulsatile shear flow on thrombus formation and hemolysis. In:Proceedings of the 22nd Annual WAS International Conference, July 23-28,2000, Chicago, IL.2000,4:2461-2463.
    115. Hashimoto, S., K. Nishiguchi, Y. Abe, et al. Thrombus formation under pulsatile flow:effect of periodically fluctuating shear rate. Jpn. J. Artif. Organs,1990,19:1207-1210.
    116. Lanzino, G., A. K. Wakhloo, R. D. Fessler, et al. Hopkins. Efficacy and current limitations of intravascular stents for intracranial internal carotid, vertebral, and basilar artery aneurysms. J. Neurosurg.1999,91:538-546.
    117. Wakhloo, A. K., G. Lanzino, B. B. Lieber, et al. Stents for intracranial aneurysms:the beginning of a new endovascular era? Neurosurgery,1998,43:377-379.
    118. Juvela, S. Prehemorrhage risk factors for fatal intracranial aneurysm rupture. Stroke,200334, 1852-1857.
    1. Fukuda S, Hashimoto N, Naritomi H, et al. Prevention of rat cerebral aneurysm formation by inhibition of nitric oxide synthase. Circulation 2000; 101:2532-8.
    2. Sadamasa N, Nozaki K, Hashimoto N et al. Disruption of gene for inducible nitric oxide synthase reduces progression of cerebral aneurysms. Stroke 2003;34:2980-4.
    3. Meng H, Wang Z, Hoi Y, et al. Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation. Stroke 2007;38:1924-31
    4. Hashimoto N, Handa H, Hazama F et al. Experimentally induced cerebral aneurysms in rats. Surg Neurol 1978; 10:3-8.
    5. Hashimoto N, Handa H, Hazama Fet al. Experimentally induced cerebral aneurysms in rats: partⅡ. Surg Neurol 1979; 11:243-6.
    6. Hashimoto N, Handa H, Hazama F et al. Experimentally induced cerebral aneurysms in rats: PartⅢ. Pathology. SurgNeurol 1979; 11:299-304.
    7. Cebral, J. R., M. A. Castro, S. Appanaboyina,et al. Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics:technique and sensitivity. IEEE Trans. Med. Imaging 24:457-467,2005.
    8. Cebral, J. R., M. A. Castro, J. E. Burgess, et al. Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. AJNR Am. J. Neuroradiol.26:2550-2559,2005.
    9. Hashimoto, T., H. Meng, W. L. Young. Intracranial aneurysms:links among inflammation, hemodynamics and vascular remodeling. Neurol. Res.28:372-380,2006
    10. Liou, T. M., and S. N. Liou. Pulsatile flows in a lateral aneurysm anchored on a stented and curved parent vessel. Exp. Mech.44:253-260,2004
    11. Liou, T. M., S. N. Liou, and K. L. Chu. Intra-aneurysmal flow with helix and mesh stent placement across side-wall aneurysm pore of a straight parent vessel. J. Biomech. Eng. 126:36-43,2004
    12. Shojima M, Oshima M, Takagi K, et al.Magnitude and role of wall shear stress on cerebral aneurysm:Computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke 35:2500-2505,2004.
    13. Tzima E, Del Pozo MA, Kiosses WB, et al.Activation of Racl by shear stress in endothelial cells mediates both cytoskeletal reorganization and effects on gene expression. EMBO J 21:6791-6800,2002.
    14. Hashimoto S, Nishiguchi K, Abe Y, et al.Thrombus formation under pulsatile flow:Effect of periodically fluctuating shear rate. Jpn J Artif Organs 19:1207-1210,1990.
    15. Hashimoto T, Meng H, Young WLet al. Intracranial aneurysms:Links among inflammation, hemodynamics and vascular remodeling. Neurol Res 28:372-380,2006.
    16. P. Lylyk, A. Ferrario, B. Pasbon, et al. Buenos Aires experience with the Neuroform self-expanding stent for the treatment of intracranial aneurysms, J. Neurosurg.102 (2) (2005) 235-241.
