基于率失真优化的嵌套式静态图像编码算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着Internet的广泛应用,给传统的图像压缩和传输方式带来了巨大的挑战,而较好的解决方法之一就是利用嵌套式的静态图像编码所具有的渐进传输特性。在严格的带限信道中,能够及早的以低分辨率生成图像对用户来说是非常重要的,用户可以基于内容选择终止图像的传输或者是继续接收细节更精细的图像。
     Internet网络中,用户具有不同的网络带宽和屏幕分辨率,因此图像编码必须适合广泛的可视环境,码流可在不同的情况下被解码和观看。理想情况下,在编解码的任意点裁减所得的不同码率的位流均是优化的,而不是单独优化每一个;另外一种情况下,编码速度足够快,可以针对用户的需要优化不同码率下的码流,但是裁减所得的码流有可能不是最优的。这两种情况都暗示了编码位流是嵌套式的,本文针对每一种情况都进行了详细的讨论。在接入低带宽信道时,具有低分辨率显示的计算机可以在码流开始生成图像,而不需接收太多的位生成高分辨率的图像。用户在高分辨率显示和高带宽接人网络时可以观看从同一码流解码生成的粗分辨率图像。
     图像编码的率失真理论讨论了在给定允许失真条件下,所能达到的最大编码率。在给定的编码率下,可由率失真算法计算图像编码所能达到的最大的编码失真减小。先编码的位具有较大的信息量,反映了图像的轮廓,后编码的位反映了图像的细节。因此率失真理论对图像的嵌套式编码具有非常重要的理论指导意义。
     嵌入式静态图像压缩编码近来引起了极大的关注,并且已经成为图像压缩算法的热点之一。本论文详细讨论了算法的基本原理及影响编码质量的各种因素,介绍了目前国内外所使用的主要的嵌套式编解码技术。在此基础上,本论文系统、深入地研究了小波域基于率失真优化的嵌套式静态图像编码方法。作者认为,以下问题制约算法的实际应用:
     ■ 编解码速度快,可以在实时的环境中应用。
     ■ 编码效果好,可以在任意码率下恢复出较圩质量的图像。
     ■ 嵌套式位流可以在任意点被裁减,编码器不但在最终码率是优化的,在每一个裁减点也是优化的。
     ■ 优化的子带位率分配和量化器步长能使得编码的均方误差值最小。
     在分析嵌套式静态图像编码的基础上,本文对率失真优化的编码顺序和子带优化的位率分配与量化器步长进行了深入地研究,做出的主要贡献如下:
     ■ 本文提出了一种基于率失真斜率优化编码顺序的嵌套式静态图像编码算法。基于率失真斜率最陡的编码顺序所得的码流在任意点都是优化的。高码率的码流在任意点被截短后所得到的低码率码流与直接在该低码率编码所得的码流完全一样。仿真结果表明,该算法编码速度很快,算法实现非常简单,编码效果比较好。
    
    .本文详细分析了基于Lagrange乘数的率失真优化理论,提出了一种标量量
     化的嵌套式图像编码算法。率失真优化的子带位率分配和量化步长在高率时
     是Lagrange乘数的线性函数。如果高码率的码流被截短后,编码性能将会
     变差。仿真结果表明,该算法编码速度较快,编码效果也较好。
    .本文详细分析了通用网格编码量化(uTcQ)的特点,提出了一种基于率失
     真优化的渐进传输的通用网格编码量化方法。算法模拟了真实的UTCQ率
     失真特性曲线。仿真结果表明,该算法编码速度适中,编码效果非常好。但
     是高码率的码流被截短后,编码性能同样会变差。
With the widespread use of Internet, it has taken several great technical challenges for image compression and transmission. One of better solutions is utilizing characteristic of progressive transmission of embedded still image coding. On severely bandwidth limited channel, it is necessary that images can be rendered with a low resolution as early as possible. The user has the option to terminate the transmission based on the image content or to continue receiving the finer details of the image.
