网架结构损伤检测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间网架结构体系整体刚度好,技术经济指标优越,尤其能够满足建筑造型丰富等要求,因而在大跨度公共建筑中被广泛采用,如体育馆、展览馆、候机厅、车间等。结构在长期服役期间,由于疲劳累积、环境腐蚀及自然灾害等原因,可能出现各种损伤,如不及时发现,则会造成损伤的扩展,甚至会导致整体结构的倒塌,因此及时进行结构损伤识别是十分必要的。对于简单结构,已经存在比较成熟的方法,但是对于网架结构这样的大型复杂结构,由于种种困难的存在,现有的方法难以在实际工程中应用。因此研究适用于网架结构的损伤检测方法将具有重大工程意义。
     结构动力特性和结构物理参数直接相关,结构物理参数的损伤变化将引起相应动力特性的改变。基于振动的损伤识别方法是以结构动力试验为基础,通过对动力试验所测数据进行综合分析,从而判断损伤的出现、位置和程度。
     本文结合具体研究对象对结构损伤诊断的敏感动力参数指标作了详细的研究,主要内容有:
     阐述了国内外的研究现状,论述和研究了基于动力参数进行结构损伤诊断的理论与方法。
     具体讨论了基于频率、振型、刚度、柔度的损伤识别技术,并以实际桁架算例模型验证比较了正规化的频率变化率、振型曲率、柔度曲率对损伤识别的效果。
     尝试性地提出了网架结构损伤识别三步法:第一步识别损伤的大致区域,第二步识别损伤的具体杆件,第三步识别杆件损伤程度。该方法能够克服目前方法中对大型复杂结构进行损伤识别的困难,并有助于提高识别效率,使得对大型复杂结构的损伤定位成为可能。
     基于曲率模态理论,说明了曲率模态用于损伤识别的可行性,讨论了曲率模态指标识别网架结构损伤的局限性,并由此改进了曲率模态指标公式,将改进曲率模态指标用于识别网架结构损伤区域,大量算例表明,改进曲率模态指标可较好定位损伤区域。
     基于模态应变能理论,提出损伤前后模态应变能变化(MSEC)这一损伤定位指标,并能过数值仿真验证了低阶MSEC对损伤的准确识别;并分析了不同损伤程度对MSEC的影响,比较了MSEC对不同位置损伤的敏感性。
     假定损伤前后不改变杆件的模态应变能,推导了识别损伤程度的指标,通过不同损伤程度,不同位置损伤数值仿真,验证了该指标的准确性。
     从以上分析得出网架结构损伤识别三步法可准确评估结构损伤状态,说明该方法的有效性和实用性,具有一定的现实意义和实用价值。
The whole rigidity of the spatial truss structure is good, and the technical and economic index is superior, so they are widely applied to the public buildings in large span, for instance, gymnasium, exhibition hall, airport lounge, station etc. During the long active service time, the structure maybe presents all kinds of damage because such reasons as tired accumulating, environment corroding and natural calamity function. If the damage can not be find in time, it will cause the expansion, even cause the collapse of the whole structure, so it is very essential to identify damage in the structures in time. To the simple structures, some riper methods of damage detection have existed. But to the large-scale complicated structure such as the spatial truss structures, because of all sorts of difficulty, the existing methods are difficult to apply to the actual engineering structures. So research on damage detection algorithm suitable for large-scale spatial truss structures has a great project meaning.
     The dynamic characteristics of structures are in closed relationship with the structural parameters, and structural damage will cause the dynamic characteristics shifts correspondently. Based on the vibration damage identification method is based on the structural dynamic test, through the dynamic test measured data analysis, the emergence of damage, location and extent can be judged.
     In this paper, with the specific object of research, the damage sensitive dynamic parameters of the structural diagnosis have been studied detailedly. The main contents include:
     Describing the status of research at home and abroad, this paper discusses and studies the diagnosis of structural damage theories and methods based on modal parameters.
