航天器推进剂晃动的动力学建模与抑制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液体推进剂的晃动问题在现代航天器的总体设计中愈发受到重视。这是由于随着对航天器执行任务能力要求的提高,推进剂在航天器的总重构成中占有的比例亦相应增加。而大量液体推进剂的晃动行为有可能影响航天器整体的动力学性能,对结构的安全性或系统的稳定性构成威胁。本文针对此问题,基于液体晃动模态理论,利用等效力学方法建立了晃动耦合动力学模型,分析研究了推进剂晃动对航天器造成的动力学影响,并从防晃结构设计和前馈控制两种角度探讨了抑制推进剂晃动的实用方法。具体研究内容与主要成果如下:
     结合航天应用背景,对以往有关液体晃动的国内外研究从基本理论、研究方法和成果应用三方面进行了综述,确定了研究内容与实现步骤:以模态理论为基础,以等效力学方法为手段,分析推进剂晃动与航天器控制系统的动力学耦合关系,开展关于推进剂晃动抑制策略的研究。
     基于流体力学基本理论和变分原理,建立以液体流动速度势为待求函数的晃动问题数学描述。通过分离该函数中的时间变量,将描述方程由原来的偏微分方程组化为关于模态函数的常微分方程组,为之后基于模态理论分析研究晃动的动力学问题奠定了基础。
     基于模态响应理论和力学等效原则,推导了以简单机械系统代替液体系统的等效力学模型建模方法。通过在建模过程中,利用固体有限元通用分析手段获取晃动模态特征值和特征向量,提高了建模效率和方法的适用性。方法的有效性和准确性则通过在若干算例中与相关研究数据的对比得到了验证。利用等效模型的动力学开环分析结果,总结了非线性晃动模态被激发的必要条件,为研究推进剂晃动与航天器控制系统动力学耦合效应建立了基础。
     从多体动力学的角度出发,以等效力学模型的研究结论为基础,建立了航天器大系统内液-固-控耦合效应的分析模型。建立了可用于晃动动力学闭环分析的实时仿真模块。数值仿真结果表明:以航天器刚体模型设计的控制率,由于推进剂晃动的扰动影响的实际存在,而有可能无法有效地实现控制目的。尤其是当推进剂晃动质量的质心比航天器质心更靠近轴向前端时,系统稳定的必要条件是晃动质量必须满足由航天器转动惯量和推进剂贮箱相对位置确定的限制条件。
     以流体力学绕流理论为基础,解析分析了晃动抑制结构的作用机理。建立了结构防晃效能的定量分析模型。通过与实验文献的对比,验证了解析分析的合理性。通过解析方法与计算流体力学模拟技术的结合,实现了对防晃结构设计过程的改进,其方法和结果对航天器贮箱的设计具有参考价值。
     将输入成型技术应用到液体推进剂晃动抑制的研究中。依据液体晃动基频,通过对晃动幅度、航天器推力水平、时间或能耗优化等因素的综合考虑,设计了用于前馈控制的输入成型器。数值仿真结果验证了该方法抑制推进剂晃动的有效性。相较于一般的反馈控制器,输入成型器由于设计过程简洁而具有广阔的应用前景。
The problem of liquid fuel sloshing in integrated design of modern large spacecrafts is drawing more and more attention. This is due to the increasing requirements of spacecraft mission executing abilities and thus the increase of fuel portion to overall mass of a spacecraft. Large scale liquid fuel sloshing may interfere overall dynamic characters of a spacecraft, putting structure safety or system stability under threatening. With respect to this problem, this study establishes coupled dynamic sloshing model with mechanic equivalent method and liquid sloshing module theory, and analyzes dynamic affection of fuel sloshing to spacecraft. In addition, practical methods are discussed in terms of anti-sloshing structure design and forward feedback control. Detailed research contents and results are as follows:
     Combining aeronautic application backgrounds, such three aspects as basic theories, research methodology, and achievement applications about liquid sloshing both domestic and abroad are reviewed. Research contents and implementation procedure are determined: the foundation of this research is modal theories, implementation means mechanics equivalent method, and the purpose to evaluate coupling effect of propellant sloshing and spacecraft control system and establish methodology for propellant sloshing inhibition.
     Based on fluid dynamic basics and variation principles, a mathematic description is established of fuel sloshing with liquid flow velocity potential as undermined functions. Via separating time variable of the function, description equation can be transformed from original partial differential equations to ordinary differential equations about modal functions. This transformation lays foundation for research of sloshing dynamics utilizing modal theories.
     Applying modal response theories and mechanical equivalent principles, models are built to replace liquid system equivalent mechanic modeling with simple mechanical system. Modeling efficiency and feasibility are improved during modeling process where solid finite element universal computation program is used. Several computational cases and comparison to corresponding research data validate the accuracy of this method. Open-looped analyzing results of equivalent model are used to summarize necessary exciting conditions of non-linear sloshing modules. These conclusions are research foundation of research on coupling effects between propellant sloshing and spacecraft control system dynamics.