    In the Internet, users have many different bandwidths and screen resolutions, so image compression algorithms must be suitable for a wide variety of viewing environments and bitstream may be decoded and viewed under many different circumstances. Ideally, the bitsteams with different coding bit-rate that can be gotten by truncating bitsteams at any point of coding and decoding are all optimized , rather than separate optimized for each.The othei circumstances,the speed of coding is quickly enough,and the bitstreams with different bit-rate can be optimized by user's demand.But the bitstreams by trunctioa are not optimized.Both of the circumstances imply that the image coded bitsireams must be embedded,and every one will be dicussed in details in this paper. Connected to low bandwidth channel, the computers with low resolution displays can render an image early in the bitstream without receiving many bits that are only required for high resolution rendering. A user with a high resolution display and a high band
    width connection to the network should then be able to view a coa-se resolution version of the image which improves as additional bits are read from ihe same bitstream.
    Under the given distortion conditions, ;he image coding Rate-Distortion theories discuss the max coding bit-rate. Unde the given coding bit-rate,the max coding distortion decrease can be calculated v/ith Rate-Distortion algorithms.The first coding bits have more information and reflect the image outlines,the last coding bits reflect the image details.So the Rate-Distor :ion theory is very important for the embedded still image coding.
    Embedded still image coding receives great attention recently and becomes one of hot topics in image coripression algorithm. This paper introduces the fundamental theory and kinds of factors that influence the coding quality in details, introduces the main techniques of embedded coding at home and abroad. Based on those introduces, this paper researches embedded still coding methods with Rate-Distortion Optimization .
    The author thinks, the main obstacles of the development of embedded coding technique in Image Compression are:
     The speed of encoding and decoding must be quickly enough to be applied in real-time applications.
     The effect of encoding is so better that the algorithm can render images under
    
    
    
    any coding bit-rate conditions.
     Embedded bit streams can be arbitrarily truncated at any point; the coder is not only optimized at the final rate, but also optimized at every trunction point.
     How can we decide the subband bit allocations and quantization step sizes so that the Mean Squared Errors are minimum?
    Based on the analysis of the main obstacle of embedded still image coding, this paper focus on the coding order with Rate-Distortion Optimized, subband bit allocations and quantization step sizes. And the main contributions are shown below:
     This paper presents a kind of embedded still image coding algorithm with coding order with Rate-Distortion Optimized.Based on the steepest Rate-Distortion slope coding order, the bitstream is optimized at arbitrary point. The low coding bit-rate bitstream gotten by truncating high bit-rate one is the same as the bitstream gotten by coding immediately with the coding low bit-rate. The result shows that the speed of algorithm is very quick, the realization is very simple and coding effect is better.
     This paper analyzes the theory of Rate-Distortion Optimization based on Lagrange Multiplier in details, and presents a kind of Embedded still image co
引文
1. N.Favardin and J.W.Modestina, "DPCM for autoregressive sources", IEEE Trans.Inform.Theory, vol IT-31, pp. 402-418,May 1985.
    2. P.C.Cosman, T.M.Gray and M.Vetterli, Vector quantization of image subbands: A survey, IEEE Trans.On Image Processing, vol.5, no.2: pp.202-225, 1996.
    3. P.C.Cosman, S.M.Perlmutter, K.O.Perlmutter, "Tree-structure vector quantization with significance map for wavelet image coding", Proc.1995 IEEE Data Compression Conf., Snowbird, UT, USA, 1995.
    4. Furukawa, M.Nomura, S.Ono, "Hierarchical sub-band coding of super high definition image with adaptive block-size multistage VQ", Signal Processing:Image Commun., vol.5, No.6:pp.527-538,1993.
    5. N.M.Nasrabadi, R.A.King, "Image coding using vector quantization: A Review", IEEE Trans.On COM., vol.36, no.8: pp.957-971,1988.
    6. Chou P., "Application of entropy-constrained vector quantization to wavelet coding of images". In: SPIE 1989.pp.970-978, 1989.
    7. ISO/IEC JTC1/SC29/WGl(ITU_T SG), Coding of Still Pictures,JBIG, JPEG,Lossless,nearly lossless Compression,WD14495, Technical report, Working Draft,June 1996.
