基于响应面建模和改进粒子群算法的有限元模型修正方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代飞行器多采用平台化、模块化设计以缩短研制周期,节约研究经费,新型航天器往往采用对成熟平台的改进就能完成设计,以适应空间市场的快速发展。基于MSC/PATRAN的模型修正技术在航空航天领域应用广泛,目前主要根据工程人员经验对可能存在误差的建模部位及结构参数进行多次调整,限制了修正效率和精度。基于响应面的模型修正方法可以避免基于有限元的模型修正过程中结构参数的每次变化都要调用有限元程序计算从而导致效率低下的缺点,且有限元软件不易与新兴的粒子群算法等优化算法结合等缺点。响应面方法和优化算法结合进行模型修正,可以有效确定模型误差所在位置及参数修正值,同时给出各误差参数间定量的对应关系,还可以通过设定多个修正目标的适应度函数使得修正后模型在多种分析计算方面的性能都得到改善。本文主要从以下三个方面进行了研究:
     在分析现有粒子群算法运算特点及所存在的缺陷基础上提出了基于分组控制策略的改进粒子群算法,将粒子按适应度分为优解群和劣解群,将优解群中的粒子引入混沌搜索机制,增加粒子多样性;对劣解群中的粒子进行变异,有效帮助其脱离劣解群,增大寻求最优解的概率。分析了改进粒子群算法中粒子飞行轨迹和速度的收敛条件,通过计算得到了使得算法收敛的参数取值范围,为改进算法中各参数的选取提供指导。
     响应面模型的构成形式是影响响应面精度的主要因素,通过比较各种形式响应面的构成及计算效果,提出了线性—高斯组合核支持向量机响应面,该响应面综合了一次多项式的线性模拟能力和高斯核的非线性拟合能力,具有良好的计算精度和广泛的适用范围。为表示响应面模型中各参数对计算结果的不同影响程度,引进加权思想,通过分析提出了适用于显式函数的由响应面函数计算各结构参数在各设计点处偏导数作为评价各参数对结构响应影响程度的加权方式和适用于实际工程结构的由分析所得结构参数对响应影响度作评价标准的加权方式,依此构造加权矩阵。加权线性—高斯组合核支持向量机响应面能有效提高分析效率和精度,在选取高斯核中参数σ时,经多次试验发现σ取函数设计空间半径时能取得良好的拟合效果。
     详细介绍了基于响应面方法的模型修正过程和基于有限元等方法的模型修正过程的不同,用组合粒子群算法和加权线性—高斯组合核支持向量机响应面对多铺层碳纤维蜂窝板模型进行修正,通过该例给出了基于响应面方法的模型修正的清晰思路和过程,检验了响应面方法修正后的模型在试验频段内的复现能力和试验频段外的预测能力,并对修正前后模型与基准模型的原点和跨点频响函数进行对比,证实了修正模型的有效性。将加权线性—高斯组合核支持向量机响应面和分组控制粒子群算法应用于卫星有限元模型修正,修正后模型计算所得模态频率和频响分析结果均有所改善,证实了该修正方法在工程复杂结构中的适用性。
Platformization and modularization are employed in modern aircraft design to save research grant and shorten lead time, new spacecraft often improve the existing mature platform to meet the design requirement and the rapid expansion of the space market. The MSC/PATRAN-based model updating technology is widely used in aerospace field, and the updating process largely depends on the engineers’experiments to adjust the error location and model parameters, which decreases the updating efficiency and precision. The RSM-based model updating method doesn’t need to call the FEM program in every iteration process following the parameter variation, which reduces the solving efficiency, and this method avoids the disability of FEM-based model updating method that hard to combine with the PSO algorithm. The RSM and PSO-based model updating method can effectively confirm the error location and model parameters, it can also give the quantitative correspondence of each error parameter, and various analysis abilities of the updating model are largely improved by setting multi-objective fitting function.
     The group-control-based improved PSO algorithm is proposed based on the analysis of the algorithm mechanism and defect of the existing PSO algorithm, which divides the particle swarm into two groups, that is, the superior group and the inferior group, the chaos search mechanism is introduced into the superior group to increase the diversity and the variation mechanism is introduced into the inferior group to break the inferior particles away from the inferior solution so as to increase the probability of finding the optimum solution. Convergence condition of the flying path and velocity of the particles are analyzed and the parameter range that makes the algorithm converge is derived, which provides guidance for the parameter selection in the improved algorithm.
