螺旋桨性能预报的速度势面元法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
船舶螺旋桨的设计和性能计算一直是流体力学领域中非常重要的课题之一。由于螺旋桨理论设计计算方法具有传统方法无可比拟的灵活性和适应性,同时,通过理论计算方法对螺旋桨的水动力性能进行准确的预报,对于避免不良设计所带来振动和噪声,进一步提高螺旋桨的效率、改善螺旋桨性能有着重要的意义。因此,本文从升力面理论入手,对应用理论方法的螺旋桨性能预报进行了较为深入的研究。文章的重点放在了应用低阶速度势面元法预报螺旋桨性能及压力分布上,并对现有的面元方法进行了改进,提出了考虑局部流场特性的B样条网格面元计算方法,同时改进了现有的尾涡模型。
     尾涡模型一直是螺旋桨理论设计和计算方法中最为关键的问题之一,尾涡模型的好坏直接决定了螺旋桨性能预报结果的准确程度。但是由于尾涡问题的复杂性,很难获得精确的尾涡几何形状,基于这个原因,本文对升力面涡格法的传统经验尾涡模型进行了改进,在解析尾涡模式的基础上,提出了一种新的尾涡近似方法。在过渡区,尾涡在选定扇形截面上解析地求出,在其它处通过非线性插值求得,计算中利用了解析尾涡的特点同时减少了计算量。根据流体连续性方程确定尾涡的收缩半径,避免了梢涡半径的不收敛性,为螺旋桨设计和非设计工况下螺旋桨性能计算提供了一种有效的尾涡近似计算方法。
     在应用低阶速度势面元法求解螺旋桨正问题的过程中,桨叶和桨毂表面离散为四边形双曲面元,在每个面元上布置强度相等的源汇和偶极子,螺旋桨尾涡面也离散为布置等强度偶极子的四边形双曲面元。在充分考虑了横向流动对三维升力体的影响作用的前提下,对随边压力相等的非线性库塔条件进行了研究,而面元影响系数通过Morino导出的解析公式计算得到。同时,应用新的方法获得尾涡模型,在采用经验尾涡模型的基础上,应用动量矩定理通过数值迭代并对个别尾涡参数进行确定,使其更适合重载螺旋桨的性能。通过大量的计算实例,验证了本文计算方法及程序的有效性和适用性。
     传统的面元法均采用等半径的网格划分方式,但是这种处理方法并不能够反应螺旋桨表面的流场特性。因此,本文在考虑螺旋桨表面流场特性的前提下,采用B样条网格划分方法对桨叶表面单元进行剖分。弦向网格线在桨叶导边处与外轮廓线正交,在随边处与流体的速度方向相一致。同时,在考虑流场特性的基础上,对尾涡模型进行了改进,使得尾涡在离开桨叶随边处的方向与当地流动方向基本一致。计算表明,基于流场特性的B样条网格速度势面元法不仅可以减少迭代次数,改善了程序的收敛性,而且在很大程度上提高了螺旋桨导边附近的压力预报精度,具有较好的数值稳定性。
The design and performance calculation of marine propellers have increasingly become fundamental goals for both researchers and designers in the field of fluid mechanics. As the theoretical methods have better flexibility and adaptability for marine propeller design and performance calculation compared with conventional methods, it is significant to predict the hydrodynamic performance accurately in order to avoid vibration and noise brought by poor design, increase propeller efficiency and improve propeller performance. Therefore, how to make an accurate prediction of the hydrodynamic performance for marine propeller is a promising topic. In present paper, the investigation for theoretical methods including lifting surface method and surface panel method is carried out and special attention is paid to the potential-based low order panel method, which is used to predict the hydrodynamic performance and pressure distribution of marine propeller. A new grid arrangement with the local flow characteristics taken into consideration is proposed and a new trailing wake model is applied compared with existing ones.
    The trailing wake model is one of the most important issues in the process of propeller design and numerical calculation, and it has great effect on the precision of prediction results to some extent. However, the complexity of the problem retards the determination of the wake geometry accurately. For this reason, an improvement of wake model is made for the numerical procedure by using vortex lattice method. In the transition wake region, wake vortex is determined by aligning the vortex line with streamline. New numerical methods are adopted to reduce the numerical calculations and wake vortex radii are determined on the basis of continuity equation of in-compressible fluid to avoid the divergence of the tip vortex radius. New wake vortex model provides new numerical methods for the propeller design and propeller off-design analysis.
    When the low order surface panel method is used to solve the direct problem of propeller, both the propeller blades and hub are approximated by a number of hyperbolical quadrilateral panels with constant source and dipole distribution, while the trailing wake surface is represented by hyperbolical quadrilateral panels with only constant dipoles on them. Special emphasis has been considered to meet Kutta condition, which is used to ensure pressure equivalency on the panels at trailing edges and the cross flow component is taken into account for its significant effect on three dimensional problems. The influence coefficients are
引文
[1] Goldstein S. On the vortex theory of screw propellers. Proceedings Royal society, 1929, 123A: 440-465.
    [2] McCormik B W. The effect of a finite hub on the optimum propeller. Journal of the Aeronautical Sciences, 1955, 22(9): 645-650.
    [3] Tachmindji A J. Potential problem of the optimum propeller with finite number of blades operating in a cylindrical duct. Journal of Ship Research, 1958, 2(3): 23-32.
    [4] Tachmindji A J and Morgan W B. The design and estimated performance of a series of supercavitating propellers. Proceedings of the 2nd Symposium on Naval Hydrodynamics, National Academy Press, Washington, D. C., 1958.
    [5] Hill J G. The Design of Propellers. SNAME Transactions, 1949, 57: 78-86.
    [6] van Manen J D. Recent research on propellers in nozzles. Journal of Ship Research, 1957, 1(2): 13-46.
    [7] Eckhardt M K and Morgan W B. A propeller design method. SNAME Transactions, 1955, 633: 325-374.
    [8] Johnsson C A. On theoretical predictions of characteristics and cavitation properties of propeller, SSPA Pub. No. 64, 1968.
    [9] Lerbs H W. Moderately loaded propeller with a finite number of blades and an arbitrary distribution of circulation. SNAME Transactions, 1952,60: 73-123.
    [10] Kawada S. Calculation of induce velocity by helical vortices and its application to propeller theory. Reports of the Aeronautical Research Institute, 1939, 14:3-57.
    [11] van Manen J D and Troost L. The design of ship screws of optimum diameter for an unequal velocity field. SNAME Transactions, 1952, 60: 442-468.
    [12] Burill L C. The optimum diameter of marine propellers - a new design approach. Trans. North East Coat Institution of Engineers and Shipbuilders, 1955,172: 295-320.
    [13] Yim B. Optimum propeller with cavity-drag and frictional drag effects. Journal of Ship Research, 1976,20(2): 118-123.
    [14] Achkinadzhe A S. Generalization of the Betz theorem for the case of arbitrary induced velocities accounting for the profile losses at a given shape of free vortices. Proceedings of the 5~(th) National Congress on Theoretical and Applied Mechanics, Varna, Bulgaria, 1985.
    [15] Brockett T and Korpus R. Marine propellers for minimum shaft-horsepower. Proceedings of the American Towing Tank Conference, Washington, D.C., 1986.
    [16] Brockeett T and Korpus R. Parametric evaluation of the lifting-line model for convential and preswirl propulsors. Proceedings of the International Symposium on Propellers and Cavitaion, Wuxi, China, 1986.
    [17] Chang L K and Sullivan J P. Optimization of propeller blade shape by an analytical method. 18~(th) Joint Propulsion Conference, AIAA/SAE/ASME, AIAA Paper 82-1125, 1982.
    [18] Chang L K and Stefko G L. Application of an optimization method to high performance propulsor designs. 20~(th) Joint Propulsion Conference, AIAA/SAE/ASME, AIAA Paper 84-1203,1984.