    8. W.B.Pennebaker and J.L.Mitchell, 'JPEG still image compression standard', Van Nostrand Reinhold, 1992.
    9. ISO/IEC JTC1/SC29 10918-1:JPEG.
    10. ISO/IEC FCD15444-1. 'Jpeg 2000 Image Coding System'. Jpeg 2000 Final Committee Draft Version 1.0, 16 Mar 2000.
    11. ISO/IEC JTC1/SC29 11172:MPEG1, International standard for coding of moving pictures and associated audio for digital storage media at up to about 1.5Mbit/s, 1991.
    12. ISO/IEC 13813, MPEG2: International standard for coding of moving pictures and associated audio informatior, 1996.
    13. ISO/IEC JTC1/SC29/WG11, "MPEG4 Video Verification Model Version 8.0", Draft in Progress,July 1997.
    14. D.A.Huffman, "A method for the construction of minimum redundancy codes", Proc IRE 40, pp.1098-1101, 1952.
    
    
    15. M.Schindler, "Practical Huffman Coding", October 1998.
    16. T.M.Cover and J.A.Thomas, "Elements of Information Theory", New York, Wiley, Ch.13, 1991.
    17. G.G.Langdon, "An Introduction to Arithmetic Coding", IBM J.Res. Develop., 28:135-149,1984.
    18. J.Rissanen and G.G.Langdon, "Arithmetic Coding", IBM J.Res. Develop.,23:149-162, March 1979.
    19. R.M.Witten, R.neal, and J.G.Cleary, "Arithmetic coding for data compression", Comm, ACM, vol.30, pp.520-540, June 1987.
    20. J.M.Shapiro, "Embedded image coding using zerotrees of wavelet coefficients", IEEE Trans. on Signal Processing, 1993, 41(12): 3445~3462.
    21. Said and W.Pearlman, "A new, fast and efficient image codec based on set partitioning in hierarchical trees", IEEE Trans.on Circuits Syst, Video Technol, 1996,vol.6, 243-250.
    22. Progressive Image Coding using Augmented Zerotrees of Wavelet Coefficients (with R. Wilson), Research Report CS-RR-350, Department of Computer Science, University of Warwick, UK, September 1998
    23. J.H.Kasner,M.W.Marcellin,and B.R.Hunt, 'Universal trellis coded quantization', IEEE Trans. Image Proc., 1999,Vol.8, No.12, 1677—1687.
    24. T.Berger, "Rate Distortion Theory—A mathematical Basis for Data Compression", Prentice-Hall, New Jersey,1971.
    25.戴善容:《数据压缩》,人民邮电出版社,1984。
    26.周炯磐:《信息理论基础》,人民邮电出版社,1983。
    27. Girod, F.Hartung, and U.Horn, "Subband Image Coding"(Chapter 7),in A.Akansu and J.K.Smith, eds.,Design and Application of Subband and Wavelets,Kluwer Academic Publishers, Dordrecht, Boston, London, 1995.
    28. C.E.Shannon, "A Mathematical Theory of Communication", Bell System Tech.Journal, 27: 379-423,623-656, 1948.
    29. N.J.A.Sloane and A.D.Wyner, eds,.Claude Elwood Shannon, Collected Papers, IEEE Press New York, 1993.
    
    
    30. R.G.Gallager, "Information Theory and Reliable Communication", John Wiley and Sons, New York, 1968.
    31. R.E.Blahut, "Computation of Channel Capacity and Rate Distortion Functions", IEEE Trans.IT-18: 460-473, 1972.
    32. Daubechies, "Orthonormal bases of compactly supported wavelets", Commun.Pure Appl.Math., vol.41,pp. 909-996,1988.
    33.崔锦泰著,程正兴译,小波分析导论,西安交通大学出版社,1995。
    34.陈逢时著,小波变换理论及其在信号处理中的应用,国防工业出版社,1998。
    35.赵松年,熊小芸著,子波变换与子波分析,电子工业出版社,1996。
    36.沈兰逊著,图像编码与异步传输,人民邮电出版社,1998。
    37.吴乐南编著,数据压缩,东南大学出版社,2000。
    38. "The wavelet transform, time-frequency localization and signal analysis", IEEE Trans.Informat.Theory, vol.36, pp.961-1005, Sept.1990.
