航天器贮箱液体非线性晃动动力学的多维模态分析方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
晃动是指贮箱中液体自由液面的运动,它是由于对部分充液贮箱施加扰动而引起的。运动或静止贮箱中的液体晃动问题在航空航天、民用、海洋工程、水陆运输等领域都受到极大的关注。本文将多维模态理论应用到求解航天领域中的圆柱贮箱液体非线性晃动问题中,在得到一般形式的模态系统之后,系统地研究了液体非线性自由晃动、液体横向受迫共振晃动的瞬态响应和稳态响应,分析了高阶模态的影响,并且推导出一个适合于工程应用的计算液体晃动力的公式,主要研究工作分为如下四部分:
     第一部分通过压力积分变分原理和模态展开的方法将描述液体非线性晃动的自由边界值问题转化为了无穷维模态系统。所得到的模态系统具有一般形式,适合于贮箱作任意三维运动。相对于原始的复杂非线性边界值问题,求解此模态系统要简单得多,同时其物理意义清晰,将为求解各种类型液体非线性晃动问题奠定基础。
     第二部分研究了圆柱贮箱内液体的非线性自由晃动问题。在无穷维模态系统基础之上,推导出描述液体非线性自由晃动的有限维模态系统,最后利用Runge-Kutta方法对此模态系统进行数值积分,揭示出液体作自由晃动时的各种非线性现象,从而验证公式推导的正确性和将多维模态理论应用到圆柱贮箱液体非线性晃动问题中的正确性和有效性。
     第三部分由第4、5、6章组成,是本文工作的重点。这部分针对贮箱作水平横向运动,首先推导出描述液体非线性共振晃动的有限维模态系统,然后系统地研究了液体的瞬态响应和稳态响应,并分析了被忽略的高阶模态的影响。
     第4章通过直接对模态系统进行数值积分,定性地揭示出一些重要的非线性现象,如“拍”现象、节径移动、非平面运动等,并证明了次模态在液体运动描述中的不可忽略性。
     第5章则是对模态系统进行更深入的稳定性分析,首先求出主模态函数的稳态周期解,然后应用Floquet-Lyapunov方法研究它们的稳定性和稳定区间,从而定量地揭示出液体横向受迫共振晃动的不同晃动波形式—稳定“平面”波、稳定“旋转”波和不稳定“混沌”波,并得出一些有意义的结论。最后将理论分析结果与实验结果进行了对比,发现两者有很好的吻合,从而验证了稳态响应分析的正确性。
     第6章分析了次模态对稳态响应的影响和由于次共振造成的高阶模态在液体运动描述中的不可忽略性,指出Narimanov-Moiseev三阶渐近假设关系的适用范围和局限性,对指导将来的工作有着重要意义。
     第四部分面向工程应用,在前几章工作的基础之上,推导出部分充液圆柱贮箱中液体产生非线性晃动时其作用于贮箱壁的力的公式,此公式物理意义清晰,可用于工程实际中液体晃动力的估算。
Sloshing means motion of the liquid free surface inside its container. It is caused by disturbance to partially filled liquid containers. The problem of liquid sloshing in moving or stationary containers remains of great concern to aerospace, civil, ocean engineering, designers of road tankers and ship tankers. The multidimensional modal theory is applied to solve liquid nonlinear sloshing in circular cylindrical tank used in aerospace engineering in this paper. After deriving the modal system in general form, the liquid nonlinear free sloshing, the transient response and steady response of liquid transverse forced resonant sloshing are investigated systematically and the influences of higher order modes are analyzed. A formula of liquid sloshing force, which is fit for engineering application, is also derived. The major works of this paper include four parts as follows:
     The free boundary value problem describing liquid nonlinear sloshing is translated into infinite dimensional modal system through the pressure integral variational principle and modes expanding method in the first part. The modal system takes on general form and is suitable for arbitrary three dimensional motion of tank. In comparing with the original complicated nonlinear boundary value problem, solving the modal system is easy greatly. At the same time, the physical meaning of the modal system is manifest. So, it is can be taken as the basis of solving all kinds of liquid nonlinear sloshing problem.
     The liquid nonlinear free sloshing in circular cylindrical tank is investigated in the second part. Based on the infinite dimensional modal system, the finite dimensional modal system describing liquid nonlinear free sloshing is derived. The modal system is integrated by Runge-Kutta method. By discovering many nonlinear phenomena when liquid is in free sloshing, the correctness of formula derivation and the validity of applying multidimensional modal theory to liquid nonlinear sloshing in circular cylindrical tank are proved.
     The third part is composed of chapter 4, chapter 5 and chapter 6, which are the emphases of the paper. The finite dimensional modal system describing liquid nonlinear resonance sloshing when the tank is in translation transverse motion is derived first in this part and the liquid transient response and steady response are investigated systematically. The influences of higher modes which are ignored are analyzed too.
     In Chapter 4, many important nonlinear phenomena, such as beating phenomenon, shift of nodal diameter and nonplanar motion are discovered qualitatively by direct numerical integration of the modal system and the non-ignoring of secondary modes in the describing of liquid motion are proved.