    [19] Morgan W B. The design of counterrotating propeller using Lerbs' theory, SNAME Transactions, 1960, 60: 6-38.
    [20] Morgan W B. Theory of the annular airfoil and ducted propeller, Proceedings of 4~(th) Symposium on Naval Hydrodynamics, National Academy Press, Washington, D.C., 1962:151-197.
    [21] Morgan W B, Silovic V and Deny S B. Propeller lifting surface corrections. SNAME Transactions, 1968,76:309-347.
    [22] Morgan W B. Some results from the inverse problem of the annular airfoil and ducted propeller. Journal of Ship Research, 1969,13(1): 40-52.
    
    [23] Ginzel G L. Theory of broad-bladed propeller. ARC Current Paper No.208, 1955.
    [24] Cox G G. Corrections to the camber of constant pitch propeller. Trans. RINA, 1961, 103: 227-243.
    [25] Pien P C. The calculation of marine propellers based on lifting surface theory. Journal of Ship Research, 1961, 5(2): 1-14.
    [26] Cheng H M. Hydrodynamic aspect of propeller design based on lifting-surface theory, Part I. DTMB Report 1802, 1964.
    
    [27] Cheng H M. Hydrodynamic aspect of propeller design based on lifting-surface theory, Part II. DTMB Report 1803,1965.
    [28] English J W. The application of a simplified lifting surface technique to the design of marine propeller. NPL Ship Division SH Report No.30,1961.
    [29] Kerwin J E and Leopold R. Propeller incidence due to blade thickness. Journal of Ship Research, 1963,7(2): 1-6.
    [30] Kerwin J E. Computer techniques for propeller blades section design. Second Lips Propeller Symposium, 1973.
    [31] Cummings D E. Numerical prediction of propeller characteristics. Journal of Ship Research, 1973, 17(1): 12-18.
    [32] Tsao S K. Documentation of programs for the analysis of performance and spindle torque of controllable pitch propellers. MIT, Department of Ocean Engineering Report 75-8, 1975.
    [33] Schwanecke H. Comparative calculations on unsteady propeller blade forces. Report of Propeller Committee, 14~(th) ITTC, 1975.
    [34] Kerwin J E and Lee C S. Prediction of steady and unsteady marine propeller performance by numerical lifting-surface theory. SNAME Transactions, 1978, 86: 218-253.
    [35] Maruo H and Moand A M. Theoretical prediction of unsteady propeller characteristic in the non-uniform wake field, 15~(th) Symposium on Naval Hydrodynamics, Germany, 1984.
    [36] Kim K and Kobayashi S. Pressure distribution on propeller blade surface using numerical lifting surface theory. SNAME Proceedings of Propellers' 84 Symposium, 1984.
    [37] Ymasaki H and Ikehata M. Numerical analysis of steady open characteristics of Marine Propeller by surface vortex lattice method. Journal of the Society of Naval Architects of Japan, 1992, 172: 203-211.
    [38] Hoshino T. Application of quasi-continuous method to unsteady propeller lifting surface problems. Journal of the Society of Naval Architects of Japan, 1985,158: 48-68.
    [39] Nakamura N. Estimation of propeller open-water characteristics based on quasi-continuous method. Journal of the Society of Naval Architects of Japan, 1985, 157: 95-107.
    [40] Murakami M, Kuroi M, Ando J et al. Practical methods estimating characteristics of open-water propeller based on quasi-continuous method (in Japanese). Transactions of West-Japan Society Naval Architects, 1991, 82:1-15.
    
    [41] Lan C E. A quasi-vortex lattice method in thin wing theory. Journal of Aircraft, 1974, 11(9): 518-527.
    [42] Murakami M, Kuroi M, Ando J et al. Practical quasi-continuous method to estimate unsteady characteristics propeller. Transactions of the West-Japan Society of Naval Architects, 1992, 84: 23-36.
    [43] Kawakita C and Hoshino T. Design system of marine propellers with new blade sections. Proceedings of 22~(nd) Symposium on Naval Hydrodynamics, National Academy Press, Washington, D.C., 1998: 110-126.
    [44] Ikehata M, Ando M and Maruo H. The analysis of unsteady characteristics of marine propeller in harmonic wake by vortex lattice lifting-surface method. Journal of the Society of Naval Architects of Japan, 1983, 153: 54-67.
    [45] Streckwall H. Application of a vortex-lattice method to ship propellers. Ship Technology Research, 1994,41:31-43.
    [46] Andersen P. A comparative study of conventional and tip-fin propeller performance. Proceedings of 21~(st) Symposium on Naval Hydrodynamics, National Academy Press, Washington, D.C., 1997: 930-945.
    
    [47] Yamazaki R. A study on screw propellers. Memoirs of the Faculty of Engineering, 1960, 19(1): 1-75.
    [48] Yamazaki R. On the theory of screw propellers in non-uniform flows. Memoirs of the Faculty of Engineering, 1966,25(2): 107-174.
    [49] Yamazaki R. On the theory of marine propellers in non-uniform flow. Memoirs of the Faculty of Engineering, 1981,41(3): 233-268.
    [50] Yamazaki R. On the theory of marine propellers and unsteady propeller forces. Memoirs of the Faculty of Engineering, 1986, 46(2): 149-192.
    [51] Sparenberg J A. Application of lifting surface theory to ship screw. International Shipbuilding Progress, 1960, 7: 99-106.
    [52] Hanaoka T. Hydrodynamic of an oscillating screw propeller. Proceedings of 4~(th) Symposium on Naval Hydrohynamics, B. L. Silverstein, Washington, D.C. 1962: 79-124.
    [53] Hanaoka T. Linearized theory of cavity flow past a hydrofoil of arbitrary shape. Journal of the Society of Naval Architects of Japan, 1964,115: 56-74.
    [54] Hanaoka T. Anew method for calculating the hydrodynamic load distributions on a lifting surface. Report of Ship research Institute vol. 6,1969.
    [55] Pien P C and Strom T J. A General Theory for Marine Propellers. 7~(th) ONR Symposium on Naval Hydrodynamics, The Hague, the Netherlands 1968.
    [56] Tsakonas S. The vibratory force and moment produced by a marine propeller on a long rigid strip. Journal of Ship Research, 1962, 5(4): 21-42.
    [57] Tsakonas S, Chen C Y and Jacobs W R. Exact treatment of the helicoidal wake in the propeller lifting-surface theory. Journal of Ship Research, 1967,11(3): 154-167.
    [58] Tsakonas S, Jacobs W R and Rank P H. Unsteady propeller lifting-surface theory with finite number of chordwise modes. Journal of Ship Research, 1968,12(1): 14-45.
    [59] Tsakonas S and Jacobs W R. Propeller Loading Distributions. Journal of Ship Research, 1969,13(4): 237-257.
    [60] Tsakonas S, Jacobs W R and Ali M R. An exact linear lifting surface theory for a marine propeller in a nonuniform flow field. Journal of Ship Research, 1973,17(4): 196-207.
    [61] Jacobs W R and Tsakonas S. A new procedure for solution of lifting surface problems. Journal of Hydronauties, 1969, 3(1): 20-28.
    [62] Jacobs W R, Mercier J and Tsakonas S. Theory and measurements of propeller-induced vibratory pressure field. Journal of Ship Research, 1972, 16(2): 124-139.
    [63] Jacobs W R and Tsakonas S. Propeller loading-induced velocity field by means of unsteady lifting surface theory. Journal of Ship Research, 1973,17(3): 129-139.
    [64] Jacobs W R and Tsakonas S. Propeller-induced velocity field due to thickness and loading effects. Journal of Ship research, 1975,19(1): 44-56.
    [65] Wang M H. Hub effect in propeller design and analysis: [dissertation], Cambridge: Massachusetts Institute of Technology, 1985.
    
    [66] Kerwin J E. Marine propeller. Annual Review of Fluid Mechanics, 1986,18: 367-403.