    39. S.mallat, "A theory for multiresolution signal decomposition: The wavelet representation", IEEE Trans.Pattern Anal.Mach.Intell,.vol.11, pp.674-693,July 1989.
    40. S.Mallat,"Multifrequency channel decomoositions of images and wavelet models", IEEE Trans.ASSP, vol.37, pp.2091-2110, Dec 1990.
    41. Rioul and M.Vetterli, "Wavelets and signal processing", IEEE Signal Processing Mag, vol.8, pp.14-38, Oct 1991.
    42. J.villasenor, B.Belzer, J.Liao, Wavelet filter evaluation for image compression. IEEE Trans. on Image Processing, 1995,4(8): 1053~1060.
    43. A.I.Cohen, I.Daubechies, and J.C.Feauveau, "Bi-Orthogonal Bases of Compactly Supported Wavelets", Commun.Pure Appl.Math., vol.45, pp.485-560,1992.
    44. M.Vetterli and C.Herley, "Wavelets and Filter Banks: Theory and Design", IEEE Trans.Signal Processing, vol.40(9), 2207-2232,1992.
    45. P.J.Burt and E.H.Adelson, "The Laplac(?)an Pyamid as a Compact Image Code", IEEE Trans., C-31: 532-540,1983.
    46. Daubechies, "Orthonormal bases of compactly supported wavelets:Ⅱ variations on a theme", SIAM Math, 1993,24(1):499-519.
    47. C.Cheng,"Subband image coding wilh biorthognal wavelets",IEICE Trans.Fundamentals, vol.E75-A,no.7, pp 871-881,1992.
    
    
    48. R.gopinnath, C.Burrus, "wavelet-based lowpass/bandpass interpolation", Proc.ICASSP, vol.4, pp.385-388,1992.
    49. D.Taubman and A.Zakhor, "Multirate 3-D subband coding of video", IEEE Trans.on Image Processing, no.3, pp.572-588, Sep.1994.
    50. J.Li, P.Cheng, and C.-C.J.Kuo, On the improvement of embedded zerotree wavelet coding,in Proc.SPIE:Visual Communication and Image Processing, Taipei, Taiwan, R.O.C, May 1995, vol.2601, pp.1490-1501.
    51. Bilgin, P.Sementilli, M.W.Marcellin, 'Progressive Image Coding Using Trellis Coded Quantization', IEEE Transactions.On Image Processing, 1999, Vol.8, No.11, 1638-1643.
    52. Said and W.Pearlman, "Image compression using the spatial -orientation tree", in Prof.Int.Symp.Circuits Syst,.(Chicago,IL), pp.279-282, May 1993.
    53. C. Chrysafis and A. Ortega, Efficient context based entropy coding for lossy wavelet image compression, in Proc. Data Compression Conf., Snowbird, UT, 1997.
    54. X. Wu, "High-order context modeling and embedded conditional entropy coding of wavelet coefficients for image compression," Proceedings of Thirty-First Asilomar Conference on Signals, Systems & Computers, Vol. 2, pp. 1378-1382, 1997.
    55. E.H.Adelson, E.Simonceli, and R.Hingorani, "orthogonal pyramid transforms for image coding", Proc.SPIE, vol.845, Cambridge, MA, Oct.1987, pp.50-58.
    56. M.Antonini, M.Barlaud, P.Mathieu, and I.Daubechies, "Image coding using wavelet transform", IEEE trans. On Image Processing, pp. 205-230,Apr. 1992.
    57. P.Desarte, B.Macq, D.Slock, Signal-adapted multiresolution transform for image coding. IEEE Trans. on Information Theory, 1992, 38(2): 897~904
    58. Li Jin, Shawmin Lei, 'An Embedded Still Image Coder with Rate-Distortion Optimization', IEEE Trans. on Image Processing, 1999,vol.8, NO.7,913-923.
    
    
    59. A, Pentland and B.Horowitz, "A practical approach to fractal-based image compression", in Proc. Data Compressicn Conf,.Snowbird, Utah, IEEE Computer Society Press,1991.
