典型汽车覆盖件类零件板料选材模型数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,环境问题成为全球瞩目的焦点,而作为温室气体排放较大的汽车行业正向着降低车身自重、油耗及减少温室气体排放的方向发展。而由于汽车上的覆盖件较为复杂,成形这些零件对板料性能也有一定要求。随着冶金技术的不断提高,用于汽车覆盖件生产的钢板种类越来越多、性能越来越高。如何能物尽其用对不同覆盖件选取合适的成形板料,是目前汽车企业和钢铁生产企业共同追求的目标。
     本文首先对覆盖件的分类方法进行分析,通过对一种卡车和一种轿车车型共172个覆盖件的材料和结构特征进行系统归纳、整理和分析,将覆盖件分为5种成形类型。针对5种成形类型分别选出2~3个典型零件,分析板料性能对不同成形类型零件成形过程的影响,认为对五种成形类型影响较大的板料性能为屈服强度σs、延伸率、硬化指数n和厚向异性指数r等。
     选用ABAQUS6.8有限元分析软件,对所选取的5种成形类型典型零件成形过程进行有限元分析,对不同成形类型零件在参考板料性能的基础上选择不同的板料性能,得到不同板料性能对典型零件成形过程应力、应变和壁厚分布等影响规律,将其应变分布与由其对应的成形极限曲线相结合,获得不同性能板料典型零件成形的安全裕度,通过MATLAB软件对板料性能参数和对应的成形安全裕度之间的关系进行拟合,建立不同成形类型零件成形安全裕度与板料性能之间数学模型,可以定量地分析具有一定性能的板料是否可以满足某种成形类型零件成形安全裕度,即是否可以选择改种板料用于零件成形,达到选材目的。
     最后在所分析的典型零件中,选取深拉延和浅拉延两种成形类型零件进行了试验分析,板料为ST13,成形后通过网格应变分析手段,测量分析了零件成形过程危险区域应变状态,并将其与建立的选材模型进行比较,验证了选材模型的准确性。
In recent years, the world people’s attention focus on the environmental issues, the automobile industry which is the main source of the greenhouse gas is developing towards decreasing the automobile weight, saving energy and lowering the emission of the greenhouse gas. Because the automobile covering parts are usually complex, good material property is beneficial for the forming process of covering parts. With the fast development of the Metallurgical technology, the types of sheet which is used in the automotive industry are richer and richer, the property of sheet is better and better. How is full use of the sheet’s property, choosing a suitable sheet metal for the different automobile covering parts is the common pursuit of the goal between the automobile industry and the iron and steel enterprises.
     Firstly, in this paper, the covering parts classification method is researched and the covering parts can be classified into five different forming categories. The 172 covering parts from two kinds of cars are classified, the local and overall features are measured in UG6.0, and 2-3 typical parts are selected from the 5 categories, Respectively. At the same time, according to the scholar’s study, the different sheet properties(such as yield strength, elongation, hardening exponent, planar anisotropy ) impacted on the 5 categories are analyzed.
     Subsequently, adopting the ABAQUS6.8, the typical parts’forming process which are selected are simulated. By changing the materials parameters, stress, strain and thickness distribution can be got through the simulation. And with the strain distribution and FLC combined, the safety margin can be obtained under the different materials properties. Through the MATLAB, the model between safety margin and sheet metal properties can be fitted.
     Finally, the deep drawing part and shallow drawing part are chosen to carry out the drawing experiment, using the ST13 as the blank. After the forming, the strain distribution of danger zones are analyzed and compared with the result of the simulation. The accuracy of the model can be validated.
引文
[1]谭志耀,林建平,田浩彬.超高强度钢板热冲压成形基础研究[D].上海:同济大学硕士学位论文,2006:1-10.
    [2]张峻,柯映林.汽车覆盖件成形过程数值模拟与优化技术研究[D].杭州:浙江大学博士论文,2005:1-11.
    [3]谭善锟.薄板冲压件成形分类的试验研究[J].汽车技术,1992.
    [4]陆匠心.超轻钢汽车车身(ULSAB-AVC) [R].济南:在中国汽车工程学会十二届汽车材料年会上的报告,2000.
    [5]姚贵升,景立媛.汽车用钢板应用技术[M].北京:机械工业出版社,2008:65-493.
    [6]王利,杨雄飞,陆匠心.汽车轻量化用高强度钢板的发展[J].宝钢技术, 2006,41(9):1-8.
    [7] Shi M F, Thomas G H, Chen X M. Formability Performance Comparison Between Dual Phase and HSLA Steels[A]. 43th MWSP Conf Proc[C]. ISS, 2001:165-174.
    [8]张琴舜,王东哲等.控制汽车用覆盖件产品质量的策略研究[J].现代机械, 2001, 41(9):1~8.
    [9]琚建文,髙霖.汽车冲压件选材专家系统的研究[D].南京:南京航空航天大学硕士学位论文,2008:1-30.
    [10]初元璋,黄玲.国产轿车用冷轧钢板冲压级别评定[J].北京:北京科技大学学报,1999,21(5):479-482.
    [11]李煜,段滋华.复合钢板压力容器焊缝高温蠕变研究[D].太原:太原理工大学硕士学位论文,2010:10-20.