    [67] Kato H, Yamaguchi and Kubota A. Laser Doppler velocimeter measurements in cavitation tunnel, Proceedings of the 18~(th) international towing tank conference, volume2, Kobe, 1987: 433-437.
    [68] Fine N. Computational and experimental investigations of the flow around cavitating hydrofoils. Technical Report No88-6, MIT, 1988.
    [69] Kinnas S and Mazel C. Numerical vs. experimental cavitation tunnel (a supercavitating hydrofoil experiment). Journal of Fluids Engineering, 1993,115: 760-765.
    [70] Stella A, Guj G, Felice F D et al. Experimental investigation of propeller wake evaluation by means of LDV and flow visualizations. Journal of Ship Research, 2000, 44(3): 155-169.
    [71] Brown C E and Michael W H. On slender delta wings with leading edge separation. NACA TN3430, 1955.
    [72] Mangier K W and Smith J H B. A theory of the flow past a slender delta wing with leading-edge separation. Proceedings of Royal Society A251, 1959: 200-217.
    [73] Mook D T and Maddox S A. Extension of a vortex-lattice method to include the effects of leading-edge separation. Journal of Aircraft, 1974, 11: 127-128.
    [74] Brune G. W, Weber J A, Johnson F T et al. A three dimensional solution of flow over wings with leading-edge separation. Part 1-Engineering Document NASA CR-132709, 1975.
    [75] Miranda L R, Elliot R D and Baker W M. A generalized vortex lattice method for subsonic and supersonic flow applications. NASA CR-2865,1977.
    
    [76] Hough G R. Remarks on Vortex-Lattice Methods. Journal of Aircraft, 1973, 10(5): 314-317.
    [77] Dejarnette F R. Arrangement of vortex lattices on subsonic wings. NASA SP-405,1976: 301-319.
    [78] Greeley D S. Numerical method for propeller design and analysis in steady flow. SNAME Transactions, 1982,90:415-453.
    [79] Greeley D S. Marine propeller blade tip flow: [dissertation], Cambridge: Massachusetts Institute of Technology, 1982.
    [80] Kinnas S A and Pyo S. Cavitating propeller analysis including the effects of wake alignment. Journal of Ship Research, 1999, 43(1): 38-47.
    [81] Boswell R, Jessup S, Kim K et al. Single-blade loads on propellers in inclined and axial flows. Technical Report DTNSRDC84/084, DTNSRDC, 1984.
    [82] Keenan. Marine propeller in unsteady flow: [dissertation], Cambridge: Massachusetts Institute of Technology, 1989.
    [83] Ramsey W. Boundary integral methods for lifting bodies with vortex wake: [dissertation], Cambridge: Massachusetts Institute of Technology, 1996.
    [84] Tsakonas S, Jacobs W R and Ali M R. Documentation of a computer program for the pressure distribution, forces and moments on ship propellers in hull wakes. Report SIT-DL-76-1863, Davidson Laboratory, Hoboken, 1976.
    [85] Tsakonas S, Jacobs W R and Liao P. Prediction of steady and unsteady loads and hydrodynamic forces on counterrotating propellers. Journal of Ship Research, 1983, 27(3): 197-214.
    [86] Warren C. Prediction of propulsor-induced maneuvering forces using a coupled viscous/potential -flow method for integrated propulsors: [dissertation], Cambridge: Massachusetts Institute of Technology, 1999.
    [87] Warren C, Taylor T and Kerwin J. A coupled viscous/potential-flow method for the prediction of propulsor-induced maneuvering forces. Propellers/Shafting '00 Symposium, Virginia Beach, VA, 2000.
    [88] Gu H and Kinnas S A. Modeling of contra-rotating and ducted propellers via coupling of a vortex-lattice with a finite volume method. Propellers/Shafting 2003 Symposium, Society of Naval Architects and Marine Engineers, Virginia Beach, VA, 2003.
    [89] Gibson I S and Lewis R I. Ducted propeller analysis by surface vorticity and actuator disc theory. Proceedings of Symposium on Ducted Propellers, Royal Institution of Naval Architects, Teddington, England, 1973.
    [90] Ryan P G and Glover E J. A ducted propeller design method: a new approach using surface vorticity distribution techniques and lifting line theory. Trans. RINA, 1972,114: 545-563.
    [91] Glover E J and Ryan P G. A comparison of the theoretical and experimental performance of a ducted propeller system. Proceedings of Symposium on Ducted Propellers, Royal Institution of Naval Architectures, Teddington, England, 1973.
    [92] Falcao de Campos. On the calculation of ducted propeller performance in axisymmetric flows. Technical Report 696 of Netherlands Ship Model Basin, Wageningen, Netherlands, 1983.
    [93] Falcao de Campos. A three-dimensional theory for the design problem of propeller ducts in a shear flow. Proceedings of 18~(th) Symposium on Naval Hydrodynamics, Ann Arbor, Michigan, 1991: 645-665.
    [94] Kerwin J, Keenan D, Black S et al. A coupled viscous/potential flow design method for wake adapted multi-stage ducted propulsors using generalized geometry. SNAME Transactions, 1994,102: 23-56.
    [95] Kerwin J, Taylor T, Black S et al. A coupled lifting-surface analysis technique for marine propulsors in steady flow. Propellers/Shafting'97 Symposium, Virginia Beach, VA. 1997.
    [96] Warren C, Taylor T and Kerwin J. A coupled viscous/potential-flow method for the prediction of propulsor-induced maneuvering forces. Propellers/ Shafting '00 Symposium, Virginia Beach, VA. 2000.
    [97] Abdel-Maksoud M and Heinke H J. Scale effects on ducted propellers. 24~(th) Symposium on Naval Hydrodynamics, Fukuoka, Japan 2002.
    [98] Hess J L and Smith A M O. Calculation of nonlifting potential flow about arbitrary three-dimensional Bodies. Journal of Ship Research, 1964, 8(2): 22-44.
    [99] Hess J L and Smith A M O. Calculation of potential flow about arbitrary bodies. Progress in Aerospace Sciences, 1966, 8: 1-138.
    [100] Hess J L. Calculation of potential flow about arbitrary three dimensional lifting bodies. Final Technical Report MDC J5679-01, McDonnel Douglas, Long Beach, California, 1972.
    [101]Hess J L and Valarezo W O. Calculation of steady flow about propellers by means of a surface panel method. Propceedings of AIAA 23~(rd) Aerospace Sciences Meeting Session 50, AIAA paper 85-0283, New York, 1985.
    [102]Morino L and Kuo C C. Subsonic potential aerodynamics for complex configurations: a general theory. AIAA Journal, 1974,12(2): 191-197.
    [103]Morino L, Chen L T and Suciu E O. Steady and oscillatory subsonic and supersonic aerodynamics around complex configurations. AIAA Journal, 1975, 13(3): 368-374.
    [104] Hunt, B. The mathematical basis and numerical principles of the boundary integral method for incompressible potential flow over 3-D aerodynamic configurations. Numerical Method in Applied Fluid Dynamics, Academic Press, New York, 1980.
    [105]Margason J. Subsonic panel method-a comparison of several production codes, in proceeding. AIAA Paper No. 85-0280, 1985.
    [106]Youngren H H. Comparison of panel method formulations and its influence on the development of QUADPAN an advanced low-order method. Proceedings of AIAA Applied Aerodynamics Conference, Danvers, 1983.
    [107]Maskew B. Prediction of subsonic aerodynamic characteristics: a case for low-order panel methods. Journal of Aircraft, 1982, 19(2): 157-163.
    [108]Lee J T. A potential based panel method for the analysis of marine propellers in steady flow: [dissertation], Cambridge: Massachusetts Institute of Technology, 1987.
    [109] Newman J L. Distributions of sources and normal dipoles over a quadrilateral panel. Journal of Engineering Mathematics, 1986,20:113-126.