     Chapter 5 is the stability analysis of the modal system. The steady periodic solutions of the primary modal functions are gained first. The stability and the stable zones of the solutions are investigated by Floquet-Lyapunov method. So the different liquid transverse forced resonance sloshing wave forms—stable planar wave, stable rotary wave and unstable chaotic wave are revealed quantitatively and some significative conclusions are gained. At last, the theory results are compared with the experimental results and they agree well. So the validity of steady response analysis is proved.
     The influence of secondary modes on steady response and non-ignoring of higher modes in the describing of liquid motion due to secondary resonance are analyzed in Chapter 6. So the scope and localization of Narimanov-Moiseev third order asymptotic hypothesis are disclosed, which can direct future work.
     The fourth part faces the engineering application. Based on the work of former chapters, a formula of liquid force acted on the wall of partially filled circular cylindrical tank when the liquid produces nonlinear sloshing is derived. The physical meaning of this formula is manifest and can be used in the estimating of liquid sloshing force in engineering.
引文
1 R.A.Ibrahim. Liquid Sloshing Dynamics: Theory and Applications. Cambridge University Press, 2005
    2 尹立中,王本利,邹经湘. 航天器液体晃动与液固耦合动力学研究概述. 哈尔滨工业大学学报. 1999,31(2):118-122
    3 H.N.Abramson. The Dynamic Behavior of Liquids in Moving Containers. NASA-SP-106, 1966
    4 J.Gerrits. Dynamics of Liquid-Filled Spacecraft: Numerical Simulation of Coupled Solid-Liquid Dynamics. Ph.D. thesis, University of Groningen, the Netherlands. 2001
    5 王照林,张乃恭. 微重力充液系统大幅晃动动力学及其在航天高技术中的应用. 见:黄文虎,陈滨,王照林主编. 一般力学(动力学、振动与控制)最新进展. 北京:科学出版社,1994
    6 H.N.Moiseev. Introduction to the Theory of Oscillations of Liquid-Contained Bodies. 1964
    7 H.N.Moiseev, V.V.Rumjantsev. Dynamic Stability of Bodies Containing Fluid. Edited by H.N.Abramson. New York: Springer-Verlag, 1968
    8 H.H.莫依舍夫, B.B.鲁面采夫. 充液刚体动力学,韩子鹏译. 北京:宇航出版社,1992
    9 F.T.Dodge. The New “Dynamic Behavior of Liquids in Moving Containers”. Southwest Research Institute, San Antonio, Texas, 2000
    10 王照林,刘延柱. 充液系统动力学. 北京:科学出版社,2002
    11 B.Budiansky. Sloshing of Liquids in Circular Canals and Spherical Tanks. Journal of the Aerospace Sciences. 1960,27(3):161-173
    12 W.H.Chu. Fuel Sloshing in a Spherical Tank Filled to an Arbitrary Depth. AIAA Journal. 1964,2(11):1972-1979
    13 W.A.Mcneill, J.P.Lamb. Fundamental Sloshing Frequency for an Inclined Fluid-Filled Right Circular Cylinder. Journal of Spacecraft and Rockets. 1970,7(8):1001-1002
    14 D.W.Fox, J.R.Kuttler. Sloshing Frequencies. Z. Angew. Math. Phys. 1983,34: 668-696
    15 J.R.Kuttler, V.G.Sigillito. Sloshing of Liquid in Cylindrical Tanks. AIAA Journal. 1984,22(2):309-311
    16 P.Mciver. Sloshing Frequencies for Cylindrical and Spherical Container Filled to an Arbitrary Depth. Journal of Fluid Mechanics. 1989,201:243-257
    17 D.V.Evans, C.M.Linton. Sloshing Frequencies. Q. J. Mech. Appl. Math. 1993, 46(1):71-87
    18 P.Mciver, M.Mciver. Sloshing Frequencies of Longitudinal Modes for a Liquid Contained in a Trough. Journal of Fluid Mechanics. 1993,252:525-541
    19 包 光 伟 . Dewar 瓶 内 液 体 晃 动 的 近 似 计 算 方 法 . 力 学 季 刊 . 2002,23(3):311-314
    20 包光伟. 液体三维晃动特征问题的有限元数值计算方法. 力学季刊. 2003,24(2):185-190
    21 余延生. 一类 Cassini 贮箱液体小幅晃动问题的研究. 哈尔滨工业大学硕士学位论文. 2004
    22 李俊峰,鲁异,宝音贺西,王为. 贮箱内液体小幅晃动的频率和阻尼计算. 工程力学. 2005,22(6):87-90
    23 H.N.Abramson, G.E.Ransleben. Some Comparisons of Sloshing Behavior in Cylindrical Tanks with Flat and Conical Bottoms. ARS Journal. 1961,542-544
    24 M.Aslam, W.G.Godden, D.T.Scalise. Earthquake Sloshing in Annular and Cylindrical Tanks. ASCE, Journal of the Engineering Mechanics Division. 1979,EM3:371-389
