自相似业务网络仿真与性能评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
网络业务自相似性的发现对网络业务建模、性能评价和网络控制技术的研究产生了重要影响。传统的网络模型在描述实际网络业务时,认为网络通信量具有Markov性,并在此基础上建立了以Poisson过程为主的数学描述模型,这种模型具有短程相关结构。大量实际测量发现网络通信量具有普遍的自相似性(或长程相关性)。长程相关性在多个时间尺度上存在,并且在大时间尺度上对网络时延、抖动、丢包率以及吞吐量等网络性能具有重大的影响。传统的网络业务模型忽略了自相似的重要特性,不能真实地刻画实际的网络业务。
     本文深入研究自相似业务网络仿真和性能评价问题。论文首先介绍自相似的常见定义,描述自相似过程在数学和物理上的若干特征;研究网络自相似业务的建模与流量数据生成方法,并对这些业务模型的性能进行了分析;通过仿真实验研究了自相似特性对网络性能的影响。
     论文在归纳总结自相似基本概念的基础上,研究了常见自相似业务模型如ON/OFF、FGN、FBM、FARIMA等的实现过程,并分析了基于这些模型所产生的自相似流量序列的准确性。研究结果表明ON/OFF模型生成的序列接近期望值,但序列的Hurst系数是不稳定的,随序列长度改变而改变。相比其它模型,FGN模型产生的业务序列比较稳定和准确。FARIMA模型具有长短交织的相关函数结构,与实际中的大部分流量的分形相关函数结构吻合,是目前为止较为理想的一种算法。
     论文接着对网络性能评价的相关模型、指标进行了讨论,重点分析了FBM、FARIMA模型的排队性能。然后对本论文使用的仿真模型和实验数据来源进行了讨论,通过仿真实验对自相似网络排队性能进行了分析总结。
     在网络性能分析中排队性能是一个重要的指标。本文采用自相似业务模型产生的不同数据来驱动OPNET的G/M/1模型进行仿真,讨论了影响排队时延、队长和包丢失概率的因素。研究结果表明发包间隔时间的分布特征决定了排队性能,ON/OFF模型的排队性能与ON/OFF的Pareto分布有直接关系,自相似序列比短相关序列有更大的排队时延和丢包率,而且变化也更剧烈。方差对排队性能指标有重要影响。
The discovery of the self-similar characteristic of network traffic has great influence on network traffic modeling, performance evaluation and network control. Traditional Poisson-based models of network traffic are based on the hypothesis of Markov which has the nature of short-range dependence (SRD). Recent traffic analysis from various packet networks shows that network traffic processes exhibit ubiquitous properties of self-similarity and long range dependence (LRD), i.e. of correlation over a wide range of time scales. LRD exists on multiple time scales and has great influences on network performances such as delay, jitter, cell loss rate and throughput on the large time scale. The traditional Poisson-based models neglect the important characteristic of self-similariy. They can not capture the actual characteristic of network traffic accurately.
     In this thesis, the author studies the problems of network simulation and performance evaluation of self-similar traffic with depth. Firstly, several mathematical definitions of self-similarity are given. Some mathematical and physical features describing the self-similar processes are described. The methods of modeling and generation of the self-similar traffic are researched and discussed. The performance of these models is analyzed. The influence of network performance on self-similariy is studied through simulation.
     Based on the conclusion of the concepts of self-similarity, the implementation of the self-similar models, such as ON/OFF, Fractional Gaussian Noise (FGN), Fractional Brownian Motion (FBM), Fractional Auto-Regressive Integrated Moving Average (FARIMA), are introduced. The precision of self-similarity traffic series generated by these models is analyzed. The relults reveal that although the Hurst coefficient of traffic series generated by ON/OFF model is close to the expected value, its Hurst coefficient does not remain stable and changes according to the length of the series. Compared to other models, FGN model is more precise and stable. FARIMA model is consisting with both long and short range dependent structure and suit to the actual fractional structure. So it is much better than other models
     Secondly, relative models, parameters and indexes of network performance evaluation are analyzed. The author focuses on the queuing performance of FBM and FARIMA. The simulation model and the source of simulation are discussed. The performance of self-similar traffic is analyzed and summed up through extensive simulation.