    60. J.M.Shapiro, "An Embedded Wavelet Hierarchical Image Coder", Proc. IEEE Int.Conf.Acoust,.Speech,Signal Processing, San Francisco, CA, Mar 1992.
    61. "An embedded hierarchical image coder using zerotrees of wavelet coefficients", in Proc.Data Compression Conf., Snowbird,Utah, IEEE Computer Society Press,1993.
    62. "Application of the embedded wavelet h erarchical image coder to very low bit rate image coding", Proc.IEEE Int.Conf.Acoust,.Speech,Signal Processing, Minneapolis, MN, Apr. 1993.
    63. W.Equitz and T.Cover, "Successive refinement of information", IEEE Trans.Informat.Theory, vol.37, pp.269-275, Mar. 1991.
    64. Y.H.Kim and J.W.Modestion, "Adaptive entropy coded subband coding of images", IEEE Trans.Image Processing, vol.1, pp.31-48,Jan. 1992.
    65. N.Tanabe, and N.Farvardin, "subband image coding using entropyconstrained quantization over noisy channels", IEEE J.Select.Areas in Commun., vol.10, pp.926-943, June. 1992
    66. J.H.Kasner and M.W.Marcellin, "Adaptive wavelet coding of images", Proc.1994 IEEE Conf.on Image Processing, vol.3, pp.358-362, Austin,TX, Nov. 1994.
    67. A.Said and W.A.Pearlman, "Reversible Image compression via multiresolution representation and predictive coding" Proc.SPIE Conf.Visual Communications and Image Processing 93,Proc.SPIE 2094, pp.664-674, Cambridge, MA, Nov. 1993.
    68. D.P.de Garrido,W.A.Pearlman and W.A.Finamore, "A clustering algorithm for entropy-constrained vector quantizer design with applications in coding image pyramids", IEEE Trans.Circ.and Syst.Video Tech., vol.5, pp. 83-95, Apri 1995.
    69. L.J.Lin, A.Ortega, and C.-C J.Kuo, "Rate control using spline interpolated R-D characteristics ", in Proc, SPIE: Visual Communication and Image Processing, Orlando, FL, vol.2727, pp.112-122., Apr 1996.
    
    
    70. K.Ramchandran, A.Ortega, and M.Vetterli, "Bit Allocation for dependent quantization with applications to multiresolution and MPEG video coders", IEEE Trans.Image Processing, vol.2, pp.533-545, Sept 1994.
    71. Z.Xiong and K.Ramchandran, "Wavelet packet-based image coding using joint space-frequency quantization", in Proc, 1~(st) IEEE Int.Conf. Image Processing, Austin, TX, Nov 13-16,1994.
    72. R.A.Devore, B.Jawerth,and B.J.Lucier, "Image compression through wavelet transform coding", IEEE Trans.Inform.Theory, vol.38, pp.719-746, March 1992.
    73. M.Rabbani, and P.W.Jones, Digital Image Compression Techniques, SPIE Opt.Eng.Press, Bellingharn, Washington,1991.
    74. H.Evrett, "Generalized Lagrange multiplier method for solving problems of optimum allocation of resources", Operation Res., vol.11, pp.399-417, 1963.
    75. H.Gish and J.N.Pierce, "Asymptotically efficient quantizing", IEEE. Trans. Inform.Theory, vol.IT-14,pp.676-683,Sept.1968.
    76. J.J.Huang and P.M.Sdhultheiss, "Block quantization of correlated Gaussian random variables", IEEE.Trans.Commun.Sys., vol.CS-11, pp.289-296, Sept 1963.
    77. A.Segall, "Bit allocation and encoding for vector sources", IEEE Trans.Inform.Theory,vol.IT-22,pp. 162-169, Mar. 1976.
    78. Y.Shoham and A.Gersho, 'Efficient bit allocation for an arbitrary set of quantizers', IEEE Transactions On Acous.,Speech,and Signal Processing,1988, vol.ASSP-36,1445-1453.
    79. A.V.Trushkin, "Bit number distribution upon quantization of a multivariate random variable", Problems of Inform. Transmission, vol.16, pp.76-79,1980.
    80. "Optimal bit allocation algorithm for quantizing a random vector", Problems of Inform. Transmission, vol.17, pp.151-161, 1981.