     From the view of multi-body dynamics, based on equivalent mechanic model research results, analyzing model of liquid-solid-control of a spacecraft large system is established and a real-time simulation module is constructed. The numerical simulation results indicate that the control algorithm, which was designed based on rigid model of spacecraft, may be unable to achieve the control objective due to the sloshing disturbance. Especially when the centroid of the sloshing mass above the centroid of the spacecraft, the necessary condition for a stable system is that the sloshing mass must satisfy the constraint depends on moment of inertia of spacecraft and location of propellant vessel.
     Analytically, the sloshing inhibition structure mechanism is analyzed applying the circumferential flow theory in fluid dynamics. Quantity analysis model of the sloshing inhibition effect is founded. Comparison to experiments in literature validates the analytical results. Also, sloshing inhibiting structure improved was realized with combination of analytical methods and CFD simulation technology. This work has positive value to assist overall design of spacecraft.
     Finally, input shaping technique is adopted in this liquid propellant sloshing inhibition research. In specific, considering liquid sloshing primary frequency and inclusive factors as sloshing amplitudes, spacecraft thrust levels, time or energy optimization, input shaper for forward feedback control is designed. Numerical simulation validates the efficiency of inhibiting propellant sloshing of this method. Compare to common feedback controller, input shaper is simple in design process, and has a broad and promising application foreground.
引文
1尹立中,王本利,邹经湘.航天器液体晃动与液固耦合动力学研究概述.哈尔滨工业大学学报. 1999, 31(2): 118-122
    2 E M. Jones. Apollo-11 Lunar Surface Journal. 2008, the first mission time 102:38:20, http://www.hq.nasa.gov/office/pao/History/alsj/a11/a11.landing.html
    3 J. Gerrits. Dynamics of Liquid-Filled Spacecraft: Numerical Simulation of Coupled Solid-Liquid Dynamics. Ph.D. thesis, University of Groningen, the Netherland. 2001
    4 Falcon-1 Data Sheet. SpaceX, 2008, http://www.spacex.com/falcon1.php
    5 R. A. Ibrahim. Liquid Sloshing Dynamics: Theory and Applications. Cambridge University Press, 2005
    6 H. N. Moiseev. Introduction to the Theory of Oscillations of Liquid-Contained Bodies. 1964
    7 H. N. Moiseev, V. V. Rumjantsev. Dynamic Stability of Bodies Containing Fluid. Edited by H. N. Abramson. New York: Springer-Verlag, 1968
    8 H. N. Abramson. The Dynamic Behavior of Liquids in Moving Containers. NASA SP-106, 1966
    9 F. T. Dodge. The New“The Dynamic Behavior of Liquids in Moving Containers”. Southwest Research Institute, San Antonio, Texas, 2000
    10王照林,刘延柱.充液系统动力学.北京:科学出版社, 2002
    11 H. F. Bauer. Theory of Fluid Oscillations in a Circular Cylindrical Ring Tank Partially Filled with Liquid. NASA TN D-577, 1960
    12 H. F. Bauer, W. Edidel. Small Amplitude Liquid Oscillations in a Rectangular Container under Zero-Gravity. Aeronautical J., 1989, 93(930): 379-386
    13 G. R. Verma, J. B. Keller. Three-Dimensional Standing Surface Waves of Finite Amplitude. Phys. Fluid, 1962, 5: 52-56
    14 M. Sakka, K. Kimura and M. Utsumi. Non-Stationary Random Responses of Nonlinear Liquid Motion in a Cylindrical Tank. Trans. Japan Soc. Mech. Engrs., 1983, 49: 963-970
    15 R. E. Hutton. An Investigation of Resonant, Nonlinear, Non-Planar Free Surface Oscillations of a Fluid. NASA TN D-1870 1963
    16 K. Komatu. Nonlinear Sloshing Analysis of Liquid in Tanks with Arbitrary Geometries. Int. J. Nonlinear Mechanics, 1987, 22(3): 193-207
    17 J. W. Miles. Nonlinear Surface Waves in Closed Basins. J. of Fluid Mechanics, 1976, 75(3): 419-448
    18 F. Welt, V. J. Modi. Vibration Damping through Liquid Sloshing, Part I: A Nonlinear Analysis. ASME Trans., J. of Vibration and Acoustics, 1992, 114(1): 10-16