    [110] Ling Z, Sasaki Y and Takahashi M. Analysis of three-dimension flow around marine propeller by direct formulation of boundary element method (2nd Report: in Steady Ship's Wake). Journal of the Society of Naval Architects of Japan, 1986,159: 45-59.
    [111]Hsin C Y, Kerwin J E and Kinnas S A. A panel method for the analysis of the flow around highly skewed propellers. Propellers and Shafting '91 Symposium, Society of Naval Architects and Marine Engineers, Virginia Beach, VA, 1991.
    [112] Kerwin J E, Kinnas S A, Lee J T et al. A surface panel method for the hydrodynamic analysis of ducted propellers. SNAME Transactions, 1987, 95:93-122.
    [113]Kinnas S A and Coney W B. On the optimum ducted propeller loading. Proceedings of Propellers '88 Symposium, Society of Naval Architects and Marine Engineers, Virginia Beach, VA, 1988.
    [114]Kawakita C. Hydrodynamic analysis of a ducted propeller in steady flow using a surface panel method. The West- Japan Society of Naval Architects, 1992, 84:11-22.
    [115]Kinnas S A. A general theory for the coupling between thickness and loading for wings and propellers. Journal of Ship Research, 1992, 36: 59-68.
    [116]Hoshino T. Hydrodynamic analysis of propellers in unsteady flow using a surface panel method. Journal of the Society of Naval Architects of Japan, 1993, 174: 71-87.
    [117]Mishkevich V. Flow around marine propeller: nonlinear theory based on vector potential. Propellers/ Shafting'97, Virginia Beach, 1997.
    [118] Maita S, Ando J and Nakatake K. A simple surface panel method to predict unsteady marine propeller performance. Journal of the Society of Naval Architects of Japan, 1997,182: 71-80.
    [119]Georgiev D J, Ikehata M and Kai H. Application of dirchlet's principle in a new panel method for surface and tip flows of lifting bodies. Journal of the Society of Naval Architects of Japan, 1997, 182: 81-95.
    [120]Mishima S and Kinnas S A. Application of a numerical optimization technique to the design of cavitating propellers in non-uniform flow. Journal of Ship Research, 1997,41(2): 93-107.
    [121] Caprino G and Traverso A. Improvements in propeller design using surface panel methods. NAV and HSMV International Conference, Sorrento, 1997.
    [122]Pyo S W, Suh J C and Kim K. Improvements on a steady panel method for propellers. China-Korea Marine Hydrodynamics Meeting, Shanghai, 1997.
    [123] Lee Y T and Jiang C W. A potential flow solution on marine propeller and axial rotating fan. DTRC Report 88/031, 1988.
    [124] Kinnas S A and Hsin C Y. A boundary element method for the analysis of the unsteady flow around extreme propeller geometries. AIAA Journal, 1992, 30: 688-696.
    [125] Suh J C, Lee J T and Suh S B. A bilinear source and doublet distribution over a planar panel and its applications to surface panel methods. 19~(th) Symposium on Naval Hydrodynamics, Seoul, Korea, 1992: 102-112.
    [126]Ryo S, Sasaki Y and Takahashi M. Analysis of three dimensional flow around marine propeller by direct formulation of boundary element method. ISPC'92, HangZhou, China, 1992.
    [127] Maitre T A and Rowe A R. Modeling flow around a marine propeller using a potential-based method. Journal of Ship Research, 1991,35(2): 114-126.
    [128] Caprino G., Senastiani L and Caponnetto M, et al. A surface panel method for the steady analysis of naval propellers. Workshop on Surface Panel Method for Marine Propellers, Seoul, 1992.
    [129]Morino L, A general theory of unsteady compressible potential aerodynamics. NASA CR-2464, 1974.
    [130] Ling Z, Sasaki Y and Takahashi M. Analysis of three-dimension flow around marine propeller by direct formulation of boundary element method (1st report: in uniform flow). Journal of the Society of Naval Architects of Japan, 1986, 159: 85-97.
    [131] Liu P F, Bose N and Colbourne B. A broyden numerical Kutta condition for an unsteady panel method. International Shipbuilding Progress, 2002,49(4): 263-273.
    
    [132] Yang C I and Jessup S D. Marine propeller analysis with panel method. AIAA-87-2063,1987.
    [133] Yang C I and Jessup S D. Benchmark analysis of series of propellers with a panel method. Proceedings of SNAME Propellers '88 Symposium Virginia Beach, September 1988.
    [134]Hoshino T. Hydrodynamic analysis of propellers in steady flow using a surface panel method. Journal of the Society of Naval Architects of Japan, 1989,165: 55-70.
    [135]Hoshino T. Hydrodynamic analysis of propellers in steady flow using a surface panel method, 2nd report, flow field around propellers. Journal of the Society of Naval Architects of Japan, 1989, 166: 79-92.
    [136]Kawakita C. A surface panel method for ducted propellers with new wake model based on velocity measurements. Journal of the Society of Naval Architects of Japan, 1992,172:79-92.
    [137]Takinaci A C. A wake rollup model for heavily loaded marine propellers. International Shipbuilding Progress, 1996, 43: 247-272.
    [138]Ghassemi H, Ikehata M and Yamasaki H. An investigation of wake model and its effect on the hydrodynamic performance of propellers by using a surface panel method. Journal of the Society of Naval Architects of Japan, 1995, 178: 83-91.
    [139] Yamasaki H and Ikehata M. A surface vortex lattice method for calculating performances of non- or super-cavitating propellers. Proceedings of 20th Symposium on Naval Hydrodynamics, Santa, Barbara, USA, 1994:117-135.
    [140]Achkinadze A S and Fridman G M. A new algorithm for numerical investigation of unsteady cavitating screw propeller with use of variational approach. Proceedings of 3~(rd) International Symposium on Cavitation, Grenoble, France, April 1998:279-284.
    [141]Kinnas S and Fine N. A nonlinear boundary element method for the analysis of unsteady propeller sheet cavitation. Proceedings of 19~(th) Symposium on Naval Hydrodynamics, Seoul, Korea, 1992:102-112.
    [142]Kinnas S, Lee H and Mueller A. Prediction of propeller blade sheet and developed tip vortex cavitation. Proceedings of 22~(nd) Symposium on Naval Hydrodynamics, Washington, D.C., 1998: 182-198.
    [143] Fine N E and Kinnas S A. A boundary element method for the analysis of the flow around 3-D cavitating hydrofoils. Journal of Ship Research, 1993,37(3): 213-224.
    [144] Kinnas S A and Fine N E. A numerical nonlinear analysis of the flow around 2-D and 3-D partially cavitating hydrofoils. Journal of Fluid Mechanics, 1993,254: 151-181.
    [145] Kinnas S A and Fine N E. A nonlinear boundary element method for the analysis of unsteady propeller sheet cavitation. 19~(th) Symposium on Naval Hydrodynamics, National Academy Press, Washington D.C., 1994: 717-737.
    [146] Kinnas S A, Mishima S and Savineau C. Application of optimization techniques to the design of cavitating hydrofoils and wings. International Symposium on Cavitation, Deauville, France, 1995.
    [147] Brewer W H and Kinnas S A. Experimental and computational investigation of sheet cavitation on a hydrofoil. Cavitation and Multiphase Flow, FED, Society of Mechanical Engineers, 1995, 210:1-15.
    [148] Kinnas S A, Mishima S and Brewer W H Non-linear analysis of viscous flow around cavitating hydrofoils. 20~(th) Symposium on Naval Hydrodynamics, National Academy Press, Washington D.C.,1996: 446-465.
    [149] Kinnas S A and Gucun B. A High-order BEM based on the "saw-tooth" correction - application to the structural analysis of cavitating hydrofoils. IABEM Workshop: Fundamental Solutions in Boundary Elements: Formulation and Integration, Sevilla, Spain, 1997: 299-318.