     Queuing performance is a key index of network performances analysis. In this thesis, based on the OPNET simulation which is driven by the traces generated with self-similar traffic model described above, the performances and its influence factors of G/M/1 queuing model are analyzed. The author focuses on the study of influence factors on network performances, such as queuing delay, queue length and cell loss rate. The research results demonstrate that the queuing performance is determined by the distribution of packet interval time. The queuing performance of ON/OFF traffic model is related to Pareto distribution of ON or OFF period. Self-similar traffic results in much worse queuing performance than short range dependence traffic, and the variation of the performance of self-similar traffic is more violent. Variance of the self-similar traffic has a great affect on the queuing performance.
引文
[1] Mandelbrot B.B. The Fractal geometry of nature. W.H. Freeman and co 1982,17-18, San Francisco
    
    [2] D.P.Heyman, A.Tabatabai and T.V.Lakshman. Statistical analysis and simulation study of video teleconference traffic in ATM networks. IEEE Trans. On Circuits and System for Video Technology, 1992, Vol.2, No.1, 49-59
    [3] D.Duffy, A.Mclntosh, M.Rosenstein and D.Wilson. Statistical Analysis of CCSN/SS7 Traffic Data from Working CCS Subnetworks. IEEE JSAC, vol.12, no.3, 1994, 544-551
    [4] W.E.Leland, M.S.Taqqu, W.Willinger and D.V.Wilson. On the Self-Similar Nature of Ethernet Traffic(Extended Version). IEEE/ACM Trans. On Networking, Feb, 1994, 2(1), 1-15
    [5] W.Willinger, M.Taqqu, R.Sherman and D.Wilson. Self-similarity Through High Variability : Statistical Analysis of Ethernet LAN Traffic at the Source Level. SIGCOMM95, Cambridge, MA, August 1995, 100-113
    [6] V.Paxson., et al., Wide-area traffic: The failure of Poisson modeling, In:Proceedings of the ACM Sigcomm'94, London, UK, 1994:257-268
    [7] S.Klivansky and A.Mukherjee, On Long-range Dependence in Nsfnet Traffic,GIT, Tech. Rep. GIT-CC-94-61, 1994 [10] C.Partridge, The end of simple traffic models.IEEE Network, September 1993.Editor's Note
    [8] D.E.Duffy , A. A.Mclntosh, M.Rosenstein and W.Willinger, Statistical analysis of CCSN/SS7 traffic data from working CCs subnetworks, IEEE Journal on Selected Areas in Communications 12: 544-551, 1994
    [9] Addie R, et al, Fractal traffic: measurements,modeling and performance evaluation [A ]. Proc of IN FOCOM ' 95[C]. 1995:977- 984.