    19 I. A. Lukovsky. Variational Method of Solving Dynamic Problems for Fluid-Container Bodies. International Applied Mechanics, 2004, 40(10): 1092-1128
    20陈科.航天器刚弹液耦合动力学建模与分析,综合论文训练.北京:清华大学, 2002
    21尹立中.航天工程中液体大幅晃动及贮箱类液固耦合动力学研究.哈尔滨工业大学博士学位论文. 1999
    22苟兴宇.航天工程中的贮箱类液固耦合动力学研究.哈尔滨工业大学博士学位论文. 1998
    23吕敬,李俊峰,王天舒,岳宝增.充液箱位置对航天器耦合特性影响分析.动力学与控制学报. 2007, 5(2): 159-164
    24吕敬,李俊峰,王天舒,岳宝增.充液挠性航天器俯仰运动分岔特性初步研究.工程力学. 2008, 25(4): 200-203
    25 D. Okhotsimskii. Theory of the Motion of a Body with Cavities Partially Filled with a Liquid. NASA TT F-33, 1960
    26 H. N. Abramson, W. H. Chu, G. E. Ransleben. Representation of Fuel Sloshing in Cylindrical Tanks by Equivalent Mechanical Model. ARS Journal, 1961, 1697-1705
    27 F. T. Dodge, L. R. Garza. Simulated Low-Gravity Sloshing in Spherical, Ellipsoidal and Cylindrical Tanks. Journal of Spacecraft and Rockets, 1970, 7(2): 204-206
    28 W. H. Chu. Low-Gravity Fuel Sloshing in an Arbitrary Axisymmetric Rigid Tank. Trans. of the ASME, J. Applied Mechanics, 1970, 37(3): 828-837
    29 H. F. Bauer. Forced Liquid Oscillations in Paraboloid Container. Z. Flugwiss.Weltraumforsch. 1984, 8: 49-55
    30 J. S. Meserole, A. Fortini. Slosh Dynamics in a Toroidal Tank. Journal of Spacecraft and Rockets. 1987, 24(6): 523-531
    31 J. F. Unruh, D. D. Kana. Digital Data Analysis Techniques for Extraction of Slosh. AIAA Paper: 85-0813
    32 D. D. Kana. A Model for Nonlinear Rotary Slosh in Propellant Tanks. J. of Spacecraft and Rockets, 1987, 24(2): 169-177
    33包光伟,王政伟.液体三维晃动特征问题的有限元数值计算方法.力学季刊, 2003, 24(2): 185-190
    34包光伟. Dewar瓶内液体晃动的近似计算方法.力学季刊, 2002, 23(3): 311-314
    35包光伟.平放柱形贮箱内液体晃动的等效力学模型.上海交通大学学报, 2003, 37(12): 1961-1968
    36 D. D. Kana, W. L. Ko, P. H. Francis and A. Nagy. Coupling between Structure and Liquid Propellants in a Parallel-Stage Space Shuttle Design. AIAA Paper: 72-347
    37 D. E. Hill, J. R. Baumgarten and J. T. Miller. Dynamics Simulation of Spin-Stabilized Spacecraft with Sloshing Fluid Stores. AD-A180688
    38 B. A. Sayer, J. R. Baumgarten. Linear and Nonlinear Analysis of Fluid Slosh Dampers. AIAA J., 1982, 20(1): 1534-1538
    39 H. F. Bauer. Stability Boundaries of Liquid-Propellant Elastic Space Vehicles with Sloshing. J. of Spacecraft and Rockets, 1966, 3(2): 240-246
    40 C. Nichkawde, P. M. Harish, N. Ananthkrishnan. Stability Analysis of a Multibody System Model for Coupled Slosh-Vehicle Dynamics. Journal of Sound and Vibration, 2004, 275: 1069-1083
    41吴艳.多挠性充液卫星姿态运动的鲁棒控制器设计.厦门大学硕士学位论文. 2000
    42贾英宏.挠性充液航天器的动力学与控制研究.哈尔滨工业大学硕士学位论文. 2001
    43李英波.挠性充液卫星动力学分析与姿态控制研究.上海交通大学博士学位论文. 2001
    44 L. D. Peterson, E. F. Crawley, R. J. Hansman. Nonlinear Fluid Slosh Coupled to the Dynamics of a Spacecraft. AIAA J., 1989, 27(9): 1230-1240
    45 T. Ikeda, N. Nakagawa. Nonlinear Vibrations of a Structure Caused by Water Sloshing in a Rectangular Tank. J. of Sound and Vibration, 1977, 201(1): 23-41
    46 T. Ikeda, T. Hirayama, N. Nakagawa. Nonlinear Vibrations of a Structure Caused by Water Sloshing in a Cylindrical Tank. Jsme International Journal Series C: Mechanical Systems Machine Elements and Manufacturing, 1998, 41(3): 639-651
    47 J. L. Ortiz, A. A. Barhorst, R. D. Robinett. Flexible Multibody Systems Fluid Interaction. International Journal for Numerical Methods in Engineering, 1998, 41(3): 409-433
    48 H. F. Bauer, W. Eidel. Liquid Oscillations in a Prolate Spheroidal Container. Ingenieur-Archiv. 1989, 59: 371-381
    49 M. Isaacson, C. S. Ryu. Earthquake-Induced Sloshing in Vertical Container of Arbitrary Section. Journal of Engineering Mechanics ASCE, 1998, 124(2): 158-166
    50 S. Papaspyrou, D. Valougeorgis, S. A. Karamanos. Refined Solutions of Externally Induced Sloshing in Half-Full Spherical Containers. J. of Engineering Mechanics, 2003, 129(12): 1369-1379