    25 H.F.Bauer. Forced Liquid Oscillations in Paraboloid Container. Z. Flugwiss. Weltraumforsch. 1984,8:49-55
    26 B.Hunt. Seismic-Generated Water Waves in Axisymmetric Tanks. ASCE, Journal of the Engineering Mechanics Division. 1987,113(5):653-670
    27 J.S.Meserole, A.Fortini. Slosh Dynamics in a Toroidal Tank. Journal of Spacecraft and Rockets. 1987,24(6):523-531
    28 H.F.Bauer, W.Eidel. Liquid Oscillations in a Prolate Spheroidal Container. Ingenieur-Archiv. 1989,59:371-381
    29 N.Kobayashi, T.Mieda, H.Shibata, Y.Shinozaki. A Study of the Liquid Sloshing Response in Horizontal Cylindrical Tanks. Journal of Pressure Vessel Technology.1989,111:32-38
    30 M.Isaacson, C.S.Ryu. Earthquake-Induced Sloshing in Vertical Container of Arbitrary Section. ASCE, Journal of the Engineering Mechanics Division. 1998,124(2):158-166
    31 S.Dutta, M.K.Laha. Analysis of the Small Amplitude Sloshing of a Liquid in a Rigid Container of Arbitrary Shape Using a Low-Order Boundary Element Method. International Journal for Numerical Methods in Engineering. 2000,47:1633-1648
    32 S.Papaspyrou, D.Valougeorgis, S.A.Karamanos. Refined Solutions of Externally Induced Sloshing in Half-Full Spherical Containers. Journal of Engineering Mechanics. 2003,129(12):1369-1379
    33 S.Papaspyrou, S.A.Karamanos, D.Valougeorgis. Response of Half-Full Horizontal Cylinders under Transverse Excitation. Journal of Fluids and Structures. 2004,19:985-1003
    34 S.Papaspyrou, D.Valougeorgis, S.A.Karamanos. Sloshing Effects in Half-Full Horizontal Cylindrical Vessels under Longitudinal Excitation. Journal of Applied Mechanics. 2004,71:255-265
    35 L.A.Patkas, S.A.Karamanos, M.A.Platyrrachos. Variational Solutions of Liquid Sloshing in Half-Full Horizontal Cylinders. 5PthP GRACM International Congress on Computational Mechanics. 2005
    36 程绪铎. 球柱形贮箱中液体的受迫晃动特性研究. 水动力学研究与进展,A辑. 2001,16(4):472-480
    37 H.N.Abramson, W.H.Chu, G.E.Ransleben. Representation of Fuel Sloshing in Cylindrical Tanks by Equivalent Mechanical Model. ARS Journal. 1961,1697-1705
    38 F.T.Dodge, L.R.Garza. Simulated Low-Gravity Sloshing in Spherical, Ellopsoidal and Cylindrical Tanks. Journal of Spacecraft and Rockets. 1970,7(2):204-206
    39 J.F.Unruh, D.D.Kana. Digital Data Analysis Techniques for Extraction of Slosh. AIAA Paper 85-0813
    40 包光伟. 充液卫星平放式贮箱内液体晃动的等效力学模型. 宇航学报. 1996,17(1):66-69
    41 包光伟. 平放柱形贮箱内液体晃动的等效力学模型. 上海交通大学学报.2003,37(12):1961-1968
    42 H.F.Bauer. Stability Boundaries of Liquid-Propelled Elastic Space Vehicles with Sloshing. Journal of Spacecraft and Rockets. 1966,3(2):240-246
    43 C.Nichkawde, P.M.Harish, N.Ananthkrishnan. Stability Analysis of a Multibody System Model for Coupled Slosh-Vehicle Dynamics. Journal of Sound and Vibration. 2004,275:1069-1083
    44 吴艳. 多挠性流液卫星姿态运动的鲁棒控制器设计. 厦门大学硕士学位论文. 2000
    45 贾英宏. 挠性充液航天器的动力学与控制研究. 哈尔滨工业大学硕士学位论文. 2001
    46 李英波. 挠性充液卫星动力学分析与姿态控制研究. 上海交通大学博士学位论文. 2001
    47 G..X.Wu. Q.W.Ma, R.E.Taylor. Numerical Simulation of Sloshing Waves in a 3D Tank Based on a Finite Element Method. Applied Ocean Research. 1998,20:337-355
    48 M.J.Chern, A.G..L.Borthwick, R.E.Taylor. A Pseudospectral σ -Transformation Model of 2-D Nonlinear Waves. Journal of Fluids and Structures. 1999,13:607-630
    49 M.J.Chern, A.G..L.Borthwick, R.E.Taylor. Simulation of Non-Linear Free Surface Motions in a Cylindrical Domain Using a Chebyshev-Fourier Spectral Collocation Method. International Journal for Numerical Methods in Fluids. 2001,36:465-496
    50 M.S.Turnbull, A.G..L.Borthwick, R.E.Taylor. Numerical Wave Tank Based on a σ -Transformed Finite Element Inviscid Flow Solver. International Journal for Numerical Methods in Fluids. 2003,42:641-663