    [10] C.R.Cunha and M.Crovella, "Characteristics of WWW Client-based Traces'.University of Boston, Tech.Rep. BU-CS-95-010,1995
    
    [11] Crovella M.E., et al. Self-similarity in World Wide Web traffic: evidence and possible causes, IEEE/ACM Transactions on Networking, 1997,5(6):835-846
    
    [12] Rao Yunhua; Xu Zhongyang; Lei Xu; Performance analysis of queue system with self-similar traffic input.Communication Technology Proceedings, 2003. ICCT 2003. International Conference on Volume 2, 9-11 April 2003:1437 -1439 vol.2
    
    [13] Kim, Y.G.; Min, P.S.; On the prediction of average queueing delay with self-similar traffic.Global Telecommunications Conference, 2003. GLOBECOM '03. IEEE,Volume 5, 2003:2987 - 2991 vol.5
    [14] Guoqiang Mao; Finite timescale range of interest for self-similar traffic measurements, modelling and performance analysis.Networks, 2003. ICON2003. The 11th IEEE International Conference on 28 Sept.-1 Oct. 2003:7 - 12
    [15] W.Lau, et al., Self-similar traffic generation: The Random Midpoint Displacement algorithm and its properties, In: Proceedings of the ICC'95, Seattle.WA, 1995,466-472
    [16] M.Garrett, et al., Analysis, modeling and generation of Self-Similar VBR Video Traffic, In: Poceedings of SIGCOMM'94, London, 1994,269-280
    [17] B.Ryu, et al., Realtime Generation of Fractal ATM Traffic: Model, Algrithom, and Implementaion, http://www.ctr.columbia.edu/~ryu
    [18] R.Alexander, Modeling Self-similar Network Traffic, Preprint, University of Auckland, 1995
    [19] K. Park and Willinger (Eds.), Self-Similar Network Traffic and Performance Evaluation,John Wiley & Sons,New York(NK),2000
    [20] W. Willinger, N. S. Taqqu, and A. Erramilli, A Bibliographical Guide to Self-Similar Traffic and Performance Modeling for Modern High-Speed Networks, Stochastic Networks: Theory and Applications. Clarendon Press, Oxford, 1996:339-366
    [21] S.I.Samoylenko, Application of heuristic problem-solving methods in computer communication networks, Mach. Intell., vol. 3, no. 4,1985:197-210.
    [22] A.Erramilli et al., Chaotic Maps as Models of Packet Traffic, ITC'14,329-338,1994.
    
    [23] M.S.Taqqu, et al., Is Network Traffic Self-similaror Multifractal?, Fractals(5), pp.63-73
    [24] N.Likhanov et al., Analysis of an ATM Buffer with Self-similar("Fractal") Input Traffic, Proc. IEEE INFOCOM'95, USA, pp.985-992,1995
    [25] B.Tsybakov and N.D.Georganas, On the Self-similar Traffic in ATM Queues:Definitions, Overflow Probabolity Bound and Cell Delay Distribution, to appear in IEEE/ACM Tran. On Networking
    [26] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson. On the self-similar nature of Ethernet traffic (extended version). IEEE/ACM Transactions on Networking, 1994, 2:1-15.
    [27] B.B. Mandelbrot. The variation of certain speculative price. J. of Business, 1963, 36: 394-419.
    [28] W. Willinger, V. Paxson. Discussion of heavy tail modeling and teletraffic data. The Annuals of Statistics 1998, 25: 1856-1866.
    [29] V.Ramaswami, Traffic Performance Modleing for Packet Communications:Whence Where and Whether, Proc. Of 3rd Australian Teletraffic Seminar,Australia, 1998
    [30] J.Beran, et al. Long-range dependence in Variable Bit Rate Video Traffic, IEEE Transactions on Communications 43(2/3/4): 1566-1579 ,1995
    [31] C.M Harris, RH.Brill et al. Internet-type queues with power-tailed interarrival times and computational methods for their analysis. INFORMS Journal on Computing, 2000(12),261-271
    [32] J.F.Shore, RH.Brill et al. An algorithm to compute the waiting time distribution for the M/G/1 Queue. Conditionally accepted and resubmitted to INFORMS Journal on Computing, 2002
    [33] Nagarajan, K. Zhou, GT. Self-similar traffic sources: modeling and real-time resource allocation.[J] IEEE on Statistical Signal Processing. 2001,ll(8),74-77
    [34] Jung-Shian Li , Adam Wolisz , Radu Popescu-Zeletin, Modelling and simulation of fractional ARIMA processes based on importance sampling, Proceedings of the 1998 ACM symposium on Applied Computing, p.453-455, February 27-March 01, 1998, Atlanta, Georgia, United States
    [35] D.R.Cox. Long-range dependence: a review. In Statistics: An Appraisal, H.A.David and H.T.David, Eds.Ames,IA:Iowa State Univ.Press,1984,55-74
    [36] Raatikainen and W.Willinger. Network traffic and performance evaluation. JOHN WILEY & SONS INC, U.S.A, 2000
    [37] Marl E.Crovella, A.Bestavros. Self-Similarity in World Wide Web traffic evidence and possible Causes [A]. Proc. of the 1996 ACM SIGMETRICS Intl. Conference on Measurement and Modeling of Computer Systems[C], Philadelphia, PA, 1996-05
    [38] Alexander R, Brownlee N, Ziedins I. Modeling self-similar network traffic. University of Auckland,1995.