    51 S. Papaspyrou, S. A. Karamanos, D. Valougeorgis. Response of Half-Full Horizontal Cylinders under Transverse Excitation. Journal of Fluids and Structures, 2004, 19: 985-1003
    52 S. Papaspyrou, D. Valougeorgis, S. A. Karamanos. Sloshing Effects in Half-Full Horizontal Cylindrical Vessels under Longitudinal Excitation. Journal of Applied Mechanics, 2004, 71: 255-265
    53 P. Mciver. Sloshing Frequencies of Longitudinal Modes for a Liquid Contained in a Trough. Journal of Fluid Mechanics, 1993, 252: 525-541
    54 W. H. Chu. Low-Gravity Fuel Sloshing in an Arbitrary Axisymmetric Rigid Tank. Trans. of the ASME, J. Applied Mechanics, 1970, 37(3): 828-837
    55 M. Utsumi. Low-Gravity Propellant Slosh Analysis Using Spherical Coordinates. Journal of Fluids and Structures, 1998, 12(1): 57-83
    56 W. G. Penney, A. T. Price. Finite Periodic Stationary Gravity Waves in a Perfect Liquid. Proc. R. Soc. Lond. A. 1952, 244: 254-284
    57 Tadjbakhsh, J. B. Keller. Standing Surface Waves of Finite Amplitude.Journal of Fluid Mechanics, 1960, 8: 442-451
    58 G. R. Verma, J. B. Keller. Three-Dimensional Standing Surface Waves of Finite Amplitude. Physics of Fluids, 1962, 5(1): 52-56
    59 L. W. Schwartz, A. K. Whitney. A Semi-Analytic Solution for Nonlinear Standing Waves in Deep Water. Journal of Fluid Mechanics, 1981, 107: 147-171
    60 J. B. Frandsen, A. G. L. Borthwick. Simulation of Sloshing Motions in Fixed and Vertically Excited Containers Using a 2-D Inviscidσ- Transformed Finite Difference Solver. Journal of Fluids and Structures, 2003, 18: 197-214
    61 J. B. Frandsen. Sloshing Motions in Excited Tanks. Journal of Computational Physics, 2004, 196: 53-87
    62李俊峰,鲁异,宝音贺西,王为.贮箱内液体小幅晃动的频率与阻尼计算.工程力学. 2005, 22(6): 87-90
    63程绪铎.球柱形贮箱中液体的受迫晃动特性研究.水动力学研究与进展, A辑. 2001, 16(4): 472-480
    64 P. N. Shankar, R. Kidambi. A Modal Method for Finite Amplitude, Nonlinear Sloshing. Journal of Physics, 2002, 59(4): 63-651
    65 L. M. Perko. Large-Amplitude Motions of Liquid-Vapour Interface in an Accelerating Container. Journal of Fluid Mechanics, 1969, 35(1): 77-96
    66 J. W. Miles. Resonantly Forced Surface Waves in a Circular Cylinder. Journal of Fluid Mechanics, 1984, 149: 15-31
    67 J. W. Miles. Internally Resonant Surface Waves in a Circular Cylinder. Journal of Fluid Mechanics, 1984, 149: 1-14
    68 W. T. Tsai, D. K. P. Yue, K. M. Yip. Resonantly Excited Regular and Chaotic Motions in a Rectangular Wave Tank. Journal of Fluid Mechanics, 1990, 216: 343-380
    69 L. Shemer. On the Directly Generated Resonant Standing Waves in a Rectangular Tank. Journal of Fluid Mechanics, 1990, 217: 143-165
    70 I. A. Lukovsky, I. A. Barnyak, M. Ya, et al. Approximate Methods of Solving the Problems of the Dynamics of a Limited Volume. Kiev: Nekoosa Dumaka, 1984: 232
    71 J. C. Luke. A Variational Principle for a Fluid with a Free Surface. Journal of Fluid Mechanics, 1967, 27(2): 395-397
    72 O. M. Faltinsen, O. F. Rognebakke, I. A. Lukovsky, A. N. Timokha. Multi-Dimensional Modal Analysis of Nonlinear Sloshing in a Rectangular Tank with Finite Water Depth. Journal of Fluid Mechanics, 2000, 407: 21-234
    73 I. A. Lukovsky. Modal Modeling of Nonlinear Fluid Sloshing in Tanks with Non-Vertical Walls: Non-Conformal Mapping Technique. International Journal of Fluid Mechanics Research, 2002, 29: 216-243
    74余延生.航天器贮箱液体非线性晃动动力学的多维模态分析方法.哈尔滨工业大学博士学位论文. 2007
    75 V. Armenio, M. L. Rocca. On the Analysis of Sloshing of Water in Rectangular Containers: Numerical Study and Experimental Validation. Ocean Engineering, 1996, 23(8): 705-739
    76 V. Armenio. An Improved MAC Method (SIMAC) for Unsteady High-Reynolds Free Surface Flows. International Journal for Numerical Methods in Fluids, 1997, 24: 185-214
    77 M. S. Celebi, H. Akyidiz. Nonlinear Modeling of Liquid Sloshing in a Moving Rectangular Tank. Ocean Engineering, 2002, 29: 1527-1553
    78 H. Akyidiz, M. S. Celebi. Numerical Computation of Hydrodynamics Loads on Walls of a Rigid Rectangular Tank Due to Large Amplitude Liquid Sloshing. Turkish J. Eng. Env. Sci., 2002, 26: 429-445
