基于GMPLS的多层多域智能光网络若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着互联网技术的飞速发展,宽带数据业务迅猛增长,光传送网向着大规模、高可靠、智能化的方向演进。广义多协议标签交换(GMPLS)技术可促使光网络实现多种业务粒度的灵活交换,分层分域的架构增强了光网络的规模可扩展性。在光网络向智能化演进的过程中,这些技术需要协作与融合,使光网络在控制与管理方面具有优化的资源配置与灵活调度机制、快速可靠准确的选路算法和建路信令以及健壮的生存性等特征。因此,如何合理有效地利用网络资源,构建高可靠的健壮型光网络一直是相关研究的难点和热点,对未来光网络技术的研究与发展都具有重要意义。
     论文针对大规模多层多域光网络的需求及面临的技术难点,同时结合所参与的863目标导向课题而展开。论文基于GMPLS技术,对波长交换光网络中路由、资源分配及生存性问题和弹性光网络中频谱分配策略与资源重构等技术问题进行了研究,提出了若干技术方案并进行了分析与验证。论文的主要创新工作如下:
     第一,针对传统的路由加分布式波长分配(R+DWA)方案容易产生波长资源预留冲突的问题,提出了一种基于路径计算单元(PCE)的策略可动态加载的资源备份预留机制。该方案利用PCE集中计算的功能,并结合首次命中和随机命中两种资源分配策略的优势为路径选择主、备用波长。为了避免备用波长占用大量的网络资源,该方案根据路径跳数和可用波长数来设置动态门限阈值,进而决定是否采用备份预留策略。仿真结果表明该方案可有效地抑制全网分布式后向资源预留冲突,降低全网阻塞率,在网络负载为160Erlang且门限阈值为5时,全网阻塞率仅为3.05%。
     第二,在弹性光网络中,考虑到频隙资源占用率和连续性对不同带宽业务的不同影响,提出了一种基于业务分类的频隙资源分配及选路算法,该算法为不同业务设置差异化的链路权重并结合最短路径优先算法来选路。仿真结果表明,该算法有利于降低大粒度业务的呼叫阻塞,进而降低全网阻塞率。与传统的乘性权重方案、加性权重方案或仅考虑跳数的选路方案相比,在网络重负载情况下该方案可使全网阻塞率降低1%-3%。
     第三,为了解决弹性光网络在高负载时全网阻塞率过高的问题,提出了一种基于业务流量监控的弹性调制方案。在网络业务量到达特定阈值的时候,在保证服务质量(QoS)的前提下采用高阶调制方式进行频带压缩从而实现带宽调度。仿真结果表明,通过设置恰当的流量监控阈值,该方案利于达到QoS和网络阻塞率指标之间的平衡,能有效降低高负荷下网络的阻塞率。
     第四,针对弹性光网络在动态建拆路过程中因频谱资源碎片而导致资源利用率低的问题,提出了一种基于频谱可用度的资源重构方案,根据链路频谱可用度来决定是否对频谱进行搬移重构进而减少频隙资源碎片。仿真结果表明,在网络重负载下,与传统的非重构方案相比,该方案通过频谱资源的重构可使全网阻塞率降低1.7%。
     第五,针对大规模光网络中跨层跨域的选路和建路难题,作为项目核心成员,参与提出并设计了基于双路由引擎的网络体系架构(即DREAM)及该架构下的前向选路算法和层次化反向回溯选路算法,作者进一步提出了大规模网络下分布式资源分配“死锁”问题的解决方案,并共同搭建了网络实验平台对上述架构、机制和算法进行了测试。实测结果表明,高负载情况下,当域内业务比例为30%时,上述两种路由方案的平均建路时延比传统分级路由方案减少约437-548ms,其阻塞率降低约1%-3%。
     此外,针对多域的大规模光网络生存性问题,提出了一种多域光网络生存性评估机制,对控制平面相关协议进行了扩展以测量网络故障各个子恢复阶段的时间,进而描述多域场景下光网络生存性指标。基于该成果形成的国际标准建议文稿已更新至第二稿,生存期已达一年以上。
With the fast development of Internet and the rapid growth of broadband data service, the optical transport network is experiencing a revolution towards a new network with larger scale, higher reliability and more intelligence. GMPLS technology has enabled the multi-granularity switching and multi-domain/multi-layer architecture has strengthened the network scalability. In the network revolution, it is necessary to cooperate and integrate several technologies to have the optimal mechanism of resource allocation and flexible scheduling, fast, reliable and precise route computation and path establishment signaling, and robust survivability for the network control and management. Therefore, it is a hot research point that how to utilize the network resource effectively to build high reliable optical network, which will not only play an important practical role, but also be of great significance.