    [150] Kinnas S A, Kimball R W and Choi J K. Cavitating propeller experiment (CAPREX III): measurement and prediction of tunnel Pressures, Journal of Ship Research, 1998,42: 233-248.
    [151] Mueller A C and Kinnas S A. Propeller sheet cavitation prediction using a panel method. Journal of Fluids Engineering, 1999, 121: 282-288.
    [152] Kinnas S A, Lee H, and Young Y L. Modeling of unsteady sheet cavitation on marine propulsors, 9~(th) International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, Hawaii, 2002.
    [153] Lee H and Kinnas S A. Application of BEM in unsteady blade sheet and developed tip vortex cavitation prediction on marine propellers. IABEM2002 Symposium of the International Association for Boundary Element Methods, Austin, 2002.
    [154] Young Y L and Kinnas S A. Modeling of unsteady sheet cavities on hydrofoils and propellers. 14~(th) Engineering Mechanics Conference, Austin, 2000.
    [155]Bal S, Kinnas S A and Lee H S. Numerical analysis for 2-D and 3-D cavitating hydrofoils under a free surface. Journal of Ship Research, 2001, 45(1): 34-49.
    [156] Young YL and Kinnas S A. A BEM for the prediction of unsteady midchord face and/or back propeller cavitation. Journal of Fluids Engineering, 2001,123: 311-319.
    [157] Kinnas S A, Lee H and Young Y L. Boundary element techniques for the prediction of sheet and developed tip vortex cavitation, Electronic Journal of Boundary Elements, 2002, BETEQ2001(2): 151-178.
    
    [158]Kinnas S A, Choi J K, Lee H et al. Prediction of cavitation performance of single or multi- component propulsors and their interaction with the hull. SNAME Transactions, 2002, 110:215-244.
    
    [159]Kinnas S A and Young Y L. Modeling of cavitating or ventilated flows using BEM. International Journal of Numerical Methods for Heat and Fluid Flow, 2003,13(6): 672-697.
    [160]Kinnas S A, Lee H and Young Y L. Modeling of unsteady sheet cavitation on marine propellers. International Journal of Rotating Machinery, 2003,9(4): 263-277.
    [161]Kinnas S and Fine N. Non-linear analysis of the flow around partially or super-cavitating hydrofoils by a potential based panel method. Proceedings of the IABEM-90 Symposium of the International Association for Boundary Element Methods, Rome, Italy, 1990.
    [162] Young Y L and Kinnas S A. Prediction of unsteady performance of surface-piercing propellers. Propellers/Shafting 2000 Symposium, Society of Naval Architects and Marine Engineers, Virginia Beach, VA, 2000.
    [163] Young Y L and Kinnas S A. Application of BEM in the modeling of supercavitating and Surface-Piercing Propeller Flows," IABEM2002 Symposium of the International Association for boundary element methods, Austin, TX, 2002.
    [164] Young Y L and Kinnas S A. Numerical modeling of supercavitating propeller flows. Journal of Ship Research, 2003, 47(1): 48-62.
    [165] Young YL and Kinnas S A. Analysis of supercavitating and surface-piercing propeller flows via BEM. Journal of Computational Mechanics, 2003, 32(4-6): 269-280.
    [166] Young Y L and Kinnas S A. Performance prediction of surface-piercing propellers. Journal of Ship Research, 2004, 48(4): 288-304.
    [167] Vartdal L and Bloch F. Ferrycat 120 propulsion aspects and manoeuvring capabilities, Proceedings of First International Conference on Double-ended Ferriesk, 2001.
    [168] Blenkey N. Getting twin propeller efficiency from a pod. Marine Log, 1997.
    [169]Hsin C Y, Chou S K and Chen W C. A new propeller design method for the pod propulsion system. Proceedings of 24~(th) Symposium on Naval Hydrodynamics, Fukuoka, Japan, 2003.
    [170]Ghassemi H and Allievi A. A computational method for the analysis of fluid flow and hydrodynamic performance of conventional and podded propulsion systems. Oceanic Engineering International, 1999,3:101-115.
    [171]Sanchez-Caja A, Rautaheimo P and Siikonen T. Computation of the incompressible viscous flow around a tractor thruster using a sliding-mesh technique. Proceedings of 7~(th) International Conference on Numerical Ship Hydrodynamics, France, 1999.
    [172] Achkinadze A S, Berg A, Krasilnikov V I et al. Numerical analysis of podded and steering systems using a velocity based source boundary element method with modified trailing edge. Propeller/Shafting' 2003 Symposium, Virginia Beach, VA, USA, 2003.
    [173] Islam M, Taylor R and Quinton J. Numerical investigation of propulsive characteristics of podded propellers. The 1st International Conference on Technological Advances in Podded Propulsion, T-POD, Newcastle, UK, 2004.
    [174] 叶永兴.螺旋桨升力线理论在舰船设计及性能预报中的应用.舰船科学技术,1984,5:35-44.
    [175] 张忠业,贾大山.升力线理论预报螺旋桨性能和桨叶表面压力分布.大连理工大学学报,1986,25(2):35-40.
    [176] 黄胜,蒋少剑,马文彬.船舶螺旋桨后尾流速度场理论计算.哈尔滨工程大学学报,1989,10(3):278-285.
    [177] 杨昌培,常规螺旋桨及导管螺旋桨升力面设计计算程序.舰船科学技术,1982,6:8-18。
    [178] 陈泽梁.螺旋桨水动力性能的一种解法.第二届全国船舶推进与空泡学术论文集,1983.
    [179] 冯锦章.双体干扰及导管、螺旋桨系统水动力性能理论预报:(硕士论文).无锡:中国船舶科学研究中心,1984.
    [180] 姜际升,劳国舁,丛良滋.用升力面理论预报螺旋桨性能和桨叶表面压力分布.中国造船,1984,4:3-15.
    [181] 董世汤.船舶螺旋桨理论讲义.上海:上海交通大学,1980.
    [182] 丛良滋,劳国升,姜际升.螺旋桨升力面理论的涡系分析,大连理工大学学报,1986,25(1):85-90.
    [183] 王国强,贾大山.自由液面对螺旋桨性能的影响.中国造船,1989,1:1-8.
    [184] 张忠业,劳国升,彭红宣.应用非定常升力面理论计算大侧斜桨性能及桨叶表面压力分布.大连理工大学学报,1994,34(6):705-712.
    [185] 陈家栋.螺旋桨扰动速度场数值预报.中国造船,1995,131(4):12-19.
    [186] 黄胜,邵雪明.全方位推进器水动力性能理论预报.中国造船,1996,135(4):19-24.
    [187] 黄胜,宁至胜,聂云凌等.全方向推进器定常水动力性能的升力面预报方法.哈尔滨工程大学学报,1997,18(3):2-6.
    [188] 王国强,胡寿根.螺旋桨非定常性能计算的升力面方法.上海交通大学学报,1989,23(3):47-54.
    [189] 王国强,贾大山,盛振邦.部分浸水通气螺旋桨水动力性能.中国造船,1990,2:22-31.
    [190] 叶永兴.螺旋桨脉动压力场的理论分析与试验研究.舰船科学技术,1991,3:1-11.
    [191] 陈家栋.非定常螺旋桨水动力升力面预报.水动力学研究与进展A辑,1992,7(4):44-57.
    [192] 王国强,徐立新,杨晨俊等.螺旋桨性能预估的非线性涡格法.中国造船,1992,117(2):22-32.
    [193] 王国强,杨建民.用升力面方法估算螺旋桨空泡.上海交通大学学报,1993,27(1):9-18.
    [194] 王国强,杨晨俊.空泡螺旋桨升力面理论设计方法.船舶力学,2002,6(1):11-17.
    [195] 王言英,梁勃.计入粘性影响的螺旋桨性能计算.大连理工大学学报,1994,34(3):325-329.