    17. K.O. Lobald, H. Yilmaz, A. Chouiter, et al.Intracranial aneurysm stenting:follow-up with MR angiography, J. Magn. Reson. Imag.24 (2006) 418-422.
    18. I. Szikora, Z. Berentei, Z. Kulcsar, et al.Endovascular treatment of intracranial aneurysms with parent vessel reconstruction using balloon and self expandable stents, Acta Neurochir. 148(2006)711-723.
    19. Zenteno MA, Murillo-Bonilla LM, Guinto G, et al. Sole stenting bypass for the treatment of vertebral artery aneurysms:technical case report. Neurosurgery2005; 57 (1 Suppl):E208
    20. Vanninen R, Manninen H, Ronkainen A. Broad-based intracranial aneurysms:thrombosis induced by stent placement. AJNR Am J Neuroradiol 2003; 24:263-266
    21. Fiorella D, Albuquerque FC, Deshmukh VR,et al. Endovascular reconstruction with the Neuroform stent as monotherapy for the treatment of uncoilable intradural pseudoaneurysms. Neurosurgery 2006; 59:291-300
    22. Boris Lubicz, Laurent Collignon, Florence Lefranc, et al. Circumferential and fusiform intracranial aneurysms:reconstructive endovascular treatment with self-expandable stents. Neuroradiology 2008; 50:499-507
    23. Rinkel GJ, Djibuti M, Algra A, et al. Prevalence and risk of rupture of intracranial aneurysms: a systematic review. Stroke 1998; 29(1):251-256
    24. Linn FH, Rinkel GJ, Algra A, et al. Incidence of subarachnoid hemorrhage:role of region year and rate of CT scanning:a metaanalysis. Stroke 1996; 27:625-29
    25. M. Ohta, S.G. Wetzel, P. Dantan, et al. Rheological changes after stenting of a cerebral aneurysm:a finite element modeling approach, Cardiovasc Intervention. Radiol.28 (2005) 768-772.
    26. S.C.M. Yu, J.B. Zhao. A steady flow analysis on the stented and non-stented sidewall aneurysm models, Med. Engrg. Phys.21 (1999) 133-141.
    27. A.K. Wakhloo, B.B. Leiber, Alteration of hemodynamics in aneurysm models by stenting: influence of stent porosity, Ann. Biomed. Engrg.25 (1997) 460-469.
    28. K. Barath, F. Cassot, J.H. Fasel, Influence of stent properties on the alteration of cerebral intra-aneurysmal hemodynamics:flow quantification in elastic sidewall aneurysm models, Neurol. Res.27 (2005) 120-128.
    29. J.R. Cebral, R. Lohner, S. Appanaboyina,et al. Image-based computational hemodynamics methods and their application for the analysis of blood flow past endovascular devices, in:C.T. Leondes (Ed.), Biomechanical Systems Technology:(1) Computational Methods, vol.1, World Scientific,2007, pp.29-85 (Chapter 2).
    30. R. Lo ner, J. Baum, E. Mestreau, et al. Adaptive embedded unstructured grid methods, Int. J. Numer. Methods 60 (2003) 641-660.
    31. J.R. Cebral, R. Loner, Efficient simulation of blood flow past complex endovascular devices using an adaptive embedding technique, IEEE Trans. Med. Imag. (2005). special issue on Vascular Imaging
    32. Yasui N, Suzuki A, Nishimura H, et al. Long-term follow-up study of unruptured intracranial aneurysms. Neurosurgery 1997; 40(6):1155-1159; discussion 1159-1160
    33. Molyneux A, Kerr R, Stratton I, et al. International Subarachnoid Aneurysm Trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms:a randomised trial. Lancet 2002; 360:1267-1274
    34. Marco Antonio Zenteno, Jorge Arturo Santos-Franco, Jose Maria Freitas-Modenesi, et al. Use of the sole stenting technique for the management of aneurysms in the posterior circulation in a prospective series of 20 patients. J Neurosurg 2008; 108:1104-1118
    35. Lanzino G, Wakhloo AK, Fessler RD, et al. Efficacy and current limitations of intravascular stents for intracranial internal carotid, vertebral, and basilar artery aneurysms. J Neurosurg 1999; 91:538-546
    36. M. Ohta, S.G. Wetzel, P. Dantan, et al. Rheological changes after stenting of a cerebral aneurysm:a finite element modeling approach, Cardiovasc Intervention. Radiol.28 (2005)768-772.