    81. B.H.Juang and A.H.Gray, "Multiple stage vector quantization for speech coding", in Proc.int, Conf.ASSP.Paris, France, pp.597-600, May 1982
    82. Vladimir Cuperman, "Joint Bit Allocation and Dimensions Optimization for Vector Transform Quantization", IEEE Trans.on Information Theory, vol.39, no.1, Jan. 1993.
    
    
    83. L.-J Lin and A.Ortega, "Bit-rate control using piecewise approximated rate-distortion characteristics", IEEE Trans.Circuits and Systems for Video Technology, vol.8, pp.446-459, Aug. 1998.
    84. W.Ding and B.Liu, "Rate control of Mpeg video coding and recording by rate-quantization modeling", IEEE Trans. Circuits and Systems for Video Technology, vol.8, pp.12-20, Feb. 1996.
    85. E.A.Riskin and R.M.Gray,A greed tree growing algorithm for the design of variable rate vector quantizers,IEEE Trans.Signal Processing, vol.39, pp.2500-2507,1991.
    86. Kenneth Rose, David Miller,and Allen Gersho,Entropy-Constrained Tree-Structured Vector Quantizer Design,IEEE, Trans.Image Processing,vol.5, pp.393-397,Feb,1996.
    87. Z.M.Yusof, T.R.Fischer, "An entropy-coaed lattice vector quantizer for transform and subband image coding", IEEE Trans. On Image Processing, vol.5, No.2, pp.289-298, Feb 1996.
    88. W.Pennebaker and J.L.Mitchell, IBM, "Probability adaptation for arithmetic coders", U.S.Patent 5099440, Mar 24, 1992.
    89. Duttweiler and C.Chamzas, "Probability estimation in arithmetic and adaptive Huffman entropy coders", IEEE Trans.Image Processing, vol.4, pp.237-246, Mar 1995.
    90. Siu-Wai Wu, Allen Gersho, "Rate-Constrained Picture-Adaptive quantization for JPEG Baseline coders," in Proc.IEEE Int. Conf. ASSP, Vol.5, pp. 389-392, Apr. 1993.
    91. T.Naveen and J.W.Woods, "Subband finite state scalar quantization", in Proc.ICASSP, pp.613-616, Apr. 1993.
    92. N.Tanabe and N.Farvardin, "Subband image coding using entropy coded quantization over noisy channels", IEEE J.Select.Areas Commun, vol.10, pp.926-942, June 1992.
    93. Rajan L.Joshi, Thomas R.Fischer, and Roberto H.Bamberger, "Optimal Classification in Subband Coding of Images",
    94. N.S.Jayant and Peter Noll, "Digital coding of waveforms", Prentice-Hall, Englewood Cliffs, 1984.
    
    
    95. N.Farvardin and J.W.Modestino, "Optimum quantizer performance for a class of non-Gaussian memoryless sources", IEEE Trans.Inform.Theory, vol.30, pp.485-497, May 1984.
    96. S.G.Mallat, "A theory for multiresolution signal decomposition:The wavelet representation", IEEE Trans.Pattern Analysis and Machine Intell, vo1.11, pp.674-693, July 1989.
    97. P.H.Westerink, J.Biemond, and D.E.Boekee, "An optimal bit allocation algorithm for sub-band coding", in Proc.ICASSP, pp.757-760, Apr.1988.
    98. T.D.Lookabaugh and R.M.Gray, "High-resolution quantization theory and vector quantizer advantage", IEEE Trans.Information Theory, 35:1020-1-33,September 1989.
    99. Usevitch, "Optimal Bit Allocation for Biorthogonal Wavelet Coding", In J.A.Storer and M.Cohn, editors, Proc.IEEE Data Compression Conference,387-395, Snowbird,Utah,April 1996
    100. H.Gish and N.J.Pierce, "Asymptotically efficient quantizing", IEEE Trans.Inform.Theory, vol.IT-14, pp.676-683, Sept. 1968.
    101. M.W.Marcellin and T.R.Fischer, 'Trellis coded quantization of memoryless and Gauss-Markov sources', IEEE Trans. on Commun., 1990,vol.38: 82-93.