    79 H. Akyidiz, M. S. Celebi. Sloshing in a Three-Dimensional Rectangular Tank: Numerical Simulation and Experimental Validation. Ocean Engineering, 2006, 33: 2135-2149
    80 D. W. Stefan. Computational Slosh Dynamics: Theory and Industrial Application. Computational Mechanics, 2003, 30: 374-387
    81 R. Lohner, C. Yang, E. Onate. On The Simulation of Flows with Violent Free Surface Motion. Comput. Methods Appl. Mech. Engrg., 2006, 195: 5597-5620
    82 D. H. Lee, M. H. Kim, S. H. Kwon, J. W. Kim, Y. B. Lee. A Parametric Sensitivity Study on LNG Tank Sloshing Loads by Numerical Simulations. Ocean Engineering, 2007, 34: 3-9
    83 A. E. P. Veldman, J. Gerrits, R. Luppes, et al. The Numerical Simulation of Liquid Sloshing on Board Spacecraft. Journal of Computational Physics, 2007, 224: 82-99
    84 R. Lohner, C. Yang, E. Onate. Simulation of Flows with Violent Free Surface Motion and Moving Objects Using Unstructured Grids. International Journal for Numerical Methods in Fluids, 2007, 53: 1315-1338
    85曾江红,王照林.航天器液体晃动动力学的研究方法概述.强度与环境. 1997, 4: 37-43
    86岳宝增,刘延柱,王照林.求解液体大幅晃动问题的数值方法评述.上海交通大学学报. 1999, 33(6): 760-763
    87 Z. R. Kishev, C. Hu, M. Kashiwagi. Numerical Simulation of Violent Sloshing by a CIP-Based Method. Journal of Marine Science and Technology, 2006, 11: 111-122
    88 K. Takizawa, T. Yabe, T. E. Tezduyar. Ship Hydrodynamics Computations with the CIP Method Based on Adaptive Soroban Grids. International Journal for Numerical Methods in Fluids, 2007, 54: 1011-1019
    89 A. S. Iglesias, L. P. Rojas, R. Z. Rodriguez. Simulation of Anti-Roll Tanks and Sloshing Type Problems with Smoothed Particle Hydrodynamics. Ocean Engineering, 2004, 31: 1169-1192
    90 A. S. Iglesias, L. Delorme, L. P. Rojas, S. A. Perez. Liquid Moment Amplitude Assessment in Sloshing Type Problems with Smooth Particle Hydrodynamics. Ocean Engineering, 2006, 33: 1462-1484
    91 S. Ushijima. Three-Dimensional Arbitrary Lagrangian-Eulerian Numerical Prediction Method for Non-Linear Free Surface Oscillation. International Journal for Numerical Methods in Fluids, 1998, 26: 605-623
    92岳宝增,李俊峰.三维液体非线性晃动及其复杂现象.力学学报, 2002, 34(6): 949-955
    93岳宝增,彭武.俯仰激励下液体大幅晃动问题研究.力学与实践, 2003, 26(5): 49-52
    94岳宝增.俯仰激励下三维液体大幅晃动问题研究.力学学报, 2005, 37(2): 199-203
    95周宏,李俊峰,王天舒.低重环境航天器贮箱内三维液体晃动数值模拟.清华大学学报, 2005, 45(5): 658-661
    96郑磊,李俊峰,王天舒,岳宝增.计算液体晃动的ALE网格速度的高精度方法.力学与实践. 2007, 29(1): 14-16
    97 G. X. Wu. Q. W. Ma, R. E. Taylor. Numerical Simulation of Sloshing Wavesin a 3D Tank Based on a Finite Element Method. Applied Ocean Research, 1998, 20: 337-355
    98 M. J. Chern, A. G. L. Borthwick, R. E. Taylor. A Pseudo Spectralσ-Transformation Model of 2-D Nonlinear Waves. Journal of Fluids and Structures, 1999, 13: 607-630
    99 M. J. Chern, A. G. L. Borthwick, R. E. Taylor. Simulation of Non-Linear Free Surface Motions in a Cylindrical Domain Using a Chebyshev-Fourier Spectral Collocation Method. International Journal for Numerical Methods in Fluids, 2001, 36: 465-496
    100 M. S. Turnbull, A. G. L. Borthwick, R. E. Taylor. Numerical Wave Tank Based on anσ-Transformed Finite Element Inviscid Flow Solver. International Journal for Numerical Methods in Fluids, 2003, 42: 641-663
    101 K. Kashiyama, S. Tanaka, M. Sakuraba. PC Cluster Parallel Finite Element Analysis of Sloshing Problem by Earthquake Using Different Network Environments. Communications in Numerical Methods in Engineering, 2002, 18: 681-690
    102 S. Aliabadi, A. Johnson, J. Abedi. Comparison of Finite Element and Pendulum Models for Simulations of Sloshing. Computers and Fluids, 2003, 32: 535-545
    103 J. R. Cho, H. W. Lee. Non-Linear Finite Element Analysis of Large Amplitude Sloshing Flow in Two-Dimensional Tank. International Journal for Numerical Methods in Engineering, 2004, 61: 514-531