    37. S.C.M. Yu, J.B. Zhao, A steady flow analysis on the stented and non-stentedsidewall aneurysm models, Med. Engrg. Phys.21 (1999) 133-141.
    38. A.K. Wakhloo, B.B. Leiber, Alteration of hemodynamics in aneurysm models by stenting: influence of stent porosity, Ann. Biomed. Engrg.25 (1997) 460-469.
    39. K. Barath, F. Cassot, J.H. Fasel. Influence of stent properties on the alteration of cerebral intra-aneurysmal hemodynamics:flow quantification in elastic sidewall aneurysm models, Neurol. Res.27 (2005) 120-128.
    40.张星,刘建民,黄清海,等。支架网孔率对脑动脉瘤血流动力学影响的三维数值模拟研究。介入放射学杂志,2009,3:213-216
    41. D. Steinman, J. Milner, C. Norley, et al.Image-based computational simulation of flow dynamics in a giant intracranial aneurysm, Amer. J. Neuroradiol.24 (4) (2003) 559-566.
    42. J.R. Cebral, M. Hernandez, A.F. Frangi,et al. Computational analysis of blood flow dynamics in cerebral aneurysms from CTA and 3D rotational angiography image data, in:ICCB03, Zaragoza, Spain, September,2003.
    43. J.R. Cebral, M. Hernandez, A.F. Frangi, et al.Subject-specific modeling of intracranial aneurysms, in:SPIE Medical Imaging 2004, San Diego, California, February 2004.
    44. J.R. Cebral, M.A. Castro, J.E. Burgess,et al. Cerebral aneurysm hemodynamics modeling from 3D rotational angiography, in:ISBI2004, Arlington, Virginia, April 2004.
    45. A.G. Radaelli, L. Augsburger, J.R. Cebral, et al. Reproducibility of haemodynamical simulations in a subject-specific stented aneurysm model-a report on the Virtual Intracranial Stenting Challenge 2007, J. Biomech.41 (10) (2008) 2069-2081.
    46. M. Kim, E.I. Levy, H. Meng, et al. Quantification of hemodynamic changes induced by virtual placement of multiple stents across a wide-necked basilar trunk aneurysm, Neurosurgery 61 (6) (2007)1305-1312.
    47. S. Appanaboyina, F. Mut, R. Loner, et al. Computational fluid dynamics of stented intracranial aneurysms using adaptive embedded unstructured grids, Int. J. Numer. Methods Fluids 57 (2008) 475-493.
    48. Minsuok Kim, Dale B. Taulbee, Markus Tremmel,et al.Comparison of Two Stents in Modifying Cerebral Aneurysm HemodynamicsAnnals of Biomedical Engineering.2008,36: 726-741
    49. Benndorf G, Herbon U, Sollmann WP, et al. Treatment of a ruptured dissecting vertebral artery aneurysm with double stent placement:case report. AJNR Am J Neuroradiol 2001; 22:1844-1848
    50. Kim, M., E. I. Levy, H. Meng, et al. Quantification of hemodynamic changes induced by virtual placement of multiple stents across a wide-necked basilar trunk aneurysm. Neurosurgery 61:1305-1312,2007.
    51. Lieber, B. B., A. P. Stancampiano, A. K. Wakhloo et al. Alteration of hemodynamics in aneurysm models by stenting:influence of stent porosity. Ann. Biomed. Eng.25:460-469, 1997.