    51 K.Kashiyama, S.Tanaka, M.Sakuraba. PC Cluster Parallel Finite Element Analysis of Sloshing Problem by Earthquake Using Different Network Environments. Communications in Numerical Methods in Engineering. 2002,18:681-690
    52 S.Aliabadi, A.Johnson, J.Abedi. Comparison of Finite Element and Pendulum Models for Simulations of Sloshing. Computers and Fluids. 2003,32:535-545
    53 J.R.Cho, H.W.Lee. Non-Linear Finite Element Analysis of Large Amplitude Sloshing Flow in Two-Dimensional Tank. International Journal for NumericalMethods in Engineering. 2004,61:514-531
    54 J.R.Cho, H.W.Lee. Numerical Study on Liquid Sloshing in Baffled Tank by Nonlinear Finite Element Method. Comput. Methods Appl. Mech. Engrg. 2004,193:2581-2598
    55 J.R.Cho, H.W.Lee. Finite Element Analysis of Resonant Sloshing Response in 2-D Baffled Tank. Journal of Sound and Vibration. 2005,288:829-845
    56 C.Z.Wang, B.C.Khoo. Finite Element Analysis of Two-Dimensional Nonlinear Sloshing Problems in Random Excitations. 2005,32:107-133
    57 J.H.Kyoung, S.Y.Hong, J.W.Kim, K.J.Bai. Finite-Element Computation of Wave Impact Load Due to a Violent Sloshing. Ocean Engineering. 2005,32:2020-2039
    58 V.Sriram, S.A.Sannasiraj, V.Sundar. Numerical Simulation of 2D Sloshing Waves Due to Horizontal and Vertical Random Excitation. Applied Ocean Research. 2006,28:19-32
    59 J.G..Martin. Application of a Discontinuous Galerkin Finite Element Method to Liquid Sloshing. Journal of Offshore Mechanics and Arctic Engineering. 2006,128:1-10
    60 R.N.Elias, L.G.A.Coutinho. Stabilized Edge-Based Finite Element Simulation of Free-Surface Flows. International Journal for Numerical Methods in Fluids. 2007,54:965-993
    61 赵兰浩,李同春,牛志伟,M.Pastor. LevelSet方法求解三维大幅晃动问题的分步有限元法. 水动力学研究与进展. 2006,21(4):433-438
    62 E.Kita, J.Katsuragawa, N.Kamiya. Application of Trefftz-Type Boundary Element Method to Simulation of Two-Dimensional Sloshing Phenomenon. Engineering Analysis with Boundary Elements. 2004,28:677-683
    63 B.F.Chen, H.W.Chiang. Complete 2D and Fully Nonlinear Analysis of Ideal Fluid in Tanks. Journal of Engineering Mechanics. 1999,125(1):70-78
    64 B.F.Chen, H.W.Chiang. Complete Two-Dimensional Analysis of Sea-Wave-Induced Fully Non-Linear Sloshing Fluid in a Rigid Floating Tank. Ocean Engineering. 2000,27:953-977
    65 Y.Kim. Numerical Simulation of Sloshing Flows with Impact Loads. Applied Ocean Research. 2001,23:53-62
    66 J.B.Frandsen, A.G..L.Borthwick. Simulation of Sloshing Motions in Fixed and Vertically Excited Containers Using a 2-D Inviscid σ -Transformed FiniteDifference Solver. Journal of Fluids and Structures. 2003,18:197-214
    67 J.B.Frandsen. Sloshing Motions in Excited Tanks. Journal of Computational Physics. 2004,196:53-87
    68 B.F.Chen, R.Nokes. Time-Independent Finite Difference Analysis of Fully Non-Linear and Viscous Fluid Sloshing in a Rectangular Tank. Journal of Computational Physics. 2005,209:47-81
    69 V.Armenio, M.L.Rocca. On the Analysis of Sloshing of Water in Rectangular Containers: Numerical Study and Experimental Validation. Ocean Engineering. 1996,23(8):705-739
    70 V.Armenio. An Improved MAC Method (SIMAC) for Unsteady High-Reynolds Free Surface Flows. International Journal for Numerical Methods in Fluids. 1997,24:185-214
    71 M.S.Celebi, H.Akyidiz. Nonlinear Modeling of Liquid Sloshing in a Moving Rectangular Tank. Ocean Engineering. 2002,29:1527-1553
    72 H.Akyidiz, M.S.Celebi. Numerical Computation of Hydrodynamics Loads on Walls of a Rigid Rectangular Tank Due to Large Amplitude Liquid Sloshing. Turkish J. Eng. Env. Sci. 2002,26:429-445
    73 H.Akyidiz, M.S.Celebi. Sloshing in a Three-Dimensional Rectangular Tank: Numerical Simulation and Experimental Validation. Ocean Engineering. 2006,33:2135-2149