    102. Min Wang,Thomas R.Fischer, "Trellis-Coded Quantization designed for noisy channels", IEEE Transs.Inform.Theory, vol.40,no.6:pp.1792-1800,1994.
    103. T.R.Fischer, M.W.Marcellin, and M.Wang. "Trellis coded vector quantization", IEEE Trans.Inform.Theory,vol.37:pp.1551-1566,1991.
    104. G.H.Freeman,J.W.Mark and I.F.Blake, "Trellis source codes designed by conjugate gradient optimization", IEEE Trans.Commun., vol.38,no.1:pp.46-55,1990.
    105. Thomas T.Fischer,Min Wang, "Entropy-constrained trellis-coded quantization", IEEE Trans.On Information Theory, vol.38, no.2:pp.415-426,1992.
    106.周正华,博士论文,电子科技大学,2000。
    107.郑勇,博士论文,电子科技大学,2002。
    
    
    108. Rajan Laxman Joshi, "Subband image coding using classification and trellis coded quantization", Ph.D dissertation,Washington State University, Aug. 1996.
    109. G.D.Forney, Jr., "The Viterbi Algorithm", Proc.IEEE(Invited papers),vol.61,no. 1 :pp.268-278,1973.
    110. Antoine Chouly and Hikmet Sari, 'Six-dimensional trellis-coded with QAM signal sets', 1992, vol.40, No.1,24-33.
    111. Jia-Yin Wang and Mao-Chao Lin, 'On constructing trellis codes with large free distances and low decoding complexities', IEEE Commun., 1997, vol.45, No.9, 1017-1020.
    112. "A Rate-Distortion Optimized Coding Algorithm Based on Human Visual Weighting" ,Signal Processing,Vol. 18,No.5,pp.468-472,2002.
    113. "An Embedded Still Image Code Algorithm With Rate-Distortion Optimization" ,pp.1-4,International Conference of Communications, Circuits and Systems & West Sino-Exposilion 2002.
    114.《基于人眼视觉特性加权的率失真优化编码算法》《信号处理》2002年第18卷第五期,468-472。
    115.《基于率失真优化的静态图象编码算法》,《系统工程与电子技术》2003年第25卷第三期,343-346页
    116.《渐进的UTCQ编码算法》,《电子科学与信息》已录用,即将刊出。
    117.《基于率失真优化的UTCQ编码算法》,《信号处理》修改后即将录用。
    118. Kasner, J.H.; Marcellin, M.W.; Hunt, B.R.; "Universal Trellis coded quantization", Image Processing, IEEE Transactions on, Volume: 8 Issue: 12, Dec 1999, Page(s): 1677-1687
    119. David Taubman, "High Performance Scalable Image Compression with EBCOT", IEEE Trans.on Image Processing,vol.9,no.7,pp.1158-1170,July,2000.
    120. Antonini, M.; Barlaud, M.; Mathieu, P.; Daubechies, I: Image coding using vector quantization in the wavelet transform domain. Proceedings of the ICASSP, 1990. 2297-2300.
    
    
    121. C. Chrysalis, Wavelet Image Compression Rate Distortion Optimizations and Complexity Reductions. PhD thesis, University os Southern California, January 2000.
    122. D. Mukherjee and S. K. Mitra, "Vector set partitioning with classified successive refinement VQ for embedded wavelet image and video coding," Proc. International Conference on Acoustics, Speech, and Signal Processing, Seattle, Washington, vol. 5, pp. 2809-12, May 1998.
    123. P. Pancha and M. el Zarki. A look at the MPEG video coding standard for variable bit rate video transmission. In Proceedings oflEEEINFOCOM '92, volume 1, pages 85-94, 1992.
    124. B. Kim, Z. Xiong, and W. Pearlman. Low bit-rate scalable video coding with 3D set partitioning in hierarchical trees (3D SPIHT). IEEE Transactions on Circuit and Systems for Video Technology, 10:1374-1387, December 2000.
    125. G.J. Sullivan, T. Wiegand, 'Rate-distortion optimization for video compression", IEEE Signal Processing Magazine, Vol. 15, pp. 74-90, Nov. 1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700