    52. Burbelko, M. A., L. A. Dzyak, N. A. Zorin, et al. Stent-graft placement for wideneck aneurysm of the vertebrobasilar junction. AJNR Am. J. Neuroradiol.25:608-610,2004
    53. Rudin, S., Z. Wang, I. Kyprianou,et al. Measurement of flow modification in phantom aneurysm model:comparison of coils and a longitudinally and axially asymmetric stent-initial findings. Radiology 231:272-276,2004
    54. Tong-Miin Liou, Yi-Chen Li.Effects of stent porosity on hemodynamics in a sidewall aneurysm model Journal of Biomechanics 41 (2008) 1174-1183
    55. Lieber, B.B., Stancampiano, A.P., Wakhloo, A.K.. Alteration of hemodynamics in aneurysm models by stenting:influence of stent porosity. Annals of Biomedical Engineering 199725, 460-469.
    56. Yu, S.C.M., Zhao, J.B.. A steady flow analysis on the stented and non-stented sidewall aneurysm models. Medical Engineering and Physics,1999,21,133-141.
    57. Rhee, K., Han, M.H., Cha, S.H.. Changes of flow characteristics by stenting in aneurysm models:influence of aneurysm gebmetry and stent porosity. Annals of Biomedical Engineering,2002,30,894-904.
    58. Tong-Miin Liou, Yi-Chen Li,Te-Chuan Wang. Hemodynamics altered by placing helix stents in an aneurysm at a 45° angle to the curved vessel Phys. Med. Biol.2008,53:3763-3776
    59. Liou T M and Liao C C Study of pulsatile flows in lateral aneurysm models on a straight parent vessel using particle tracking velocimetry J. Flow Vis. Image Process.1997,3:207-23
    60. Liou T M and Liao C C Flowfields in lateral aneurysm arising from parent vessels with different curvatures using PTV Exp. Fluids 1997,23:288-98
    61. Niimi H, Kawano Y and Sugiyama I Structure of blood flow through a curved vessel with an aneurysm Biorheology 1984,21:603-15
    62. Meng, H., Z. Wang, M. Kim, et al. Saccular aneurysms on straight and curved vessels are subject to different hemodynamics:implications of intravascular stenting. AJNR Am. J. Neuroradiol.27:1861-1865,2006.
    63. Minsuok Kim,.Elad I. Levy,.Hui Meng, et al. Quantification of hemodynamic changes induced by virtual placement of multiple stents across awide-necked basilar trunk aneurysm neurosurgery 61:1305-1313,2007
    64. Ryo Torii, Marie Oshima, Toshio Kobayashi,et al. TezduyarFluid-structure interaction modeling of blood flow and cerebral aneurysm:Significance of artery and aneurysm shapesComput. Methods Appl. Mech. Engrg. xxx (2008)
    65. Burleson, A. C., and V. T. Turitto. Identification of quantifiable hemodynamic factors in the assessment of cerebral aneurysm behavior. On behalf of the Subcommittee on Biorheology of the Scientific and Standardization Committee of the ISTH. Thromb. Haemost. 1996,76:118-123,.
    66. Tong-Miin Liou, Yi-Chen Li, Wei-Cheng Juan.Numerical and experimental studies on pulsatile flow in aneurysms arising laterally from a curved parent vessel at various anglesJournal of Biomechanics 2007,40:1268-1275
    1. D. Sforza, C.M. Putman, J.R. Cebral, Hemodynamics of Cerebral Aneurysms,Ann. Rev. Fluid Mech.2009,41:91-107.
    2. P. Lylyk, A. Ferrario, B. Pasbon, et al. Buenos Aires experience with the Neuroform self-expanding stent for the treatment of intracranial aneurysms, J. Neurosurg. 2005,102:235-241.
    3. K.O. Lobald, H. Yilmaz, A. Chouiter, et al. Intracranial aneurysm stenting:follow-up with MR angiography, J. Magn. Reson. Imag.2006,24:418-422.
    4.1. Szikora, Z. Berentei, Z. Kulcsar, et al. Endovascular treatment of intracranial aneurysms with parent vessel reconstruction using balloon and self expandable stents, Acta Neurochir. 2006,148:711-723.