     Model composition is the main influencing factor of the RSM, comparing the composition and calculating effect of each response surface model, the Linear-and-Gaussian combined kernel function support vector machine response surface is proposed which combines the linear fitting ability of the linear polynomial and the nonlinear fitting ability of the Gaussian polynomial with better calculation precision and widely scope of application. The weight thought is introduced into the response surface method in order to show that different parameter has different influence on the calculated result, and the weighted matrix is given by the partial derivative of the response surface to the structure parameters at different design points, which fits the explicit functions, as well as the effectiveness of structure parameters have on responses, which fits the real structures. The weighted least square support vector machine (WLS-SVM) is proposed and the construction and calculation precision are contrasted, The weighted Linear-and-Gaussian can effectively improve the analysis efficiency and precision, set the kernel factorσto be equal to the radius of the design space and then favorable fitting results are obtained.
     The differences between the RSM-based model updating method and the FEM-based model updating method are introduced in detail, and the combined PSO algorithm and Linear-and-Gaussian combined kernel function support vector machine response surface are used to update the multi-layered carbon fiber honeycomb sandwich panel, which shows the clear process of RSM-based model updating, the reappearance ability in the updated frequency range and prediction ability out of the updated frequency range of the updated model are tested and the updating validity is verified. Then the Linear-and-Gaussian combined kernel function support vector machine response surface and the group-control PSO algorithm are applied to the satellite model updating, the modal frequency and frequency response analysis results of the updated model are both improved, which verifies the applicability of the updating method.
引文
[1]朱安文,曲广吉,高耀南.航天器结构模型优化修正方法的研究[J].宇航学报,2003,24(1):107-110.
    [2]朱安文,曲广吉,高耀南.航天器结构模型修正方法综述[J].航天器工程,2001,10(4):1-9.
    [3] Friswell M I , Mottershead J E. Finite Element Model Updating in Structural Dynamics[C]. Kluwer Academic Publishers , Boston ,London,1995:23-35.
    [4] Mottershead J E,Friswell M I. Model Updating in Structure Dynamics:a Survey[J]. Journal of Sound and Vibration,1993,167(2):347-375.
    [5] Friswell M I. Updating Model Parameters from Frequency Domain Data via Reduced Order Model[J]. Mechanical Systems and Signal Processing,1990,4(5):377-391.
    [6]朱安文,曲广吉,高耀南.航天器结构动力模型修正中的缩聚方法[J].中国空间科学技术,2003,2:6-10.
    [7]邱吉宝,王建民.航天器虚拟动态试验技术研究及展望[J].航天器环境工程,2007,24(1):1-14.
    [8] Zhang D W,Zhang L M. Matrix Transformation Method for Updating Dynamic Model[J]. AIAA Journal,1992,30(5):1440-1443.
    [9] Zhang D W, Wei F S. Complete Mode-Type Reduction (CMR) for Structural Dynamic System[C]. Proc. of the 13th International Modal Analysis Conference,1995:616-622.
    [10] Zhang D W , Li J J. A New Method for Updating the Dynamic Mathematical Model of a Structure Part 1:Quasi-Complete Modified Model and a Concept of the Guide-Type Method for Recreating a Model[C]. DLR Deutsches Zentrum fur Luftund Raumfahrt,1987(5):232-247.
    [11] Zhang D W,Li Y M,Zhang L M. An Element-Type Perturbation Iteration Method,Modification of Analytical Models and Diagnosis of Generalized Failure[J]. Mechanical System and Signal Processing ,1992:16-22.
    [12]窦毅芳,刘飞,张为华.响应面建模方法的比较分析[J].工程设计学报, 2007,14(5):359-363.
    [13]王永菲,王成国.响应面法的理论与应用[J].中央民族大学学报(自然科学版),2005,14(3):236-240.
    [14] Hill W J,Hunter W G. A Review of Response Surface Methodology:A Literature Review[J]. Technometrices,1966(8):561-590.