     Concretely discuss the technology of damage identification based on the frequency, vibration mode, stiffness, flexibility. Using the example of the practical truss model, this paper compares damage identification results of the normalized rate of frequency, modal curvature, and flexibility curvature.
     Trying to put forward a three-step damage identification method for truss structures is given in this paper. In the first step, the probable damage area of the truss structure is identified; In the second step, the accurate damage location is identified in the probable damage area of the structure. And in the third step, the damage extents are identified for the damaged elements. This method can not only overcome the difficulties of the large complex structure of damage identification at present, but also improve efficiency of damage identification.
     On the basis of curvature mode theory, explain feasibility of damage identification using curvature mode. Discuss localization of damage identification in truss structure using curvature mode index, and improve it. Through a great deal calculate example, Improved curvature mode index can locate damage area.
     On the basis of modal strain energy theory, modal strain energy change (MSEC) is proposed as the injury indicator in this paper and validate MSEC of low modal can accurately identify the structural damage through numerical simulation. Further analyze the influence of different degree damage to the MSEC and compare with sensitivity of MSEC under the different damage location.
     On the basis of the presupposition that MSEC immovability of damage in fore-and-aft, the extent indicator is derived and verified through numerical simulation of different degree and different location. The validity and feasibility of this damage index has been confirmed.
     From the above analysis, we educe that the three-step damage identification method for truss structures can preferably assess the state of the structural damage. It shows that the parameters are effective and practical, so have some realistic significance and value.
引文
[1]刘文福.空间结构[M].北京:科学出版社,2005
    [2]蓝天,刘枫.中国空间结构的20年[A].第十届空间结构学术会议论文集.北京:中国建材工业出版社,2002
    [3]夏力农,王根成.网架事故原因分析及经验教训[J].常德高等专科学校学报,1999,11(2):42-46
    [4]李国强,李杰,李炳生.高层建筑检测方法、研究与应用[J].振动、测试与诊断,天津:1998
    [5]王利恒,周锡元等.结构损伤检测方法的一些新进展[J].四川建筑科学研究,2005,31(6):59-64
    [6]徐嵬.空间网壳及网架结构动力检测分析[D].大连理工大学硕士学位论文,大连,2005
    [7]沈雁彬.基于动力特性的空间网格结构状态评估方法及检测系统研究[D].浙江大学博士论文,杭州,2007
    [8]Norris stubbs,Taft H.Broome,Roberto Osegueda.Nondestructive Construction Error Detection in Large Spaces Structures[J].AIAA,1990,28(11):146-152
    [9]G Heam,R.B.Testa.Modal Analysis for Damage Detection in Structures.Journal of Structural Engineering[J].1991,117(10):3042-3061
    [10]S Hassiotis,GD.Jeong.Assessment of Structural Damage from Natural Frequency Measurement[J].Computers and Structures.1993,49(4):679-691
    [11]S Hassiotis.Identification of Damage Using Natural Frequencies and Markov Parameters[J].Computers and Strutures.2000,74:365-373