    [12]黄杰明.汽车覆盖件冲压工艺优化的探讨[J].工程技术,2010(10):41-44.
    [13]刘雪明,袁清华.汽车覆盖件用钢板的性能与发展趋势分析[J].科技信息,2007(21):329-331.
    [14] Ravier P, Garcia Aranda L, Chastel. Hot Stamping Experiment and Numerical Simulation of Precoated USIBOR1500 Quenchable Steels[J]. SAE, 2003(1):2859.
    [15]康斌.高强度汽车板热冲压技术研究现状[J].冶金管理,2009(8):32-36.
    [16]康达昌,郎利辉,孟晓峰等.充液拉深工艺及其成形过程数值模拟[C].杭州:第四届海内外青年设计与制造科学会议,2000:565-568.
    [17]叶卫东,苑世剑.筒形件可控径向加压充液拉深数值模拟与实验研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2008:5-21.
    [18]李兵编译.金属超塑技术前景广阔[G].北京:金属世界,2010(1):80.
    [19]邹稳根译.超塑成形[G].铁道机车车辆工人,2009(4):32.
    [20]宋飞灵.英国超塑成形技术的应用现状[G].国外考察,1994(3):20-22.
    [21]邱晓刚,卢国清,陈文龙等.坐标网分析技术与成形极限图的应用[M].上海:理化检验-物理分册,2002(38):292-296.
    [22] Bressan, Williams A. The use of a shear in stability criterion to predict local necking in sheet metal deformation[J]. Int J Mech Sci, 1983,25(5):155-168.
    [23]金属薄板成形性能与试验方法成形极限图(FLD)试验,GB/T 15825.8-1995.
    [24] Wolfgang Bleck. A comparative Study of the Forming-limit Diagram Models for Sheet Steel[J]. Material Pro.Tech, 1998.
    [25] Zhu. Predicting the Forming Limit Diagram(FLD)for Sheet Metals with Planar Anisotropy[P].SAE,No.980080, 1998.
    [26] Bressan J D, Williams J A. The use of a shear in stability criterion to predict local necking in sheet metal deformation[J]. Int J Mech Sci, 1983,25(3):155-168.
    [27] Kleemola. Factors Influencing the Forming Limit Diagram.PartⅡ. Influence of Sheet Thickness, 1980:303.
    [28]李双义,王淼,殷宇佳等.网格应变分析技术在汽车覆盖件选材中的应用[J].天津:天津汽车,2001(1):32-35.
    [29]李立军,祝洪川.润滑条件对汽车零件冲压成形的影响[J].钢铁研究. 2000(12):36-39.
    [30]谭善锟.薄板冲压件成形类别与性能对应关系的研究[J].汽车技术. 1992(5):15-22.
    [31] Hassan M A, Takakura, Yamaguchi. Friction aided deep drawing using newly developed blank-holder divided into eight segments[J]. International Journal of Machine Tools & Manufacture, 2003(23):637–646.
    [32] Gang Liu, Zhongqin Lin, Youxia Bao. Improving dimensional accuracy of a u-shaped part through an orthogonal design experiment. Finite Elements in Analysis and Design, 2002(39):107–118.
    [33] Andreasen J L, Bay N. Limits of Lubrication in Deep Drawing of Stainless Steel[C]. Proceedings of the Nordtrib'96 Conference, 1996,1(20):161~170.
    [34] Kergen, Jodogne. Computerized Control of the Blank Holder Pressure on Deep Drawing Presses[J]. SAE technical papers,1992.
    [35] Dmitry, WolframVolk. Model adaptivity for industrial application of sheet metal forming simulation[J]. Finite Elements in Analysis and Design, 2010(16):585–600.
    [36] Li Lijun, Xie De, Wu Guoyun. Sheet metal formability analysis and material determination[J]. Int. J. of Materials and product technology, 1998(13):421-426.
    [37] Storen, Rice. Localized necking in thin sheet[J]. Mech Phys Solids, 1975,23:421-441.
    [38] Jones, Gillis. An analysis of biaxial stretching of a flat sheet[J]. Met Trans, 1984(15):133-138.
    [39]非线性有限元软件-ABAQUS. CAD/CAM与制造业信息化. 2004(4):66-78.
    [40]梁明刚.非线性有限元软件ABAQUS [J].北京:航空制造技术,2006(8): 109-110.
    [41] Kuzman. Comments on the cold metal forming processes stability control[J]. Journal of Materials Processing Technology, 2007(185):132-138.
    [42] Wagener H W, Wendenburg. Analysis system Prerequisite for automation in metal-forming technology[J]. Journal of Materials Processing Technology, 2001(116):55-61.
    [43] Wei D L, Cui Z S, Chen Jun. Optimization and tolerance prediction of sheet metal forming process using response surface model[J]. Computational Materials Science, 2008(42):228-233.
    [44] Recep Kazan, Mehmet F?rat, Aysun Egrisogut Tiryaki. Prediction of springback in wipe-bending process of sheet metal using neural network. Materials and Design, 2009(46):418-423.
    [45] Moon Y H, Kima D W. Analytical model for prediction of sidewall curl during stretch-bend sheet metal forming International[J]. Journal of Mechanical Sciences, 2008(50):666-675.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700