    [15] Mead R,Pike D J. A Review of Response Surface Methodology from a Biometrics Viewpoint[J]. Biometrics,1975,31(12):803-851.
    [16] Myers R H,Khuti R I,Carter W H. Response Surface Methodology[J]. Technometrices,1989,31(2):1966-1988.
    [17] Myers R H. Response Surface Methodology-Current Status and Future Direction[J]. Journal of Quality Technology. 1993,31(1):61-68.
    [18] Berman A,Nagy E J. Improvement of a Large Analytical Model Using Test Data[J]. AIAA ,1983,21(8):26-30.
    [19] Berman A,Wei F S,Rao K V. Improment of Analytical Dynamic Models Using Modal Test Data[C]. Proc. of the 21th SDM Conf.,AIAA,1980:8-20.
    [20] Berman A,Flannelly W G. Theory of Incomplete Models of Dynamic Structures[J]. AIAA Journal,1971,9(8):1481-1487.
    [21] Berman A. Validity of Improved Mathematical Models[C]. Accommentary in:Proc. 16th International Modal Analysis Conf.,Santa Barbara,USA,1998:681-691.
    [22] Natke H G,Cottin N. Updating Mathematical Models on the Basis of Vibration and Model Test Results-A Review of Experience[C]. Proc.of 4th IMAC,1986:31-44.
    [23] Zhang Q W,Chang C C,Chang T Y. Finite Element Modal Updating for Structures with Parametric Constraints[J]. Earthquake Engineering and Structural Dynamics,2000,29:927-944.
    [24] Link M. Identification and Correction of Errors in Analytical Models Using Test Data:Thepretical and Practical Bounds[C]. Proceedings of the 8th International Modal Analysis Conference , New York , Society for Experimental Mechanics,Inc,Orlando,Kissimmee,USA,1990:570-578.
    [25] Lambros S K , Costas P , Heung F L. A Probabilistic Approach to Structural Model Updating[J]. Soil Dynamics and Earthquake Engineering,1998(17):495-507.
    [26] Ibrahim S R. Analytical Dynamic Model Updating:The Challenge for the Nineties[J]. Australian Trans.of Mech.Engineering,1991,16(1):7-26.
    [27] Guyan R J. Reduction of Stiffness and Mass Matrices[J].AIAA Journal,1965,3(2):380-386.
    [28] Foster C D. A Method of Improving Finite Element models by Using Experimental Data: Application and Implications for Vibration Monitoring [J]. International Journal Mechanical Science,1990,32(3):191-203.
    [29] Boswald M. Updating of Local Nonlinear Stiffness and Damping Parameters in Large Order Finite Element Models by Using Vibration Test Data[J]. DLR Deutsches Zentrum fur Luftund Raumfahrt,2005,25:1-192.
    [30] Kuo Y C,Lin W W,Xu S F. New Methods for Finite Element Model Updating Problems[J]. AIAA Journal,2006,44(6):1310-1316.
    [31] Kanev S,Weber F,Verhaegen M. Experimental Validation of a Finite Element Model Updating Procedure[J]. Journal of Sound and Vibration,2007,30(2):394-413.
    [32]宋汉文,王丽炜,王文亮.有限元模型修正中若干重要问题[J].振动与冲击,2003,22(4):68-79.
    [33]郭勤涛,张令弥,费庆国.结构动力学有限元模型修正的发展—模型确认[J].力学进展,2006,36(1):36-42.
    [34]张令弥.动态有限元模型修正技术及其在航空航天结构中的应用[J].强度与环境,1994(2):10-17.
    [35]陈德成,魏震松,曲广吉等.有限元模型修正技术的工程应用[J].中国工程科学,2001,3(10):59-63.
    [36]张德文.改进Guyan递推缩减技术[J].计算结构力学及应用,1996, 13(1):90-94.
    [37]张德文,魏阜旋.模型修正与破损诊断[M].北京:科学出版社,1999:1-174.
    [38]张德文.未来大型复杂结构分析模型与试验状态的展望[J].强度与环境,1988,12(6):35-53.
    [39]白化同,郭继忠译.模态分析理论与试验[M].北京:北京理工大学出版社,2006:56-98.