    [196] 高秋新,周连第.船舶尾部流动与多个螺旋桨相互干扰的数值模拟.中国造船,1998,140(1):16-24.
    [197] 王国强,胡寿根.螺旋桨性能和压力分布预估方法的改进。中国造船,1988,1:22-35.
    [198] 王大政.新的螺旋桨尾涡近似方法.大连理工大学学报,1998,38(4):78-84.
    [199] 董世汤.螺旋桨升力面理论边值问题的精细化处理.船舶力学,2004,8(2):1-15.
    [200] 辛公正,唐登海,董世汤.螺旋桨升力面设计边界条件的处理分析.船舶力学,2004,8(2):16-24
    [201] 谭廷寿.面元法预报螺旋桨水动力性能.武汉交通科技大学学报,1997,21(5):534-541.
    [202] 苏玉民,黄胜.用面元法预报船舶螺旋桨的水动力性能哈尔滨工程大学学报,2001,22(2):1-5.
    [203] 谭廷寿,王德恂.大侧斜螺旋桨水动力性能预报.武汉交通科技大学学报,2000,24(2):96-99。
    [204] 谭廷寿,何海峰.高阶面元法预报螺旋桨水动力性能.武汉理工大学学报(交通科学与工程版),2005,29(1):20-22.
    [205] 董世汤,唐登海,周伟新.CSSRC的螺旋桨定常面元法.船舶力学,2005,9(5):46-60.
    [206] 陈家栋,董世汤.非定常螺旋桨表面压力面元法计算,中国造船,1998,140(1):9-15.
    [207] 谭廷寿,熊鹰,王德恂.面元法预报螺旋桨表面非定常压力分布.中国造船,2000,41(2):15-20.
    [208] 谭廷寿.螺旋桨非定常性能的面元法预报.船舶工程,2005,27(5):13-17.
    [209] 苏玉民,池烟光尚,甲斐寿.船舶螺旋桨尾流场的数值分析.海洋工程,2002,20(3):44-48.
    [210] 胡健,苏玉民,黄胜.螺旋桨诱导的船尾脉动压力的数值模拟.哈尔滨工程大学学报,2005,26(3):292-296.
    [211] 杨晨俊,王国强,杨建民.导管螺旋桨定常性能理论计算.上海交通大学学报,1997,31(11):36-39.
    [212] 王国强,张建华.导管螺旋桨的非定常性能预估.船舶力学,2002,6(5):1-8.
    [213] 王国强,张建华.导管螺旋桨的升力面/面元偶合设计方法.船舶力学,2003,7(4):21-27.
    [214] 熊鹰,谭廷寿,钱晓南等.螺旋桨导边充气对其水动力性能和辐射噪声的影响研究,武汉交通科技大学学报,2000,24(4):379-383.
    [215] 谭廷寿,刘子洋.给定压力分布的螺旋桨面元法设计.武汉理工大学学报(交通科学与工程版),2003,27(5):663-666.
    [216] 谭廷寿,熊鹰.基于B样条的螺旋桨升力面设计.海军工程大学学报,2005,17(6):37-42.
    [217] 叶金铭,熊鹰.Predicting pressure fluctuations on ship hulls due to intermittently cavitating propellers.船舶力学,2005,9(6):21-29.
    [218] 杨晨俊,钱正芳,马骋.吊舱对螺旋桨水动力性能的影响.上海交通大学学报,2003,37(8):1229-1233.
    [219] 陈飞笑,杨晨俊.拖式吊舱螺旋桨定常性能理论计算.水动力学研究与进展A辑,2003,18(4):515-520.
    [220] 胡键,黄胜,苏玉民.吊舱推进器水动力性能研究.第七届全国水动力学学术会议暨第十九届全国水动力学研讨会文集,北京,2005:769-775.
    [221] 马骋,杨晨俊,钱正芳等.新型POD推进器尾涡模型的改进研究.哈尔滨工程大学学报,2004,25(4):423-428.
    [222] 唐登海,董世汤.螺旋桨周围粘流场数值预报与流场分析.水动力学研究与进展A辑,1997,12(4):426-436.
    [223] 王大政,王言英,柴树红.新型叶剖面设计及叶剖面参数对空泡特性影响的研究——(1)新型叶剖面设计.水动力学研究与进展A辑,1999,14(2):189-200.
    [224] 王大政,王言英.新型叶剖面设计及叶剖面参数对空泡特性影响的研究—(2)剖面参数对空泡特性的影响.水动力学研究与进展A辑,2000,15(3):320-328.
    [225] 周伟新,吴幼华,董世汤.A propeller design method with new blade section for improving cavitation inception under unsteady condRion.船舶力学,2001,5(6):18-26.
    [1] 苏玉民,黄胜.船舶螺旋桨理论.哈尔滨:哈尔滨工程大学出版社,2003.
    [2] 董世汤.船舶螺旋桨理论.上海:上海交通大学,1985.
    [3] 王国强,董世汤.船舶螺旋桨理论与应用.哈尔滨:哈尔滨工程大学出版社,2005.
    [4] Kerwin J E and Lee C S. Prediction of steady and unsteady marine propeller performance by numerical lifting-surface theory. SNAME Transactions, 1978, 86: 218-253.
    [5] Greeley D S and Kerwin J E. Numerical method for propeller design and analysis in steady flow. SNAME Transactions, 1982, 90: 415-453.
    [6] 王国强,贾大山.自由液面对螺旋桨性能的影响.中国造船,1989,1:1-8.
    [7] 王国强,徐立新,杨晨俊等.螺旋桨性能预估的非线性涡格法.中国造船,1992,117(2):22-32.
    [8] 王国强,杨建民.用升力面方法估算螺旋桨空泡.上海交通大学学报,1993,27(1):9-18.
    [9] 王国强,杨晨俊.空泡螺旋桨升力面理论设计方法.船舶力学,2002,6(1):11-17.
    [10] 陈家栋.非定常螺旋桨水动力升力面预报.水动力学研究和进展A辑,1992,7(4):420-423.
    [11] 杨建民.用升力面方法估算螺旋桨空泡.上海交通大学学报,1993,1:9-18.
    [12] 张忠业,劳国升,彭红宣.应用非定常升力面理论计算大侧斜桨性能及桨叶表面压力分布.大连理工大学学报,1994,34(6):705-712.
    [13] 黄胜,邵雪明.全方位推进器水动力性能理论预报.中国造船,1996,135(4):19-24.
    [14] 黄胜,宁至胜,聂云凌等.全方向推进器定常水动力性能的升力面预报方法.哈尔滨工程大学学报,1997,18(3):2-6.
    [15] Lerbs H W. Moderately loaded propeller with finite rum her of blades and arbitrary distribution of circulation. Trams SNAME, 1952, 60: 77-117
    [16] Glover E J. Slipstream Deformation and Its Influence on Marine Propeller Design: [dissertation], Newcastle: University of Newcastle upon Tyne, 1970.
    [17] 王国强,胡寿根.螺旋桨性能和压力分布预估方法的改进.中国造船,1988,1:22-35.
    [18] 王大政.新的螺旋桨尾涡近似方法.大连理工大学学报,1998,38(4):78-84.
    [19] Koyama K. Comparative calculations of propellers by surface panel method-workshop organized by 20th ITTC propulsor committee. Technical Report Supplement No. 15, Ship Research Institute, Japan, 1993.
    [20] Boswell R J. Design, cavitation performance and open-water performance of a series of research skewed propeller. DTNSRDC report 3339, 1971.
    [1] Hess J L and Smith A M O. Calculation of nonlifling potential flow about arbitrary three dimensional bodies. Journal of Ship Research, 1964, 8(2): 22-44.
    [2] Hess J L and Smith A M O. Calculation of potential flow about arbitrary bodies. Progress in Aerospace Sciences, 1966, 8: 1-138.
    [3] Morino, L and Kuo C C. Subsonic potential aerodynamics for complex configurations: a general theory. AIAA Journal, 1974, 12(2): 191-197.