    74 D.W.Stefan. Computational Slosh Dynamics: Theory and Industrial Application. Computational Mechanics. 2003.30:374-387
    75 R.Lohner, C.Yang, E.Onate. On The Simulation of Flows with Violent Free Surface Motion. Comput. Methods Appl. Mech. Engrg. 2006,195:5597-5620
    76 D.H.Lee, M.H.Kim, S.H.Kwon, J.W.Kim, Y.B.Lee. A Parametric Sensitivity Study on LNG Tank Sloshing Loads by Numerical Simulations. Ocean Engineering. 2007,34:3-9
    77 A.E.P.Veldman, J.Gerrits, R.Luppes, etc. The Numerical Simulation of Liquid Sloshing on Board Spacecraft. Journal of Computational Physics. 2007,224:82-99
    78 R.Lohner, C.Yang, E.Onate. Simulation of Flows with Violent Free Surface Motion and Moving Objects Using Unstructured Grids. International Journal for Numerical Methods in Fluids. 2007,53:1315-1338
    79 A.S.Iglesias, L.P.Rojas, R.Z.Rodriguez. Simulation of Anti-Roll Tanks and Sloshing Type Problems with Smoothed Particle Hydrodynamics. Ocean Engineering. 2004,31:1169-1192
    80 A.S.Iglesias, L.Delorme, L.P.Rojas, S.A.Perez. Liquid Moment Amplitude Assessment in Sloshing Type Problems with Smooth Particle Hydrodynamics. Ocean Engineering. 2006,33:1462-1484
    81 S.Ushijima. Three-Dimensional Arbitrary Lagrangian-Eulerian Numerical Prediction Method for Non-Linear Free Surface Oscillation. International Journal for Numerical Methods in Fluids. 1998, 26:605-623
    82 岳宝增,李俊峰. 三维液体非线性晃动及其复杂现象.力学学报. 2002,34(6):949-955
    83 岳宝增,彭武. 俯仰激励下液体大幅晃动问题研究. 力学与实践. 2003,26(5):49-52
    84 岳 宝 增 . 俯 仰 激 励 下 三 维 液 体 大 幅 晃 动 问 题 研 究 . 力 学 学 报 . 2005,37(2):199-203
    85 周宏,李俊峰,王天舒. 低重环境航天器贮箱内三维液体晃动数值模拟. 清华大学学报. 2005,45(5):658-661
    86 郑磊,李俊峰,王天舒,岳宝增. 计算液体晃动 ALE 网格速度的高精度方法. 力学与实践. 2007,29(1):14-16
    87 X.T.Zhang, B.C.Khoo, J.Lou. Wave Propagation in a Fully Nonlinear Numerical Wave Tank: A Desingularized Method. Ocean Engineering. 2006,33:2310-2331
    88 M.P.S.Santos, D.M.Greaves. A Mixed Lagrangian-Eulerian Method for Non-linear Free Surface Flows Using Multigrid on Hierarchical Cartesian Grids. Computers and Fluids. 2007,36:914-923
    89 Z.R.Kishev, C.Hu, M.Kashiwagi. Numerical Simulation of Violent Sloshing by a CIP-Based Method. Journal of Marine Science and Technology. 2006,11:111-122
    90 K.Takizawa, K.Tanizawa, T.Yabe, T.E.Tezduyar. Ship Hydrodynamics Computations with the CIP method Based on Adaptive Soroban Grids. International Journal for Numerical Methods in Fluids. 2007,54:1011-1019
    91 陈科,李俊峰,王天舒. 矩形贮箱内液体非线性晃动动力学建模与分析. 力学学报. 2005,37(3):339-345
    92 A.Cariou, G.Casella. Liquid Sloshing in Ship Tanks: A Comparative Study of Numerical Simulation. Marine Structures. 1999,12:183-198
    93 曾江红,王照林. 航天器液体晃动动力学的研究方法概述. 强度与环境. 1997,4:37-43
    94 岳宝增,刘延柱,王照林. 求解液体大幅晃动问题的数值方法评述. 上海交通大学学报. 1999,33(6):760-763
    95 W.G.Penney, A.T.Price. Finite Periodic Stationary Gravity Waves in a Perfect Liquid. Proc.R.Soc.Lond.A. 1952,244:254-284
    96 Tadjbakhsh, J.B.Keller. Standing Surface Waves of Finite Amplitude. Journal of Fluid Mechanics. 1960,8:442-451
    97 G.R.Verma, J.B.Keller. Three-Dimensional Standing Surface Waves of Finite Amplitude. Physics of Fluids. 1962,5(1):52-56
    98 L.W.Schwartz, A.K.Whitney. A Semi-Analytic Solution for Nonlinear Standing Waves in Deep Water. Journal of Fluid Mechanics. 1981,107:147-171
    99 K.Komatsu. Non-Linear Slosh Analysis of Liquid in Tank with Arbitrary Geometries. International Journal of Non-Linear Mechanics. 1987,22(3):193-207
    100 J.C.Luke. A Variational Principle for a Fluid with a Free Surface. Journal of Fluid Mechanics. 1967,27(2):395-397
    101 J.W.Miles. Nonlinear Surface Waves in Closed Basins. Journal of Fluid Mechanics. 1976,75(3):419-448
    102 M.L.Rocca, G.Sciortino, M.A.Boniforti. A Fully Nonlinear Model for Sloshing in a Rotating Container. Fluid Dynamics Research. 2000, 27:23-52