    [40]曾庆华.结构动力修改技术若干问题研究[D].南京:南京航空航天大学博士论文,1989:1-117.
    [41]殷学纲,雷跃明.复杂结构动力模型修改的摄动有限元法[C].第四届全国振动理论及应用学术会议论文集,1990:480-487.
    [42]张凌霞,齐丕骞,许光启等.基于优化算法和GVT结果的结构质量模型修正[J].机械科学与技术,2002,21(4):44-48.
    [43]朱宏平,徐斌,黄玉盈.结构动力学模型修正方法的比较研究及评估[J].力学进展,2002,32(4):513-525.
    [44]李辉,丁桦.结构动力模型修正方法研究进展[J].力学进展,2005, 35(2):170-180.
    [45]朱安文,曲广吉,高耀南等.结构动力模型修正技术的发展[J].力学进展,2002,32(3):337-348.
    [46]朱安文,曲广吉,高耀南.航天器结构模型修正方法的工程应用研究[J].航天器工程,2003,12(2):35-40.
    [47]向天宇,赵人达,蒲黔辉等.基于经历测试数据的装配式混凝土简支梁有限元模型修正[J].公路交通科技,2006,23(10):79-82.
    [48]姚昌荣,李亚东.基于静动力测试数据的斜拉桥模型修正[J].铁道学报,2008,30(3):65-70.
    [49]邓苗毅,任伟新.基于静力载荷试验的连续箱梁桥结构有限元模型修正[J].福州大学学报(自然科学版),2009,37(2):261-266.
    [50] Masoud S,Bell E S. Damage Localization and Finite Element Model Updating Using Multiresponse NDT Data[J]. Journal of Bridge Engineering,2006,11(6):688-698.
    [51] Patrick H,Kun Q. Efficient Aeroelastic Model Updating in Support of Flight Testing[J]. AIAA,2009,57(13):1-9.
    [52] Denoyer K K,Peterson L D. Comparing Model Update Error Residuals and Effects on Model Predictive Accuracy[J].AIAA,1998,30(10):1894-1900.
    [53] Kang B S,Choi W S. Structural Optimization under Equivalent Static Loads Transformed from Dynamic Loads Based on Displacement[J]. AIAA,1999,12(59):611-621.
    [54] Lee H A,Kim Y I. Structural Optimization of a Joined Wing Using equivalent static load[J]. Journal of Aircraft,2007,44(4):1302-1308.
    [55] Choi W S,Park G J. Quasi-static Structural Optimization Using Equivalent Satic Loads Transformed from Dynamic Loads at All Time Intervals[J]. AIAA,2001,14(20):1-10.
    [56] Kang B S,Park G J. Optimization of Flexible Multibody Dynamic Systems Using the Equivalent Static Load Method[J]. AIAA,2005,43(4):846-852.
    [57] Kim Y I,Park G J. Nonlinear Dynamic Response Structural Optimization of a Joined-Wing Using Equivalent Static Load[J]. Journal of Aircraft,2009,46(3):821-832.
    [58] Zhu H P,Hao X Z. Comparison of Analytical Approaches to Structural Model Updating Using Modal Test Data[J]. Earth and Space,2006:1-8.
    [59] Ewing M S. Comparison of Popular Finite Element Model Updating Techniques[J]. AIAA,1992,21(5):550-555.
    [60] Denoyer K K,Peterson L D. Comparison of Flexibility,Stiffness and Modal Error Residuals for Model Update[J]. AIAA,1998,18(9):1634-1643.
    [61] Cho S,Yi J. H. Estimation of Deflections of Bridge by Two-Step Model Updating Approach Based on Ambient Acceleration Measurements[C]. Sensors and Smart Structures Technologies for Civil,Mechanical and Aerospace Systems,2008,69(3):1-10.
    [62] Marwala T,Sibisi S. Finite Element Model Updating Using Baysien Framework and Modal Properties[J].Journal of Aircraft,2005,42(1):275-278.
    [63] Hemez F M,Farhat C. On the Efficiency of Model Updating via Genetic Algorithm for Structural Damage Detection[J].AIAA,1995,10(3):2792-2801.