    [4] Morino L, Chen L T and Suciu E O, Steady and oscillatory subsonic and supersonic aerodynamics around complex configurations. AIAA Journal, 1975, 13(3): 368-374.
    [5] Maskew B. Prediction of subsonic aerodynamic characteristics: a case for low-order panel methods. Journal of Aircraft, 1982, 19(2): 157-163.
    [6] Margason R J. Subsonic panel method-a comparison of several production codes. AIAA Paper No. 85-0280, 1985.
    [7] Kerwin J E, Kinnas S A, Lee J T and Shih W Z. A surface panel method for the hydrodynamic analysis of ducted propellers. SNAME Transactions, 1987, 95: 93-122.
    [8] Hoshino T, Hydrodynamic analysis of propellers in steady flow using a surface panel method. Journal of the Society of Naval Architects of Japan, 1989, 165: 55-70.
    [9] 陈家栋.非定常螺旋桨水动力升力面预报.水动力学研究与进展A辑,1992,7(4):44-57.
    [10] 谭廷寿.面元法预报螺旋桨水动力性能.武汉交通科技大学学报,1997,21(5):534-541.
    [11] 苏玉民,黄胜.用面元法预报船舶螺旋桨的水动力性能.哈尔滨工程大学学报,2001,22(2):1-5.
    [12] Lee J T. A potential based panel method for the analysis of marine propellers in steady flow:[dissertation], Cambridge: Massachusetts Institute of Technology, 1987.
    [13] Pyo S and Kinnas S A. Propeller wake sheet roll-up modeling in three dimensions. Journal of Ship Research, 1997, 41(2): 81-92.
    [14] Breslin J P and Andersen P. Hydrodynamics of ship propellers, Cambridge University Press, Cambridge, 1994.
    [15] Ghassemi H Ikehata M and Yamasaki H. An investigation of wake model and its effect on the hydrodynamic performance of propellers by using a surface panel method. Journal of the Society of Naval Architects of Japan, 1995, 178: 83-91.
    [16] Hoshino T. Hydrodynamic analysis of propellers in steady flow using a surface panel method, 2nd report, flow field around propellers. Journal of the Society of Naval Architects of Japan, 1989, 166: 79-92.
    [17] Kawakita C. Hydrodynamic analysis of a ducted propeller in steady flow using a surface panel method. The West-Japan Society of Naval Architects, 1992, 84: 11-22.
    [18] Greeley D S, Marine propeller blade tip flow: [dissertation], Cambridge: Massachusetts Institute of Technology, 1982.
    [19] Greeley D S. Numerical method for propeller design and analysis in steady flow. SNAME Transactions, 1982, 90: 415-453.
    [20] Ling Z, Sasaki Y and Takahashi M. Analysis of three-dimension flow around marine propeller by direct formulation of boundary element method (1st report: in uniform flow). Journal of the Society of Naval Architects of Japan, 1986,159: 85 -97.
    [21]Yanagizawa M. Calculations for aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method. Technical Report of National Aerospace Laboratory, TR-835, 1984.
    [22]Maitre T A and Rowe A R. Modeling of flow around a marine propeller using a potential-based method. Journal of Ship Research, 1991, 35(2): 114-126.
    [23] Lee J T. A potential based panel method for the analysis of marine propellers in steady flow: [dissertation], Cambridge: Massachusetts Institute of Technology, 1989.
    [24]Jordan P F. Exact solutions for lifting surfaces. AIAA Journal, 1973,11(8): 1123-1129.
    [25]Treadgold D A, Jones A F and Wilson K H. Pressure distribution measured in the RAE 8ft~*6ft Transonic wind tunnel on RAE'A' in combination with an axisymmetric body at Mach number of 0.4, 0.8 and 0.9. Technical Report AR138, AGARD, 1979.
    
    [26]王献孚。般用翼理论。北京:国防工业出版, 1998.
    
    [27]Boswell R J and Miller M L. Unsteady propeller loading-measurement, correlation, with theory and parametric study. Technical Report DTNSRDC Report 2625, DTNSRDC, 1968.
    [28]Koyama K. Comparative calculations of propellers by surface panel method-workshop organized by 20th ITTC propulsor committee. Technical Report Supplement No.15, Ship Research Institute, Japan, 1993.
    [29]Kerwin J E and Lee C S. Prediction of steady and unsteady marine propeller performance by numerical lifting-surface theory, SNAME Transactions, 1978, 86: 218-253.
    [30]Boswell R J. Design, cavitation performance and open-water performance of a series of research skewed propeller. DTNSRDC report 3339, 1971.
    [31 ]Nelka J J. Experimental evaluation of a series of skewed propeller with forward rake: open-water performance, cavitaion performance, field-point pressures, and unsteady propeller loading, DTNSRDC Report 4113, 1974.
    [1] Takasugi N, Yamaguchi H, Kato H, et al. An experiment of cavitating flow around a finite span hydrofoil(in Japanese). Journal of the Society of Naval Architects of Japan, 1992, 172: 257-265.
    [2] Kerwin J E, Kinnas S A, Lee J T, et al. A surface panel method for the hydrodynamic analysis of ducted propellers. Trans. SNAME, 1987, 95: 93-122.
    [3] Hoshino T. Hydrodynamic analysis of propellers in steady flow using a surface panel method. Journal of the Society of Naval Architects of Japan, 1989, 165: 55-70.
    [4] Hoshino T. Hydrodynamic analysis of propellers in steady flow using a surface panel method, 2nd report, flow field around propellers. Journal of the Society of Naval Architects of Japan, 1989, 166: 79-92.
    [5] Hoshino T. Hydrodynamic analysis of propellers in unsteady flow using a surface panel method. Journal of the Society of Naval Architects of Japan, 1993, 174: 71-87.
    [6] Hsin C Y, Kerwin J E and Kinnas S A. A panel method for the analysis of the flow around highly skewed propellers. Proceedings of the SNAME Propellers '91 Symposium, Virginia Beach, VA, 1991: 1-13.
    [7] Hsin C Y. Development and analysis of panel method for propellers in unsteady flow: [dissertation], Cambridge: Massachusetts Institute of Technology, 1990.
    [8] Kinnas S A and Fine N F. A numerical nonlinear analysis of the flow around 2-D and 3-D partially cavitating hydrofoils. Journal of Fluid Mechanics, 1993, 254: 151-181.
    [9] Kinnas S A and Pyo S. Propeller wake sheet roll-up modeling in three dimensions. Journal of Ship Research, 1997, 41(2): 81-92.
    [10] Kirmas S A and Young Y L. Modeling of cavitating or ventilated flows using BEM. International Joumal of Numerical Methods for Heat & Fluid Flow, 2003, 13(6): 672-697.
    [11] Yumin S. A numerical design method of marine propellers using surface panel method. Journal of the Society of Naval Architects of Japan, 1999, 23: 21-28.
    [12] 苏玉民,黄胜.用面元法预报船舶螺旋桨的水动力性能.哈尔滨工程大学学报,2001,22(2):1-5.
    [13] 谭廷寿.面元法预报螺旋桨水动力性能.武汉交通科技大学学报,1997,21(5):534-541.
    [14] 谭廷寿,熊鹰,王德恂.面元法预报螺旋桨表面非定常压力分布.中国造船,2000,41(2):15-20.
    [15] 谭廷寿,何海峰.高阶面元法预报螺旋桨水动力性能.武汉理工大学学报(交通科学与工程版),2005,29(1):20-22.
    [16] 熊鹰,谭廷寿,钱晓南等.螺旋桨导边充气对其水动力性能和辐射噪声的影响研究.武汉交通科技大学学报,2000,24(4):379-383.