    104 J. R. Cho, H. W. Lee. Numerical Study on Liquid Sloshing in Baffled Tank by Nonlinear Finite Element Method. Comput. Methods Appl. Mech. Engrg., 2004, 193: 2581-2598
    105 J. R. Cho, H. W. Lee. Finite Element Analysis of Resonant Sloshing Response in 2-D Baffled Tank. Journal of Sound and Vibration, 2005, 288: 829-845
    106 C. Z. Wang, B. C. Khoo. Finite Element Analysis of Two-Dimensional Nonlinear Sloshing Problems in Random Excitations, 2005, 32: 107-133
    107 J. H. Kyoung, S. Y. Hong, J. W. Kim, K. J. Bai. Finite-Element Computation of Wave Impact Load Due to a Violent Sloshing. Ocean Engineering, 2005, 32: 2020-2039
    108 V. Sriram, S. A. Sannasiraj, V. Sundar. Numerical Simulation of 2D Sloshing Waves Due to Horizontal and Vertical Random Excitation. Applied Ocean Research, 2006, 28: 19-32
    109 J. G. Martin. Application of a Discontinuous Galerkin Finite Element Method to Liquid Sloshing. Journal of Offshore Mechanics and Arctic Engineering, 2006, 128: 1-10
    110 R. N. Elias, L. G. A. Coutinho. Stabilized Edge-Based Finite Element Simulation of Free Surface Flows. International Journal for Numerical Methods in Fluids, 2007, 54: 965-993
    111 J. S. Schotte, R. Ohayon. Incompressible Hydroelastic Vibrations Finite Element Modeling of the Elasto-Gravity Operator. Computers and Structures, 2005, 83: 209-219
    112 E. Kita, J. Katsuragawa, N. Kamiya. Application of Trefftz-Type Boundary Element Method to Simulation of Two-Dimensional Sloshing Phenomenon. Engineering Analysis with Boundary Elements, 2004, 28: 677-683
    113 B. F. Chen, H. W. Chiang. Complete 2D and Fully Nonlinear Analysis of Ideal Fluid in Tanks. Journal of Engineering Mechanics, 1999, 125(1): 70-78
    114 B. F. Chen, H. W. Chiang. Complete Two-Dimensional Analysis of Sea-Wave-Induced Fully Non-Linear Sloshing Fluid in a Rigid Floating Tank. Ocean Engineering, 2000, 27: 953-977
    115 Y. Kim. Numerical Simulation of Sloshing Flows with Impact Loads. Applied Ocean Research, 2001, 23: 53-62
    116 J. B. Frandsen, A. G. L. Borthwick. Simulation of Sloshing Motions in Fixed and Vertically Excited Containers Using a 2-D Inviscidσ-Transformed Finite Difference Solver. Journal of Fluids and Structures, 2003, 18: 197-214
    117 J. B. Frandsen. Sloshing Motions in Excited Tanks. Journal of Computational Physics, 2004, 196: 53-87
    118 B. F. Chen, R. Nokes. Time-Independent Finite Difference Analysis of Fully Non-Linear and Viscous Fluid Sloshing in a Rectangular Tank. Journal of Computational Physics. 2005, 209: 47-81
    119 F. H. Harlow, J. E. Welch, J. P. Shannon, and B. J. Daly. The MAC Method, a Computing Technique for Solving Viscous, Incompressible, Transient Fluid Problems Involving Free Surface. Report LA-3425, Los AlamosScientific Laboratory, 1965
    120 A. A. Amsden, F. H. Harlow. The SMAC Method: A Numerical Technique for Calculating Incompressible Fluid Flows. Report LA-4370, Los Alamos Scientific Laboratory, 1970
    121 R. D. Bradshaw, J. L. Kramer, and J. L. Zich. An Analytical Study of Reduced Gravity Flow Dynamics. NASA CR-135023, 1976
    122 R. K. C. Chan, R. L. Street. A Computer Study of Finite Amplitude Water Wave. J. of Computational. Physics. 1970, 6: 68-94
    123 H. Miyata. Finite Difference Simulation of Breaking Waves. J. of Computational. Physics, 1986, 65: 179-214
    124 C. W. Hirt, B. D. Nichols. Volume of Fluid (VOF) Method for the Dynamics of Free boundaries. J. of Computational. Physics, 1981, 39: 201-225
    125王士敏.充液系统的Hamilton结构与液体大幅晃动的数值模拟.清华大学博士学位论文. 1991
    126 W. F. C. Noh. A Time-Dependent Two-Space-Dimensional Coupled Eulerian-Lagrangian Code. In: Methods in Computational Physics (B. Alder, S. Fembach, M. Rotenberg, eds.). New York: Academic press, 1964
    127 C. W. Hirt, A. A. Amsden, and J. L. Cook. An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds. J. of Computational Physics, 1974, 14: 105-136