    [39] Likhanov N, Tsyboko B, Georganas N D. Analysis of an ATM buffer with self-similar (Fractal) input traffic. In: INFCOM95,1995.
    [40] Mandelbrot B.B., Van Ness. Fractional Brownian motion, fractional gaussian noise and application[J]. SLAM Review,1968, 10(10):422-437..
    [41] Wing-Cheng Lau, Ashok Erramilli. Self-similar Traffic Generation: the Random Midpoint Displacement Algorithm and Its Properties, [J], IEEE, 1995,466-472
    [42] Ganger C W, Joyenn R. An introduction to long-memory time series models and fractional differencing [J] Time Series Anal, 1980, (1) 15-29
    [43] Hosking J R M. Fractional Differencing. Biometrika, 1981, (68) 165-176
    [44] Huang C C, Devestikiotis M, Lambadaris I, Kaye A R. Modeling and simulation of self-similar variable bit rate-compressed video: a unified approach. ACM Computer Communication Review, 1995(4), 114-125
    [45] Wornell G W. A Karhun-Loeve-like expansion for 1/f process. [J]. IEEE Trans IT, 1990,36(4), 859-861.
    [46] Wornell G W. Wavelet-based representations for the 1/f family of fractal process. [J].Proc IEEE, 1993,81(10), 1428-1450.
    [47] Wornell G, W, Oppenheim A V. Estimation of fractal signals from noisey measurements using wavelets. [J] IEEE Trans SP, 1992, 40(3), 611-623.
    [48] Droz P, Boudec JL. A high speed self- similar ATM VBR traffic generator. In: INFOCOM' 96
    [49] M.S Taqqu. and J.B Levy., Using renewal processes to generate long rangedependence and high variability, Dependence in Probability and Statistics,E.Eberlin and M.S. Taqqu, eds, Boston, MA: Birkhauser, 1986: 73-89
    [50] Wang L X. Adaptive fuzzy systems and control-design and stability analysis. New Jersey: Prentice-Hal, 1994.
    [51] H.Akaike Time series analysis and control through parametric models, Applied time series analysis. New Year: academic press, 1978.
    [52] Feldmann A, Gibert.A, Willinger.W. Data networks a saccades: investigating the multifractal nature of internet WAN traffic.[J] ACM Review, 1998,28(9), 42-55.
    [53] Wing-Cheng Lau, Ashok Erramilli. Self-similar Traffic Generation: the Random Midpoint Displacement Algorithm and Its Properties, [J], IEEE, 1995,466-472
    [54] D.Patrick, B.Jean-Yves A high-speed self-similar ATM VBR traffic Generator. IEEE 1996, 5(3), 585-610;
    [55] K.Nagarajan, G.T.zhou. A new resource allocation scheme for Gaussian traffic source. ProcICASSPP, 2000, 2609-2612.
    [56] Nagarajan, K. Zhou, GT. Self-similar traffic sources: modeling and real-time resource allocation.[J] IEEE on Statistical Signal Processing. 2001,11(8), 74-77
    [57] Huang C C, et al. Fast simulation for self-similar in ATM networks. ICC95,1995,18-22
    
    [58] J.Hastett . Space-time modeling with long-memory dependence: Assessing Irelands wind power resource. Applied Statistics, 1989, 38(1), 1-50.
    [59] Paxson V. Fast, approximate shnthesis of fractional Gaussian noise for self-similar network traffic [J]. Computer Communication Review, 1997,27(5):5-18.