    [17] 王国强,张建华.导管螺旋桨的升力面/面元偶合设计方法.船舶力学,2003,7(4):21-27
    [18] 王国强,刘晓龙.用基于速度势的面元法预估导管桨的非定常性能.船舶力学,2006,10(1):36-42
    [19] 杨晨俊,钱正芳,马骋.吊舱对螺旋桨水动力性能的影响.上海交通大学学报,2003,37(8):1229-1233.
    [20] 董世汤,唐登海,周伟新.CSSRC的螺旋桨定常面元法.船舶力学,2005,9(5):46-60.
    [21] Kerwin J E and Lee C S. Prediction of steady and unsteady marine propeller performance by numerical lifting-surface theory, SNAME Transactions, 1978, 86: 218-253.
    [22] 王国强,胡寿根.螺旋桨非定常性能计算的升力面方法.上海交通大学学报,1989,23(3):47-54.
    [23] 黄胜,宁至胜,聂云凌等.全方向推进器定常水动力性能的升力面预报方法.哈尔滨工程大学学报,1997,18(3):2-6.
    [24] Kinnas S A and Hsin C Y. Boundary element method for the analysis of unsteady flow around extreme propeller geometries. AIAA Journal, 1992, 30(3): 688-696.
    [25] Kirmas S A, Pyo S, Hsin C Y, et al. Numerical modeling of propeller tip flows. Proceedings of the Six International Conference on Numerical Ship Hydrodynamics, 1994: 531-544.
    [26] Hess J L and Smith A M O. Calculation of nonlifting potential flow about arbitrary three dimensional bodies. Journal of Ship Research, 1964, 8(2): 22-44.
    [27] Lan C E. A quasi-vortex lattice method in thin wing theory. Journal of Aircraft, 1974, 11(9): 518-527.
    [28] Greeley D S and Kerwin J E. Numerical method for propeller design and analysis in steady flow. SNAME Transactions, 1982, 90: 415-453.
    [29] Pyo S. Numerical modeling of propeller tip flows with wake sheet roll-up in three dimensions: [dissertation], Cambridge: Massachusetts Institute of Technology, 1995.
    [30] Merino L, Chen L T and Suciu E O, Steady and oscillatory subsonic and supersonic aerodynamics around complex configurations. AIAA Journal, 1975, 13(3): 368-374.
    [31] 施法中.计算机辅助几何设计与非均匀有理B样条.北京:北京航空航天大学出版社,1994.
    [32] 吴晓勤,唐运海.曲率连续的三角B样条曲线与曲面.计算机应用与软件,2005,22(1):118-120.
    [33] Kawakita C. Hydrodynamic analysis of a ducted propeller in steady flow using a surface panel method. The West-Japan Society of Naval Architects, 1992, 84: 11-22.
    [34] Koyama K. A numerical method of the analysis of a lifting body in the potential flow[J], Journal of the Society of Naval Architects of Japan, 2001, 190: 1-12.
    [1] 张伟,陈辉.面向21世纪的船舶电力推进技术.交通科技,2003,2:48-50.
    [2] 金海.浅谈船舶电力推进现状及发展.船电技术,1994,5:5-14.
    [3] 孙诗南.船舶电力推进在21世纪的发展.上海造船,2002,2:25-28.
    [4] 陈飞笑.吊舱式推进器定常性能计算方法研究:(硕士学位论文).上海:上海交通大学,2003.
    [5] 王文博.吊舱推进器水动力性能预报预报方法:(硕士学位论文)。哈尔滨:哈尔滨工程大学,2005.
    [6] 张庆文.吊舱电力推进装置应用:(硕士学位论文).大连:大连理工大学,2005.
    [7] 雄鹰,叶金铭.吊舱推进系统性能评估及设计方法.海军工程大学学报,2002,14(1):23-26.
    [8] The Propulsion Committee. Final report and recommendations to the 22nd ITTC. Proceeding of 22nd ITTC, 1999.
    [9] The Propulsion Committee. Final report and recommendations to the 23rd ITTC, Proceeding of 23rd ITTC, 2002.
    [10] Hsin C Y, Chou S K and Chen W C. A new propeller design method for the pod propulsion system. Proceedings of 24th Symposium on Naval Hydrodynamics, Fukuoka, Japan, 2003.
    [11] Ghassemi H and Allievi A. A computational method for the analysis of fluid flow and hydrodynamic performance of conventional and podded propulsion systems. Oceanic Engineering International, 1999,3: 101-115.
    [12] Sanchez-Caja A, Rautaheimo P and Siikonen T. Computation of the incompressible viscous flow around a tractor thruster using a sliding-mesh technique. Proceedings of 7~(th) International Conference on Numerical Ship Hydrodynamics, France, 1999.
    [13] Achkinadze A S, Berg A, Krasilnikov V I et al. Numerical analysis of podded and steering systems using a velocity based source boundary element method with modified trailing edge. Propeller/Shafting' 2003 Symposium, Virginia Beach, VA, USA, 2003.
    [14] Seokcheon G. and Heungwon S. Study on the powering performance evaluation for the CRP-Pod propulsion ships. Proceedings of The 1~(st) International Conference on Technological Advances in Podded Propulsion, Newcastle, April 2004.
    [15] Goubault P and Perree J. Parametric investigations designed to help focused pod technology development. Proceedings of the First International Conference on Technological Advances in Podded Propulsion, Newcastle, April 2004.
    [16] Bertaglia G and Lavini G. Hull design and optimization with pod propellers with 5 and 6 blades. Proceedings of the 1~(st) International Conference on Technological Advances in Podded Propulsion, Newcastle, April 2004.
    [17] Islam M, Taylor R and Quinton J. Numerical investigation of propulsive characteristics of podded propellers. The 1~(st) International Conference on Technological Advances in Podded Propulsion, T-POD, Newcastle, UK, 2004.
    [18] Sanchez-Caja A and Pylkkanen J V. On the Hydrodynamic Design of Podded Propulsors for Fast Commercial Vessels. Proceedings of the 1~(st) International Conference on Technological Advances in Podded Propulsion, Newcastle, April 2004.
    [19] Ohashi K and Hino T. Numerical simulations of flows around a ship with podded propulsor. Proceedings of the 1~(st) International Conference on Technological Advances in Podded Propulsion, Newcastle, April 2004.
    [20] Kaul S. New podded drives for the power range 1-5 MW. Proceedings of the 1~(st) International Conference on Technological Advances in Podded Propulsion, Newcastle, April 2004.
    [21] Sarioz K and Atla M. Operability of fast podded ropax vessels in rough seas. Proceedings of the 1~(st) International Conference on Technological Advances in Podded Propulsion, Newcastle, April 2004.
    [22] Turan O, Clelland D and Tuzcu C. Effect of pods on the roll behavior of passenger vessels. Proceedings of the 1~(st) International Conference on Technological Advances in Podded Propulsion, Newcastle, April 2004.
    [23] 杨晨俊,钱正芳,马骋.吊舱对螺旋桨水动力性能的影响.上海交通大学学报,2003,37(8):1229-1233.
    [24] 陈飞笑,杨晨俊.拖式吊舱螺旋桨定常性能理论计算.水动力学研究与进展A辑,2003,18(4):515-520.
    [25] 胡键,黄胜,苏玉民.吊舱推进器水动力性能研究.第七届全国水动力学学术会议暨第十九届全国水动力学研讨会文集,北京,2005:769-775.
    [26] 马骋,杨晨俊,钱正芳等.新型POD推进器尾涡模型的改进研究.哈尔滨工程大学学报,2004,25(4):423-428.
    [27] Morino L, Chen L T and Suciu E O, Steady and oscillatory subsonic and supersonic aerodynamics around complex configurations. AIAA Journal, 1975, 13(3): 368-374.
    [28] 何术龙,李百齐,程明道等.偶极子的快速数值算法.2004年船舶水动力学学术会议论文集,2004:43-63.
    [29] Greeley D S and Kerwin J E. Numerical methods for propeller design and analysis in steady flow. SNAME Transactions, 1982, 90: 415-453.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700