    5. Wakhloo, A.K., Leiber, B.B. Alteration of hemodynamics in aneurysm models by stenting: influence of stent porosity. Annals of Biomedical Engineering,1997,25,460-469.
    6. Yu, S.C.M., Zhao, J.B. A steady flow analysis on the stented and non-stented sidewall aneurysm models. Medical Engineering and Physics,1999,21,133-141
    7. Hirabayashi, M., Ohta, M., Ru fenacht, et al. Characterization of flow reduction properties in an aneurysm due to a stent. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics 2003.68 (2 Pt1)
    8. Ohta, M., Wetzel, S.G., Dantan, Pet al. Rheological changes after stenting of a cerebral aneurysm:a finite element modelling approach. Cardio Vascular and Interventional Radiology.2005,28,768-772.
    9. Meng, H., Wang, Z., Kim, M.et al. Saccular aneurysms on straight and curved vessels are subject to different hemodynamics:implications of intravascular stenting. American Journal of Neuroradiology.2006,27:1861-1865.
    10. L.D. Jou, C.M. Quick, W.L. Young, et al.Computational approach to quantify hemodynamic forces in giant cerebral aneurysms, Amer. J. Neuroradiol.24 (9) (2004) 1804-1810.
    11. D. Steinman, J. Milner, C. Norley, et al.Image-based computational simulation of flow dynamics in a giant intracranial aneurysm, Amer. J. Neuroradiol.2003,24:559-566.
    12. J.R. Cebral, M. Hernandez, A.F. Frangi, Computational analysis of blood flow dynamics in cerebral aneurysms from CTA and 3D rotational angiography image data, in:ICCB03, Zaragoza, Spain, September,2003.
    13. J.R. Cebral, M. Hernandez, A.F. Frangi, et al.Subject-specific modeling of intracranial aneurysms, in:SPIE Medical Imaging 2004, San Diego, California, February 2004
    14. J.R. Cebral, M.A. Castro, J.E. Burgess, et al.Cerebral aneurysm hemodynamics modeling from 3D rotational angiography, in:ISBI2004, Arlington, Virginia, April 2004.
    15. A.G. Radaelli, L. Augsburger, J.R. Cebral, et al.Reproducibility of haemodynamical simulations in a subject-specific stented aneurysm model-a report on the Virtual Intracranial Stenting Challenge 2007, J. Biomech.2008,10:2069-2081.
    16. S. Appanaboyina, F. Mut, R. Loner, C.M. Putman, et al. Computational fluid dynamics of stented intracranial aneurysms using adaptive embedded unstructured grids, Int. J. Numer. Methods Fluids 2008,57:475-493.
    17. M. Ohta, C. He, T. Nakayama, A. Takahashi,et al. Three-dimensional reconstruction of a cerebral stent using micro-CT for computational simulation, J. Intell. Mater. Syst. Struct.2007.
    18. M.A. Castro, C.M. Putman, J.R. Cebral, Computational fluid dynamics modeling of intracranial aneurysms:effects of parent artery segmentation on intraaneurysmal hemodynamics, Amer. J. Neuroradiol.2006,27:1703-1709.
    19. J.R. Cebral, R. Loner, Flow visualization on unstructured grids using geometrical cuts, vortes and shock surfaces,2001,915.
    20. Sunil Appanaboyina a, Fernando Mut a, Rainald Loner a, et al. Simulation of intracranial aneurysm stenting:Techniques and challengesComput. Methods Appl. Mech. Engrg.2009
    21.K. Perktold, G. Rappitsch, Computer Simulation of Arterial Blood Flow, Vessel Diseases Under the Aspect of Local Hemodynamics, Biological Flows Plenum Press,1995,83-114.
    22.J.R. Cebral, M.A. Castro, S. Appanaboyina, et al. Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics:technique and sensitivity, IEEE Trans. Med. Imag.2005,24:457-467.