    [64] Denoyer K K,Peterson L D. Model Update Using Modal Contribution to Static Flexibility Error[J]. AIAA,1997,35(11):1739-1745.
    [65] Jaishi B,Ren W. Structural Finite Element Model Updating Using Ambient Vibration Test Results[J]. Journal of Structure Engineering, 2005, 131(4): 617-688.
    [66] Cha P D, Switkes J P. Enforcing Structural Connectivity to Update Damped System Using Frequency Response[J].AIAA,2002,40(6):1197-1203.
    [67] Marwala T. Finite Element Model Updating Using Wavelet Data and Genetic Algorithm[J]. Journal of Aircraft,2002,30(4):709-711.
    [68] Hemez F M,Brown G W. Improving Structural Dynamics Models by Correlating Simulated to Measured Frequency Response Functions[J]. AIAA,1998,17(8):772-782.
    [69] Lee U,Cho K. A Plate with Orthotropic Damages:Dynamics and Damage Identification[J]. AIAA,2002,14(1):1-11.
    [70]杨彦芳,宋玉普.基于主元分析和频响函数的网架结构损伤识别方法[J].工程力学,2007,24(9):105-110.
    [71]邹大力,屈福政,孙铁兵.基于压缩频响函数的结构损伤识别[J].机械科学与技术,2005,24(5):572-574.
    [72]党建军,谭伟,罗凯.基于实测频响函数水下航行器附加质量识别方法研究[J].水动力学研究与进展,2005,20(2):180-184.
    [73]徐张明,沈荣瀛,华宏星.基于频响函数相关性的灵敏度分析的有限元模型修正[J].机械强度,2003,25(1):5-8.
    [74]温华兵,王国治.基于频响函数系数灵敏度的浮筏舱段有限元模型修正[J].江苏科技大学学报(自然科学版),2005,19(6):75-78.
    [75]巫可益,徐赵东.基于频响函数谱能量的网架损伤识别方法[J].工程力学,2009,26(11):179-184.
    [76]温华兵,王国治.基于频响函数灵敏度分析的鱼雷模型有限元模型修正[J].鱼雷技术,2006,14(3):10-13.
    [77]童宗鹏,章艺,沈荣瀛等.基于频响函数灵敏度分析的舰艇模型修正[J].上海交通大学学报,2005,39(11):1847-1950.
    [78]邹万杰,瞿伟廉.基于频响函数和遗传算法的结构损伤识别研究[J].振动与冲击,2008,27(12):28-30.
    [79]郑明刚,刘天雄,陈兆能.基于频响函数的结构损伤检测[J].机械科学与技术,2001,20(3):479-480.
    [80]朱凼凼,冯咬齐,向树红.基于模态参数和加速度频响函数的综合模型修正方法研究[J].航天器环境工程,2004,21(4):14-20.
    [81]孙木楠,史志俊.基于粒子群优化算法的结构模型修改[J].振动工程学报,2004,17(3):350-353.
    [82]张连振,黄侨.基于优化设计理论的桥梁有限元模型修正[J].哈尔滨工业大学学报,2008,40(2):246-249.
    [83]闫桂荣,段忠东,欧进萍.遗传算法在结构有限元模型修正中的应用[J].哈尔滨工业大学学报,2007,39(2):25-29.
    [84]费庆国,张令弥.基于径向基神经网络的有限元模型修正研究[J].南京航空航天大学学报,2004,36(6):748-752.
    [85]张安平,陈国平.基于混合人工鱼群算法的结构有限元模型修正[J].航空学报,2010,31(5):940-945.
    [86] Bland S M,Kapania R K. Damage Detection of Plate Structures Using a Hybrid Genetic-Sensitivity Approach[J]. AIAA,2002,54(3):1-11.
    [87] Duan Z D,Liu Y. Finite Element Model Updating of Structures Using a Hybrid Optimization Technique[J]. Smart Structures and Materials,2005,5(6):335-344.
    [88] Ren C X,Yin C C. The Application of an Improved Hybrid Genetic and Simulated Annealing for Optimization of the Bus Timetable[C]. International Conference on Transportation Engineering,2009:3918-3923.
    [89] Coppotelli G,Rinaldi R. Structural Updating of the VEGA-UCMEC FE Model Using Vibration Test Data[J]. AIAA,2008,18(5):1-16.