    103 Faltinsen, O.F.Rognebakke, I.A.Lukovsky, A.N.Timokha. Multidimensional Modal Analysis of Nonlinear Sloshing in a Rectangular Tank with Finite Water Depth. Journal of Fluid Mechanics. 2000,407:201-234
    104 I.A.Lukovsky. Modal Modeling of Nonlinear Fluid Sloshing in Tanks with Non-Vertical Walls: Non-Conformal Mapping Technique. International Journal of Fluid Mechanics Research. 2002,29:216-243
    105 I.A.Lukovsky. Variational Method of Solving Dynamic Problems for Fluid-Container Bodies. International Applied Mechanics. 2004,40 (10):1092-1128
    106 L.M.Perko. Large-Amplitude Motions of Liquid-Vapour Interface in an Accelerating Container. Journal of Fluid Mechanics. 1969,35(1):77-96
    107 P.N.Shankar, R.Kidambi. A Modal Method for Finite Amplitude, Nonlinear Sloshing. Journal of Physics. 2002,59(4):631-651
    108 R.E.Hutton. An Investigation of Resonant, Nonlinear, Nonplanar Free Surface Oscillations of a Fluid. NASA TN D-1870,1963
    109 J.R.Ockendon, H.Ockendon. Resonant Surface Waves. Journal of Fluid Mechanics. 1973,59(2):397-413
    110 Faltinsen. A Nonlinear Theory of Sloshing in Rectangular Tanks. Journal of Ship Research. 1974,18(4):224-241
    111 D.D.Waterhouse. Resonant Sloshing Near a Critical Depth. Journal of Fluid Mechanics. 1994,281:313-318
    112 M.Sakata, K.Kimura, M.Utsumi. Non-Stationary Response of Non-Linear Liquid Motion in a Cylindrical Tank Subjected to Random Base Excitation. Journal of Sound and Vibration. 1984,94(3):351-363
    113 T.Ikeda, N.Nakagawa. Non-Linear Vibrations of a Structure Caused by Water Sloshing in a Rectangular Tank. Journal of Sound and Vibration. 1997,201(1):23-41
    114 T.Ikeda. Nonlinear Parametric Vibrations of an Elastic Structure with a Rectangular Liquid Tank. Nonlinear Dynamics. 2003,33:43-70
    115 T.Ikeda, R.A.Ibrahim. Nonlinear Random Responses of a Structure Parametrically Coupled with Liquid Sloshing in a Cylindrical Tank. Journal of Sound and Vibration. 2005,284:75-102
    116 T.Ikeda, S.Murakami. Autoparametric Resonances in a Structure/Fluid Interaction System Carrying a Cylindrical Liquid Tank. Journal of Sound and Vibration. 2005,285:517-546
    117 苟兴宇. 航天工程中的贮箱类液固耦合动力学研究. 哈尔滨工业大学博士学位论文. 1998
    118 马兴瑞,王本利,苟兴宇等. 航天器动力学—若干问题进展及应用. 北京:科学出版社. 2001
    119 尹立中. 航天工程中液体大幅晃动及贮箱类液固耦合动力学研究. 哈尔滨工业大学博士学位论文. 1999
    120 贺元军. 微重下贮箱类液体晃动及耦合动力学研究. 哈尔滨工业大学博士学位论文. 2006
    121 J.W.Miles. Internally Resonant Surface Waves in a Circular Cylinder. Journal of Fluid Mechanics. 1984,149:1-14
    122 J.W.Miles. Resonantly Forced Surface Waves in a Circular Cylinder. Journal ofFluid Mechanics. 1984,149:15-31
    123 M.Funakoshi, S.Inoue. Surface Waves Due to Resonant Horizontal Oscillation. Journal of Fluid Mechanics. 1988,192:219-247
    124 M.Funakoshi, S.Inoue. Bifurcations in Resonantly Forced Water Waves. European Journal of Mechanics B/Fluids. 1991,10:31-36
    125 W.T.Tsai, D.K.P.Yue, K.M.Yip. Resonantly Excited Regular and Chaotic Motions in a Rectangular Wave Tank. Journal of Fluid Mechanics. 1990,216:343-380
    126 L.Shemer. On the Directly Generated Resonant Standing Waves in a Rectangular Tank. Journal of Fluid Mechanics. 1990,217:143-165
    127 D.Hill. Transient and Steady-State Amplitudes of Forced Waves in Rectangular Tanks. Physics of Fluids. 2003,15:1576-1587
    128 D.Hill, J.B.Frandsen. Transient Evolution of Weakly Nonlinear Sloshing Waves: an Analytical and Numerical Comparison. Journal of Engineering Mathematics. 2005,53:187-198
    129 I.A.Lukovsky, I.A.Barnyak, M.Ya, etc. Approximate Methods of Solving the Problems of the Dynamics of a Limited Volume. Kiev: Nekoosa Dumaka,1984:232 (in Russian)