    [60] Wang L X. Adaptive fuzzy systems and control-design and stability analysis. New Jersey: Prentice-Hall, 1994.
    [61] 吴泽民,俞正德,郑少仁.一种经验型的自相似流生成方法[J].西安交通大学学报,2001年8月,第35卷第8期,80-87
    [62] Feldmann A, Gibert.A, Willinger.W. Data networks a scacadesL: investigating the multifractal nature of internet WAN traffic. [J] ACM Review, 1998,28(9), 42-55.
    [63] Purdue University, Boston University, 1996, NS
    [64] P.Brockwell, R.Dvis. Time series models for intemet traffic. IEEE INFOCON96, san Francisco, USA, 1996.
    [65] Ge, A.Callegati, F. Tamil, L.S.On optical burst switching and self-similar traffic. IEEE Trans on Communications Letters, 2000. 4(3), 98 100
    [66] Ming Hu. Junshan Zhang. Rate adaptation for bursty data transmission in CDMA networks. IEEE Trans on Signals, Systems and Computers, 2001, 2,1718-1722
    [67] Sowden,B.C.; Sowerby, K.W. The impact of long-range dependent traffic in a CDMA system supporting real-time services. Global Telecommunications Conference, 2001. GLOBECOM '01. IEEE, 2001, 6, 3509-3513
    [68] Mori, K. Hidaka, H. Kobayashi, T. Self-similarities in transmission delay of CDMA cellular packet systems for varying transmission power control error. Communications, 2002. ICC 2002. IEEE International Conference, 2002, 5, 3217, 3221
    [69] M.Parulekar, A.M.Makowski. Buffer Overflow Probabilities for a Multiplexer with Self-Similar Traffic. Technical research report, 1995.
    [70] M. Parulekar, A. Makowski. Tail probabilities for a multiplexer with self-similar traffic. In Proc. IEEE INFOCOM '96: 1452-1459.
    [71] M. Parulekar and A. Makowski. Tail probabilities for a multiplexer driven by M/G/∞ input processes: preliminary asymptotics. Queueing Systems, 1997, Vol.27:271-296.
    [72] M.L.Molle, A New Binary Logarithmic Arbitration Method in Ethernet. Technical Report CSRI-298, Computer System Research Institute, University of Totonto, 1994.
    [73] ATM White Paper, http://www.anixter.com/solution/network/
    [74] Thomas G. Robertazzi, Computer Networks and Systems: Queueing Theory and Performance Evaluation(3rd ed.), Springer-Verlag, 2000.
    [75] 谭献海,黎燕敏,高兴,金炜东。影响自相似网络性能的关键因素研究.已投计算机学报
    [76] W.Hays, M.L. Molle, Solving Capture in Switched Two-Node Etherner By Changing Only One Node. Proceeding of the 20th Conference on Local Computer Networks, Oct, 1995, 387-395.
    [77] A. Erramilli, O. Narayan, and W. Willinger. Experimental queueing analysis with long-range dependent packet traffic. IEEE Trans. Networking, 1996, 4(2): 209-223
    [78] I. Norros. A storage model with self-similar input. Queueing Systems, 1994, 16:387-396
    [79] 张连芳.自相似网络业务的建模分析与性能评价研究[D].博士学位论文,天津大学,1998.
    [80] 宁正容.网络自相似业务产生的研究[D].硕士学位论文,电子科技大学,2003.
    [81] 蔡弘,陈惠民,李衍达.自相似业务模型通信网络突发业务建模的新方法.通信学报,1997,Vol.18,No.11,51-59
    [82] 林青家,陈涤,刘允才.网络流量长相关特性的估值算法的性能分析[J].山东大学学报,2005,40(1):86-89
    [83] 李永利,刘贵忠等,自相似数据流的Hurst指数小波求解法分析[J].电子与信息学报,2003,25(1):100-106.
    [84] 张鹏,廖建新,程时端.自相似业务量的多重分形分析[J].电子学报,2000,28(1):96-98.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700