    128 A. Huerta, W. K. Liu. Viscous Flow with Large Free Surface Motion. Computer Methods in Applied Mechanics and Engineering, 1988, 69(3): 277-32
    129曾江红,王照林.粘性流体大幅晃动的ALE有限元模拟.强度与环境, 1996, 3: 22-31
    130刘志宏,黄玉盈.任意的拉-欧边界元法解大晃动问题.振动工程学报, 1993, 6(1): 11-19
    131岳宝增,王照林,匡金炉.非线性晃动问题ALE边界元方法.宇航学报, 1998, 19(1):1-7
    132 M. Ikegawa. Finite Element Analysis of Fluid Motion in a Container. In: Finite Element Methods in Flow Problems (Eds. J. T. Oden, O. C. Zienkiewicz, R. H. Gallagher and C. Taylor), Huntsville: UAH Press, 1974: 737-738
    133 K. Washizu, M. Ikegawa. Some Applications of the Finite Element Method to Fluid Mechanics. In: Theoretical and Applied Mechanics, Tokyo: University of Tokyo Press, 1974: 143-154
    134 K. Washizu, T. Nakayama, M. Ikegawa. Application of the Finite Element Method to Some Free Surface Fluid Problem. In: Finite Elements in Water Resources (Eds. W. G. Gray, G. F. Pinder and C. A. Brebbia), London: Pentech Press, 1978: 4247-4266
    135 T. Nakayama, K. Washizu. Nonlinear Analysis of Liquid Motion in a Container Subjected to Forced Pitching Oscillation. Int. J. for Numerical Methods in Engineering, 1980, 15(8): 1207-1220
    136 G. X. Wu, Q. W. Ma, and R. E. Taylor. Numerical Simulation of Sloshing Waves in a 3D Tank Based on a Finite Element Method. Applied Ocean Research, 1998, 20(6): 337-355
    137 O. M. Faltinsen. A Numerical Nonlinear Method of Sloshing in Tanks with Two-dimensional Flow. J. of Ship Research, 1978, 22(3): 193-202
    138 J. H. Hwang, I. S. Kim, Y. S. Seol, S. C. Lee and Y. K. Chon. Numerical Simulation of Liquid Sloshing in Three-dimensional Tanks. Computers and Structures, 1992, 44(1/2):339-442
    139 J. L. Ortiz, A. A. Barhorst. Large-displacement Non-linear Sloshing in 2-D Circular Rigid Containers-Prescribed Motion of the Container. International Journal for Numerical Methods in Engineering, 1998, 41(2): 195-210
    140 S. Ushijima. Three-Dimensional Arbitrary Lagrangian-Eulerian Numerical Prediction Method for Non-linear Free Surface Oscillation. International Journal for Numerical Methods in Fluids, 1998, 26(5): 605-623
    141 M. J. Pratt. Liquid Surface Motions in Longitudinally Excited Rigid Transparent Models. AIAA Paper 74-256
    142 T. P. Yeh, G. F. Orton. Analytical and Experimental Modeling of Zero/Low Gravity Fluid Behavior. AIAA Paper 87-1865
    143 R. A. L. Brahim, R. Theinrich. Experiential Investigation of Liquid Sloshing Under Parametric Random Excitation. AIAA Paper 87-0712
    144 M. C. V. Schoor, E. F. Crawley. Nonlinear Forced-Response Characteristics of Contained Fluids in Micro-Gravity. J. of Spacecraft and Rockets, 1995, 32(3): 521-532
    145曲广吉,孙国江,张熇.航天器小幅液体晃动试验系统的研制与调试.航天器工程, 1998, 7(2): 29-35
    146黄怀德.低重力环境下的液体晃动研究.宇航学报, 1980, 1: 71-84
    147夏益霖.微重力落塔试验技术及其应用(I).强度与环境, 1995, 2: 22-31
    148夏益霖.微重力落塔试验技术及其应用(II).强度与环境, 1995, 3: 27-37
    149夏益霖.液体晃动试验的数据处理方法.导弹与航天运载技术, 1993, 3: 27-36
    150林宏,马斌捷.液体晃动试验数据处理方法的改进.强度与环境, 2003, 30(2): 49-54
    151王为,夏恒新,李俊峰,高云峰.半球形容器中液体自由晃动非线性现象的实验研究.清华大学学报(自然科学版), 2008, 48(11): 2009-2012
    152 J. P. B. Vreeburg. Measured States of SLOSHSAT FLEVO. In Proceedings of the 56th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law, Fukuoka, Japan, Oct. 17-21, 2005
    153 H. F. Bauer. Theory of Liquid Sloshing in Compartmented Cylindrical Tank Due to Bending Excitation. AIAA Journal, July, 1963.
    154 H. N. Abramson. Slosh Suppression. NASA Space Vehicle Design Criteria (Structures), NASA SP-8031, 1969
    155 J. W. Miles. Ring Damping of Free Surface Oscillations in a Circular Tank. ASME J. Applied Mechanics, 1958, 25(2): 274-276
    156 H. A. Cole, B. J. Gambucci. Measured Two Dimensional Damping Effectiveness of Fuel Sloshing Baffles Applied to Ring Baffles in Cylindrical Tanks. NASA TND-694, 1961
    157 H. N. Abramson, L. R. Garza. Some Measurements of Liquid Frequencies and Damping in Compartmented Cylindrical Tanks. AIAA J. Spacecraft and Rockets, 1965, 2: 453-455.