    23.Minsuok Kim, Dale B. Taulbee, Markus Tremmel,et al.Comparison of Two Stents in Modifying Cerebral Aneurysm HemodynamicsAnnals of Biomedical Engineering,200836: 726-741
    24.张星,刘建民,黄清海,等。支架网孔率对脑动脉瘤血流动力学影响的三维数值模拟研究。介入放射学杂志,2009,3:213-216
    25. J.R. Cebral, R. Loner, Efficient simulation of blood flow past complex endovascular devices using an adaptive embedding technique, IEEE Trans. Med. Imag. (2005). special issue on Vascular Imaging.
    26. Drexler H, Hornig B. Endothelial dysfunction in human disease. J Mol Cell Cardiol 1999;31:51-60.
    27. Gibbons GH, Dzau VJ. The emerging concept of vascular remodeling. N Engl J Med 1994;330:1431-8.
    28. Langille BL, O'Donnell F. Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Science 1986;231:405-7.
    29. Malek AM, Izumo S. Molecular aspects of signal transduction of shear stress in the endothelial cell. J Hypertens 1994;12:989-99.
    30. Malek AM, Jackman R, Rosenberg RD, et al. Endothelial expression of thrombomodulin is reversibly regulated by fluid shear stress. Circ Res 1994;74:852-60.
    31. Matsuda H, Zhuang YJ, Singh TM, et al.Adaptive remodeling of internal elastic lamina and endothelial lining during flow-induced arterial enlargement. Arterioscler Thromb Vasc Biol 1993; 19:2298-307
    32. Berthiaume F, Frangos JA. Flow-induced prostacyclin production is mediated by a pertussis toxin-sensitive G protein. FEBS Lett 1992;308:277-9.
    33. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980; 288:373-6.
    34. Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. Jama 1999;282:2035-42.
    35. Meng H, Wang Z, Hoi Yet al. Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation. Stroke 2007;38:1924-31
    36. Feng YX,Wada S,Tsubota KI. The application of computer simulation in the genesis and development of intracranial aneurysms. Technology and Health Care,2005,13:281-291.
    37. Cebral JR,Lohner R. From medical images to anatomically accurate finite element grids. Int J Num Meth Eng,2001,51:985-1008.
    38. Ku D.N. Blood flow in arteries. Ann Rev Fluid Mechanics,1997,29:399-434.
    39. Lehoux S,Tronc F,Tedgui A.Mechanisms of blood flow-induced vascular enlargement. Biorheology,2002,39:319-324.
    40. Hashimoto T,Meng H,Young WL.Intracranial aneurysms:links among inflammation, hemodynamics and vascular remodeling. Neurological Research,2006,28:372-380
    41. Kondo S, Hashimoto N, Kikuchi H, et al.Cerebral aneurysms arising at nonbranching sites. An experimental study. Stroke,1997,28:398-404.
    42. Masaaki Shojima,Marie Oshima. Magnitueude and Role of Wall Shear Stress on Cerebral Aneurysm Computational Fluid Dynamic Study of 20 Middle Cerebral Artery Aneurysms[J].Stroke.2004,35:2500.
    43. Gibbons GH,Dzau VJ.The emerging concept of vascular rimodeling[J N Engl J Med,1994,330:1431.
    44. Castro MA,Putman CM,Sheridan MJ,Cebral JR..Hemodynamic patterns of anterior communicating artery aneurysms:a possible association with rupture. AJNR Am J Neuroradiol. 2009,30(2):297-302.
    45. Liou, T.M., Liao, C.C. Flowfields in lateral aneurysm arising from parent vessels with different curvatures using PTV. Experiments in Fluids.1997,23:288-298.
    46. Liou, T.M., Liao, C.C. Study of pulsatile flows in lateral aneurysm models on a straight parent vessel using particle tracking velocimetry. Journal of Flow Visualization and Image Processing.1997,3:207-223.
    47. Liepsch, D.W., Steiger, H.J., Poll, A.,et al. Hemodynamic stress in lateral saccular aneurysms. Biorheology 198724,689-710.