    [90] Li J,Huang M S. Study on Different Residual and Weight Coefficient in Model Updating of Bridge Structure[C]. Critical Issues in Transportation Systems Planning,Development and Management,2009:100-107.
    [91]郭勤涛,张令弥,费庆国.用于确定性计算仿真的响应面法及其试验设计研究[J].航空学报,2006,27(1):57-61.
    [92]邓苗毅,任伟新.基于响应面方法的结构有限元模型修正研究进展[J].铁道科学与工程学报,2008,5(3):42-45.
    [93]任伟新,陈华斌.基于响应面的桥梁有限元模型修正[J].土木工程学报,2008,41(12):73-78.
    [94] Marwala T. Finite Element Model Updating Using Response Surface Method[J]. AIAA, 2005:1-9.
    [95] Shyy W,Tucker P K. Rsponse Surface and Neural Network Techniques for Rocket Engine Injector Optimization[J]. Journal of Propulsion and Power,2001,17(2):391-411.
    [96] McDonald D B,Grantham W J. Response Surface Model Development for Global-Local Optimization Using Radial Basis Functions[J]. AIAA ,2000,47(76):1-10.
    [97] Yang G W,Chen D W. Response Surface Technique for Static Aeroelastic Optimization on a High-Aspect-Ratio Wing[J]. Journal of aircraft,2009, 46(4):1444-1450.
    [98] Martinez J L,Gonzalo E G. The Generalized PSO:A New Door to PSO Evolution[J]. Journal of Artificial Evolution and Applications, 2008,8(6): 12-17.
    [99]张建科,刘三阳,张晓清.改进的粒子群算法[J].计算机工程与设计,2007,28(17):4215-4219.
    [100]曾建潮,介婧,崔志华.微粒群算法[M].北京:科学出版社,2004.
    [101]张建科,刘三阳,张晓清.飞行时间自适应调整的粒子群算法[J].计算机应用,2006,26(10):2513-2515.
    [102]孔庆琴,孙俊,须文波.基于QPSO的改进算法[J].计算机工程与应用,2007,43(28):58-60.
    [103]李宁,刘飞,孙德宝.基于带变异算子粒子群优化算法的约束布局优化研究[J].计算机学报,2004,27(7):897-903.
    [104]孟令群,郭建青.利用混沌粒子群算法确定河流水质模型参数[J].地球科学与环境学报,2009,31(2):169-172.
    [105]林星,冯斌,孙俊.混沌量子粒子群优化算法[J].计算机工程与设计,2008,29(10):2610-2612.
    [106]余炳辉.粒子群优化算法试验研究及扩展[D].武汉:华中科技大学博士论文,2007:1-119.
    [107]闫允一.粒子群优化及其在图像处理中的应用研究[D].西安:西安电子科技大学博士论文,2008:1-163.
    [108]Henikar G,Palmer G M. Response-Surface Methodology-Revisited[J]. Cereal Food Science,1976,21:432-445.
    [109]Henikar G. Use of Response Surface Methodology in Sensory Evaluation[J]. Food Technology,1982,36:96-101.
    [110]Bucher C G , Bourgund U. A Fast and Efficient Response Surface Approach for Structural Reliability Problems[J]. Structural Safety, 1990, 7(1):57-66.
    [111]Wong F S. Slope Reliability and Response Surface Method[J]. Journal of Geotechnical Engineering. ASCE,1985,111:32-53.
    [112]Bucher C G , Bourgund U. A Fast and Efficient Response Surface Approach for Structural Reliability Problems[J]. Structural Safety,1990, 7(1):57-66.
    [113] Das P K,Zheng Y. Cumulative Formation of Surface and Its Use in Reliability Analysis[J]. Probabilistic Engineering Mechanics, 2000,15: 309-315.
    [114]Vittal S,Hajela P. Confidence Intervals for Reliability Estimated Using Response Surface Methods[J]. AIAA,2002:54-75.
    [115]Liu B Y , Hafuka R T , Akgun M A. Composite Wing Structural Optimization Using Genetic Algorithm and Response surfaces[J]. AIAA, 1998:48-54.