    158 H. A. Cole, B. J. Gambucci. Tests of an Asymmetrical Baffle for Fuel-Sloshing Suppression. NASA TND-1036, 1961
    159方良玉.半圆形挡板的液体晃动阻尼效应实验研究.导弹与航天运载技术, 1993, 4: 29-36
    160 M. A. Silveira, D. G. Stephens, and H. W. Leonard. Damping of Liquid Oscillations in Cylindrical Tanks with Various Baffles. NASA TND-715,1961
    161万水,朱德懋.横向环形防晃板对液体晃动特性的影响.南京航空航天大学学报, 1996, 28(4): 470-475
    162万水,朱德懋,张福祥.纵向竖条防晃板对液体晃动特性的影响.南京理工大学学报, 1997, 21(1): 9-12
    163 D. G. Stephens. Flexible Baffles for Slosh Damping. AIAA J. Spacecraft and Rockets, 1966, 3: 765-766
    164 D. G. Stephens, H. F. Scholl. Effectiveness of Flexible and Ring Baffles for Damping Liquid Oscillations in Large Scale Cylindrical Tanks, NASA TND-3878, 1967
    165 L. R. Garza. A Brief Comparison of Ring and Asymmetrical Baffle Characteristics. NASA CR-51373, 1963
    166 W. Eulitz. A Can-type Device Derived from Basic Slosh Studies. ABMA Report, DSD-TR-4-58, 1958
    167 H. N. Abramson, G. E. Ransleben. Some Studies of a Floating Lid Type Device for Suppression of Liquid Sloshing in Rigid Cylindrical Tanks. Southwest Research Institute, Report TR-10, Contract DA-23-072-ORD-1251, 1961
    168 S. Mottelet. Controllability and Stabilization of Liquid Vibration in a Container During Transportation. In Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia, December, 2000: 4641-4646
    169 M. P. Tzamtzi, F. N. Koumboulis, N. D. Kouvakas and G. E. Panagiotakis. A Similated Annealing Controller for Sloshing Suppresion in Liquid Transfer with Delayed Resonators. In Proceedings of the 14th Mediterranean Conference on Control and Automation, Ancona, Italy, June, 2006
    170 Y. Noda, K. Yano and K. Terashima. Tracking to Moving Object and Sloshing Suppression Control Using Time Varying Filter Gain in Liquid Container Transfer. SICE Annual Conference, Fukui, Japan, August 4-6, 2003: 2283-2288
    171 K. Terashima, G. Schmidt. Motion Control of a Cart-Based Contained Considering Suppression of Liquid Oscillations. In Proceeding of IEEE International Symposium on Industrial Electronics, Santiago, Chile, May 25-27, 1994: 275-280
    172 K. Yano, T. Toda and K. Terashima. Sloshing Suppression Control of Automatic Pouring Robot by Hybrid Shape Approach. In Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, Florida USA, December, 2001: 1328-1333
    173 K. Yano, K. Terashima. Robust Liquid Container Transfer Control for Complete Sloshing Suppression. IEEE Transactions on Control System Technology, 2009, 9(3): 483-493
    174 K. Yano, K. Terashima. Sloshing Suppression Control of Liquid Transfer Systems Considering a 3-D Transfer Path. IEEE/ASME Transactions on Mechatronics, 2005, 10(1): 8-16
    175 K. Yano, S. Higashikawa and K. Terashima. Liquid Container Transfer Control on 3D Transfer Path by Hybrid Shaped Approach. In Proceedings of the IEEE International Conference on Control Applications, Mexico City, September 5-7, 2001: 1168-1173
    176彭浩,包广伟.工业包装线上开口容器内液体的晃动控制.上海交通大学学报, 2005, 39(1): 161-164
    177 J. M. Smith. Feedback Control Systems. New York: McGraw-Hill Book Company, Inc., 1958: 331-345
    178 N. C. Singer, W. P. Seering. Pre-Shaping Command Inputs to Reduce System Vibration. Journal of Dynamics Systems, Measurement and Control, 1990, 112(2): 76-82
    179 W. E. Singhose, L. Porter and N. Singer. Vibration Reduction Using Multi-Hump Extra-Insensitive Input Shapers. American Control Conference. Seattle, WA, 1995: 3830-3834
    180 W. E. Singhose, S. Derezinski and N. Singer. Extra-Insensitive Input Shapers for Controlling Flexible Spacecraft. Journal of Guidance, Control and Dynamics, 1996, 2: 385-391
    181 D. P. Magee and W. J. Book. Eliminating Multiple Modes of Vibration in a Flexible Manipulator. Proceedings of the IEEE International Conference on Robotics and Automation, Atlanta, GA, 1993: 474-479
    182 D. Magee, W. Book. The Application of Input Shaping to a System with Varying Parameters. Japan/USA Symposium on Flexible Automation, 1992:519-525
    183 A. K. Banerjee. Dynamics and Control of the WISP Shuttle-Antennae System. Journal of Astronautical Sciences, 1993, 1: 73-90
    184 M. Kennison, W. Singhose. Input Shaper Design for Double-Pendulum Planar Gantry Cranes. Proceedings of IEEE International Conference on Control Applications, Hawaii, USA, August 22-27, 1999: 539-544
    185 N. C. Singer W. Singhose and E. Kriikku. An Input Shaping Controller Enabling Cranes to Move without Sway. Proceedings of the 7th American Nuclear Society Topical Meeting on Robotics and Remote Systems, Augusta, GA, Apr 27-May 1, 1997: 1-7
    186 A. Aboel-Hassan, M. Arafa and A. Nassef. Design and Optimization of Liquid Shapers for Liquid Slosh Suppression. Journal of Sound and Vibration, 2009, 320(1): 1-15
    187 H. F. Bauer. Fluid Oscillations in the Container of a Space Vehicle and Their Influence on Stability. NASA TR-R-187, 1964
    188夏益霖,许婉丽.椭球形贮箱内液体晃动特性的试验研究.宇航学报, 1991, (4): 70-76

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700