    48. Tong Miin Liou, Yi Chen Li,Te-Chuan Wang. Hemodynamics altered by placing helix stents in an aneurysm at a 45 angle to the curved vessel Phys. Med. Biol.2008,53:3763-3776
    49. Tong-Miin Liou, Yi-Chen Li. Effects of stent porosity on hemodynamics in a sidewall aneurysm model Journal of Biomechanics 2008,4:11174-1183
    50. Minsuok Kim, Ph.D.Elad I. Levy, et al. Quantification of hemodynamic changes induced by virtual placement of multiple stents across awide-necked basilar trunk aneurysm Neurosurgery.2007,61:1305-1313
    51. Meng H, Swartz DD, Wang Z, et al. A model system for mapping vascular responses to complex hemodynamics at arterial bifurcations in vivo. Neurosurgery.2006,59:1094-1100.
    52. Sunil Appanaboyina, Fernando Mut, Rainald Loner, et al.Simulation of intracranial aneurysm stenting:Techniques and challenges Comput. Methods Appl. Mech. Engrg.2009
    53. Bando K and Berger S A. Research on fluid-dynamic design criterion of stent used for treatment of aneurysms by means of computational simulation Computat. Fluid Dyn. J.2003,11: 527-31
    54. Cooke J P, Stamler J, Andon N, et al.Flow stimulates endothelial cells to release a nitrovasodilator that is potentiated by reduced thiol Am. J. Physiol.1990,259:H804-12
    55. Cebral, J. R., M. A. Castro, S. Appanaboyina, et al. Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics:technique and sensitivity. IEEE Trans. Med. Imaging.2005,24:457-467.
    56. Cebral, J. R., M. A. Castro, J. E. Burgess, et al. Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. AJNR Am. J. Neuroradiol.2005,26:2550-2559
    57. Hashimoto, T., H. Meng, W. L. Young. Intracranial aneurysms:links among inflammation, hemodynamics and vascular remodeling. Neurol. Res.2006,28:372-380.
    58. Liou, T. M., and S. N. Liou. Pulsatile flows in a lateral aneurysm anchored on a stented and curved parent vessel. Exp. Mech.2004,44:253-260.
    59. Liou, T. M., S. N. Liou, K. L. Chu. Intra-aneurysmal flow with helix and mesh stent placement across side-wall aneurysm pore of a straight parent vessel. J. Biomech. Eng.2004,126:36-43
    60. Doerfler, A., I. Wanke, T. Egelhof,et al. Double-stent method:therapeutic alternative for small wide-necked aneurysms. Technical note. J. Neurosurg.2004,100:150-154.
    61. Gijsen, F. J., D. E. Palmen, M. H. van der Beek, et al. Analysis of the axial flow field in stenosed carotid artery bifurcation models-LDA experiments. J. Biomech. 1996,29:1483-1489.
    62. Hoi, Y., H. Meng, S. H. Woodward, et al. Effects of arterial geometry on aneurysm growth: three-dimensional computational fluid dynamics study. J. Neurosurg.2004,101:676-681.
    63. Zarins, C. K., D. P. Giddens, B. K. Bharadvaj, et al. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ. Res.,1983,53:502-514.
    64. Steiger HJ, Reulen HJ. Low frequency flow fluction in aneurysm. Acta Neurochir,1986,83,131-137.
    63. Gobin YP,Counord JL,Flaud P, et al. In vitro study of heamodynamics in a giant saccular aneurysm model:influence of flow dynamics in the parent vessel and effects of coil embolisation. Neuroradiology 1994; 36(7):530-536.
    64.张莹,杨新健,李海云,等。带子瘤颅内动脉瘤的二维血流动力学数值模拟分析。中国脑血管病杂志。2007,4(9):392—296。
    65. Shojima M,Oshima M,Takagi K. Role of the Bloodstream Impacting Force and the Local Pressure Elevation in the Rupture of Cerebral Aneurysms. Stroke,2005,36:1933-1938
    66. Juvela, S. Prehemorrhage risk factors for fatal intracranial aneurysm rupture. Stroke,2003,34, 1852-185

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700