    [12]A K Pandy,M Biswas,M Msamman,Damage Detection from Changes in Curvature Mode Shapes[J].Jourrnal of Sound and Vibration.1991,145(2):321-332
    [13]周先雁,沈蒲生.用振动参数识别技术对混凝土框架进行破损评估[J].土木工程学报,1998,21(2):39-45
    [14]綦宝晖,邬瑞锋.一种桁架结构损伤识别的柔度阵法[J].计算力学学报,2001,18(1):42-47
    [15]李德葆,诸葛鸿程.实验应变模态分析原理和方法[J].清华大学学报:自然科学版,1990,30(2):105-112
    [16]Bart peerers,Johan Maeck and Guido De Roeck.Vibration-based damage detection in civil engineering excitation sources and temperature effects[J],Smart Materials and Structures,2001,10:518-527
    [17]常永平.弹性梁和板的两阶段损伤方法研究[D].昆明理工大学硕士学位论文,昆明,2004
    [18]臧斌.桥梁结构动力检测技术及其发展前景,中国公路学会2004年学术年会论文集,北京:中国公路学会,2004
    [19]陈长征,罗跃纲,白秉三.结构损伤检测与智能诊断[M].北京:科学出版社,2001
    [20]崔飞,袁万成,史家钧.传感器优化布置在桥梁健康监测中的应用[J].同济大学学报,1999,27(2):165-169
    [21]刘福强,张令弥.作动器/传感器优化配置的研究进展[J].力学进展,2000,30(4):506-516
    [22]G Heo,M L Wang,D Satpathi.Oprimal Transducer Placement for Health Monitoring of Long Span Bridge[J].Soil Dynamics and Earthquake Engineering。1997,16:495-502
    [23]M.Papadopoulos etc.Sensor Placement Methodologies for Dynamic Testing[J].AIAA,1998,36(2):256-263
    [24]郭国会.桥梁结构动力损伤诊断方法研究[D].湖南大学博士学位论文,2001,6
    [25]翟伟廉,谭冬梅,汪菁.基于神经网络的大型空间网架结构的有限元模型修正[J].地震工程与工程振动,2003,23(4):83-89
    [26]H.B.Kim and Y.S.Park.Sensor placement Guide for Structiral Joint Stiffness Model Improvement[J].Mechanicl Systems and Signal Processing.1997,11(5):651-672
    [27]李戈,秦权,董聪.用遗传算法选择悬索桥监测系统中传感器的最优布置[J].工程力学,2000,17(1):25-34
    [28]Y Y Li,L H Yam.Sensitivity Analysis of Sensor Locations for Vibration Control and Damage Detection of Thin-plate Systems[J].Journal of Sound and Vibration.2001,240(4):623-636
    [29]刘晖,翟伟廉,袁润章.基于灵敏度分析的结构损伤识别中的传感器优化配置[J].地震工程与工程振动,2003,23(6):85-90
    [30]吴金志.基于动力检测的网格结构损伤识别研究[D].同济大学博士论文,上海,2003
    [31]付素芳,张秋菊,陈海卫等.结构动力学模型修正方法比较研究[J].机械研究与应用,2007,20(2):38-40
    [32]李辉,丁桦.结构动力模型修正方法研究进展[J].力学进展,2005,23(2):170-180
    [33]P Cawley,R D Adams.The location of defects in structure form measurements of natural frequencies[J].Journal of Strain Analysis,1979,14(2):49-57.
    [34]Y Narkis.Identification of crack location in vibrationg simply supported beams[J].Journal of Sound and Vibration,1994,172(4):549-558.
    [35]Ewins D L Modal testing:theory and practice[J].John Wiley and Sons Inc,1984.
    [36]邵云飞.桁架结构损伤识别方法研究[D].兰州理工大学硕士学位论文,甘肃,2007
    [37]杨建荣.一种新的两阶段损伤检测方法[D].昆明理工大学硕士学位论文,昆明,2004
    [38]Doebling S W,Hemez F M.Peterson L D,etc.Improved Damage Location Accuracy Using Strain Energy--Based on Mode Selection Criterial[J].AIAA Journal,1997,35(4):693-699.
    [39]Stubbs N,Kum J T.Damage Location in Structure without Baseline Modal Parameters[J].AIAA Journal,1996,34(8):1644-1649.
    [40]高维成,刘伟,钱成.基于剩余模态力和模态应变能理论的网架结构损伤识别[J].工程力学,2007,24(5):93-100
    [41]史治宇,罗绍湘,张令弥.结构破损定位的单元模态应变能变化率法[J].振动工程学报,1998,11(3):356-360
    [42]史治宇,张令弥,吕令毅.基于模态应变能诊断结构破损的修正方法[J].东南大学学报(自然科学版),2000,30(3):84-87.
    [43]袁明,贺国京.基于模态应变能的结构损伤检测方法研究[J].铁道学报,2002,24(2):92-94.
    [44]唐洁.网架结构损伤和系统识别方法研究[D].东南大学硕士学位论文,南京,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700