    130 Faltinsen, A.N.Timolha. An Adaptive Multimodal Approach to Nonlinear Sloshing in a Rectangular Tank. Journal of Fluid Mechanics. 2001,432:167-200
    131 Faltinsen, A.N.Timolha. Asymptotic Modal Approximation of Nonlinear Resonant Sloshing in a Rectangular Tank with Small Fluid Depth. Journal of Fluid Mechanics. 2002,470:319-357
    132 Faltinsen, O.F.Rognebakke, A.N.Timolha. Resonant Three Dimensional Nonlinear Sloshing in a Square-Base Basin. Journal of Fluid Mechanics. 2003,487:1-42
    133 Faltinsen, O.F.Rognebakke, A.N.Timolha. Classification of Three Dimensional Nonlinear Sloshing in a Square-Base Tank with Finite Depth. Journal of Fluids and Structures. 2005,20:81-103
    134 Faltinsen, O.F.Rognebakke, A.N.Timolha. Resonant Three Dimensional Nonlinear Sloshing in a Square-Base Basin. Part2. Effect of Higher Modes. Journal of Fluid Mechanics. 2005,523:199-218
    135 Faltinsen, O.F.Rognebakke, A.N.Timolha. Resonant Three DimensionalNonlinear Sloshing in a Square-Base Basin. Part3. Base Ratio Perturbations. Journal of Fluid Mechanics. 2006,551:93-116
    136 Faltinsen, O.F.Rognebakke, A.N.Timolha. Transient and Steady State Amplitudes of Resonant Three-Dimensional Sloshing in a Square Base Tank with a Finite Fluid Depth. Physics of Fluids. 2006,18:1-14
    137 I.P.Gavriklyuk, I.A.Lukovsky, A.N.Timokha. A Multimodal Approach to Nonlinear Sloshing in a Circular Cylindrical Tank. Hybrid Methods in Engineering. 2000,2(4):463-483
    138 I.P.Gavriklyuk, I.A.Lukovsky, A.N.Timokha. Linear and Nonlinear Sloshing in a Circular Conical Tank. Fluid Dynamics Research. 2005,37:399-429
    139 V.A.Kakinichenko, A.V.Kravtsov, R.R.Mijangos, etc. Harmonic Instability of the Free Surface of a Low-Viscosity Liquid in a Vertically Oscillating Vessel. J. Appl. Maths. Mechs. 2000,64(2):275-282.
    140 M.Amabili, M.P.Paidoussis. Review of Studies on Geometrically Nonlinear Vibrations and Dynamics of Circular Cylindrical Shells and Panels, with and without Fluid-Structure Interaction. Appl. Mech. Rev. 2003,56(4):349-381
    141 J.R.Cho, S.Y.Lee. Dynamic Analysis of Baffled Fuel-Storage Tanks Using the ALE Finite Element Method. Int. J. Numer. Meth. Fluids. 2003,41:185-208
    142 K.C.Biswal, S.K.Bhattacharyya, P.K.Sinha. Dynamic Response Analysis of a Liquid-Filled Cylindrical Tank with Annular Baffle. Journal of Sound and Vibration. 2004,274:13-37
    143 H.F.Bauer, M.Chiba. Axisymmetric Oscillation of a Viscous Liquid Covered by an Elastic Structure. Journal of Sound and Vibration. 2005,281:835-847
    144 J.S.Schotte, R.Ohayon. Incompressible Hydroelastic Vibrations Finite Element Modeling of the Elastogravity Operator. Computers and Structures. 2005,83:209-219
    145 J.C.Virella, L.A.Godoy, L.E.Suarez. Fundamental Modes of Tank-Liquid Systems under Horizontal Motions. Engineering Structures. 2006,28:1450-1461
    146 W.S.Wall, S.Genkinger, E.Ramm. A Strong Coupling Partitioned Approach for Fluid–Structure Interaction with Free Surfaces. Computers and Fluids. 2007,36:169-183
    147 C.H.Wu, H.Yuan. Efficient Non-Hydrostatic Modeling of Surface Waves Interacting with Structures. Applied Mathematical Modeling. 2007,31:687-699
    148 李铁成,王照林,李俊峰,岳宝增. 刚-流-弹耦合系统动力方程及其动力边界条件的建立. 应用力学学报. 1998,15(2):127-131
    149 程绪铎,王照林. 带弹性隔板的矩形贮箱中流弹耦合振动问题. 力学与实践. 1999,21:50-52
    150 汤晓昀,包光伟. 柔性贮箱内液体晃动的分析模型. 上海交通大学学报. 2004,38(8):1412-1416
    151 V.N.Pilipchuk, R.A.Ibrahim. The Dynamics of a Nonlinear System Simulating Liquid Sloshing Impact in Moving Structures. Journal of Sound and Vibration. 1997,205(5):593-615
    152 M.A.Sayad, S.N.Hanna, R.A.Ibrahim. Parametric Excitation of Nonlinear Elastic Systems Involving Hydrodynamic Sloshing Impact. Nonlinear Dynamics. 1999,18:25-50
    153 R.A.Ibrahim, M.A.Sayad. Simultaneous Parametric and Internal Resonances in Systems Involving Strong Nonlinearities. Journal of Sound and Vibration. 1999,225(5):857-885