    [116]Krishnamurthy T. Comparison of Response Surface Construction Methods for Derivative Estimation Using Moving Least Squres Kriging and Radial Basis Functions[J]. AIAA,2005:18-21.
    [117]Kim C,Wang S. Efficient Response Surface Medeling by Using Moving Least Square Method and Sensitivity[J]. AIAA,2005,43(11):2401-2411.
    [118]Delaurentis D A,Mavris D N,Calise A J,Schrage D P. Generating Dynamic Models Including Uncertainty for Use in Aircraft Conceptual Design[J]. AIAA,1997:35-50.
    [119]Shyy W. Response Surface and Neural Network Techniques for Rocket Engine Injector Optimization[J]. Journal of Propulsion and Power,2001,17(2):391-401.
    [120]Bhadra S,Ganguli R. Aeroelastic Optimization of a Helicopter Rotor Using Orthogonal Array Based Metamodels[J]. AIAA Journal,2006,44(9): 1941-1951.
    [121]Wu J F,Hammada M著,张润楚等译.试验设计与分析及参数优化[M].北京:中国统计出版社,2003:25-42.
    [122]夏利娟,金咸定,汪痒宝.卫星结构蜂窝夹层板的等效计算[J].上海交通大学学报,2003,37(7):999-1001.
    [123]徐胜今,宋宇,王本利等.正交异性蜂窝夹层板的动力学分析[J].复合材料学报,1998,15(4):74-80.
    [124]徐胜今,孔宪仁,王本利等.正交异性蜂窝夹层板动、静力学问题的等效分析方法[J].复合材料学报,2000,17(3):92-95.
    [125]Okuizumi N , Natori M C. Nolinear Vibrations of a Satellite Truss Structure with Gaps[J]. AIAA,2004:18-67.
    [126]Gibson L J,Ashby M F,Schajer G S,etal. The Mechanics of Two Dimensional Cellular Materials[J]. Mathematical and Physical Sciences,1982,382(1782):25-42.
    [127]Xue Z,Bloebaum C L. A Particle Swarm Optimization Based Aircraft Evacuation Simulation Model Vacateair[J]. AIAA,2008:18-30.
    [128]Blackwell T, Bratton D. Examination of Particle Tails[J]. Journal of Artificial Evolution and Applications,2008,8(9):32-37.
    [129]Moral R J , Sahoo D , Dulikravich G S. Multi-Objective Hybrid Evolutionary Optimization with Automatic Switching[J]. AIAA,2006:69-76.
    [130]Jouny I. Particle Swarm Optimization for Radar Target Recognition and Modeling[J]. Automatic Target Recognition,2008,6(9):55-67.
    [131]杨松,李声远,王晓耕.卫星动力学环境模拟试验技术展望[J].航天器环境工程,2002,19(2):19-23.
    [132]干小戈,许美娟,陈志峰等.微小卫星动力学环境试验及其数据处理[J].装备环境工程,2006,3(6):8-12.
    [133]卢小燕,鲁华平,高宗战.航天器蜂窝结构的传热计算[J].机械设计与制造,2008,3:47-49.
    [134]李太鹏,徐元铭.基于PATRAN/NASTRAN的复合材料结构铺层的分级优化设计方法[J].固体火箭技术,2004,27(4):308-311.
    [135]常楠,王伟,赵锋.基于MSC.NASTRAN的复合材料层合板优化程序设计与实现[J].飞机设计,2008,28(2):37-40.
    [136]王萍萍,陈昌亚,罗文波等.卫星振动试验中频漂现象分析[J].哈尔滨工业大学学报. 2006,38(1):74-75.
    [137]李劲东.卫星热网络模型修正技术进展及其改进方法研究[J].中国空间科学技术,2004,3:29-37.
    [138]刘晓东,章晓明.卫星离散动力学模型的建立[J].同济大学学报(自然科学版),2007,35(8):1095-1098.
    [139]向树红,于丹,晏廷飞.卫星动力学虚拟试验的几个关键技术[J].航天器环境工程,2002,19(4):13-22.
    [140]闫少光,门昱,周彬文等.卫星动力学环境试验数据库系统的设计与实现[J].航天器环境工程,2005,22(6):322-326.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700