    154 J.B.Frandsen. Numerical Predictions of Tuned Liquid Tank Structural Systems. Journal of Fluids and Structures. 2005,20:309-329
    155 岳宝增,刘延柱,王照林. TLD-结构非线性耦合问题及其动力学特性研究. 振动与冲击. 2000,19(4):1-4
    156 熊俊明. 可控调谐液体阻尼器系统对高层建筑地震反应控制的研究. 华南理工大学博士学位论文. 2001
    157 M.Utsumi. Low-Gravity Propellant Slosh Analysis Using Spherical Coordinates. Journal of Fluids and Structures. 1998,12:57-83
    158 M.Utsumi. Development of Mechanical Models for Propellant Sloshing in Teardrop Tanks. Journal of Spacecraft and Rockets. 2000,37(5):597-603
    159 M.Utsumi. A Mechanical Models for Low-Gravity Sloshing in an Axisymmetric Tank. Journal of Applied Mechanics. 2004,71:724-730
    160 H.A.Synder. Sloshing in Microgravity. Cryogenics. 1999,39:1047-1055
    161 H.A.Synder. Effect of Sloshing on the Mechanics of Dewar Systems in Low-Gravity. Cryogenics. 2002,41:825-832
    162 P.N.Shankar. A Simple Method for Studying Low-Gravity Sloshing Frequencies. Proc. R. Soc. Lond. A. 2003,459:3109-3130
    163 王照林. 充液系统动力学与航天高技术问题. 力学进展.1988,18(3):301-308
    164 程绪铎,王照林. 微重时矩形容器内静液面形状迭代法数值分析. 工程力学. 1999,16(6):93-96
    165 R.J.Hung, Y.L.Long, Y.M.Chi. Slosh Dynamics Coupled with Spacecraft Attitude Dynamics Part 1: Formulation and Theory. Journal of Spacecraft and Rockets. 1996,33(4):575-581
    166 R.J.Hung, Y.L.Long, Y.M.Chi. Slosh Dynamics Coupled with Spacecraft Attitude Dynamics Part 2: Orbital Environment Application. Journal of Spacecraft and Rockets. 1996,33(4):582-593
    167 H.F.Bauer, W.Eidel. Axisymmetric Damped Natural Frequencies in a Slowly Spinning Cylindrical Container Filled with Viscous Liquid. Forschung im Ingenieurwsen. 2002,67:93-99
    168 J.Gerrits, A.E.P.Veldman. Dynamic of Liquid-Filled Spacecraft. Journal of Engineering Mathematics. 2003,45:21-38
    169 J.Y.Kang, J.E.Cochran. Stability Criteria of Slosh Motion with Periodicity in a Spinning Spacecraft. Journal of Guidance, Control and Dynamics. 2005,28(3):562-567
    170 李磊,任业军,蔡斌,王照林. 旋转充液系统全飞行过程非线性动力学仿真. 宇航学报. 2002,23(4):4-11
    171 D.M.Henderson, J.W.Miles. Surface-Wave Damping in a Circular Cylinder with a Fixed Contact Line. Journal of Fluid Mechanics. 1994,275:285-299
    172 C.Martel, J.A.Nicolas, J.M.Vega. Surface-Wave Damping in a Brimful Circular Cylinder. Journal of Fluid Mechanics. 1998,360:213-228
    173 王为,李俊峰,王天舒. 航天器贮箱内液体晃动阻尼研究(一):理论分析. 宇航学报. 2005,26(6):687-692
    174 王为,李俊峰,王天舒. 航天器贮箱内液体晃动阻尼研究(二):数值计算. 宇航学报. 2006,27(2):177-180
    175 杨蔓,李俊峰,王天舒,王为. 带环形隔板的圆柱储箱内液体晃动阻尼分析. 力学学报. 2006,38(5):660-667
    176 夏益霖. 液体推进剂贮箱的防晃设计. 导弹与航天运载技术. 1995,6:29-38
    177 H.F.Bauer, W.Eidel. Free and Forced Oscillations of Frictionless Liquid in a Long Rectangular Tank with Structural Obstructions at the Liquid Free Surface. Archive of Applied Mechanics. 2000,70:550-560
    178 J.G.Anderson, O.F.Turan, S.E.Semercigil. Experiments to Control Sloshing inCylindrical Containers. Journal of Sound and Vibration. 2001,240(2):398-404
    179 S.I.Hoi. Design and Analysis of Fuel Tank Baffles to Reduce the Noise Generated from Fuel Sloshing. Ph.D. thesis, University of Toronto, the Canada. 2003
    180 J.R.Admire. Nonlinear Fluid Oscillations in a Partially Filled Axisymmetric Container of General Shape. NASA TN D-5808, 1970
    181 H.N.Abramson, W.H.Chu, D.D.Kana. Some Studies of Nonlinear Lateral Sloshing in Rigid Containers. Journal of Applied Mechanics. 1966:777-784
    182 T.Sawada, Y.Ohira, H.Houda. Sloshing Behavior of a Magnetic Fluid in a Cylindrical Container. Experiments in Fluids. 2002,32:197-203
    183 L.D.Peterson, E.F.Crawley, R.J.Hansman. Nonlinear Fluid Slosh Coupled to the Dynamics of a Spacecraft. AIAA Journal. 1989,27(9):1230-1240

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700