     Focus on the new requirements and technology difficulty of the multi-layer and multi-domain optical network, the research work of this dissertation is based on the national863project named DREAMSCAPE. This dissertation mainly focuses on the research fields such as routing and resource assignment, network survivability, spectrum assignment and resource defragmentation based on the GMPLS technology. The main work and innovative ideas of this dissertation are summarized as follows:
     Firstly, as the traditional routing and distributed wavelength assignment (R+DWA) scheme is easy to cause the wavelength resource reservation confliction, a PCE-based dynamic resource backup reservation scheme has been proposed in this dissertation. This scheme makes use of the central calculation superiority of PCE and the advantages of both the first fit and random fit algorithms to reserve wavelength resource for the lightpath. In order to reduce the network resource occupation of the backup wavelength, a dynamic threshold is defined according to the hops of the path and the number of available wavelengths to decide whether to reserve a backup wavelength. Simulation results show that the proposed scheme achieves lower blocking probability. When the traffic load reaches160Erlang and threshold is set to5, the blocking probability is only3.05%.
     Secondly, considering the different impacts on the service with different bandwidth and continuity in SLICE, a service-classifying-based routing and spectrum assignment scheme is proposed that computes the route by setting different weights for different services with OSPF. Simulation results show that the scheme can allocate the bandwidth resource reasonably and archives lower total blocking probability. Compared with multiplicative weight scheme, additive weight scheme and the scheme only considering hop number, the blocking probability reduces1%-3%under heavy traffic load.
     Thirdly, a service flow monitoring-based elastic modulation scheme is proposed in order to solve the high blocking probability problem in heavy traffic load. When service flow reaches the certain threshold, the higher order modulation is adopted to compress the service bandwidth on condition that the Quality of Service is guaranteed. Simulation results show that the proposed scheme not only achieves the balance between QoS and blocking probability but also improves the network performance obviously by setting a proper threshold.
     Fourthly, a spectrum availability-based resource defragmentation scheme is proposed in allusion to that path is established and teared down frequently that leads to lower resource utilization rate and whether the spectrum is moved or not depends on the link availability. Simulation results show that compared with the unallocated scheme the blocking probability of the allocated scheme reduces1.7%under the circumstance of heavy traffic load in the whole network.
     Fifthly, considering the difficulty of path computation and establishment in a large scale network, a Dual Routing Engine architecture combining ASON, GMPLS and PCE is proposed. In the DREAM architecture, two routing algorithms DRE-FPC and HDRE-BRPC are proposed and tested, both of which have combined the advantages of centralization and distribution. The author also proposes the scheme to solve the distributed resource assignment confliction problem in large scale network and constructs the experimental platform, on which the architecture, mechanisms and algorithms aformentioned are tested.The test results show that the two algorithms perform better than traditional way in the aspect of resource utilization rate, establishment delay and blocking probability. The results show that the average establishment delay of two routing schemes reduces about437-538ms and the blocking probability reduces about1%-3%comparing with HR scheme.
     In addition, a survivability evaluation mechanism in multi-domain optical network is proposed which extends relevant protocols of control plane to measure different restoration time in order to describe the network survivability performance. Based on the achievement above, an international standard draft has been proposed and updated to the second version, of which the life time is more than one year.
引文
[1]李健,邓宇,刘海玉,张沛.ASON网络互联.人民邮电出版社.2008年7月.
    [2]刘国辉.光传送网原理与技术.北京邮电大学出版社,2004年10月.
    [3]李健.下一代光网络关键控制技术研究.[学位论文],北京邮电大学,2007.
    [4]Yang Wanchun, Zhong Jinshun, Zhang Jie, et al. Channel Statistical Multiplexing in SDH/SONET Networks. IEEE Proceeding on communications,2005, vol.152 (3), pp.447-451.
    [5]Shinya Ishida. A Study on Flexible, Reliable, and Scalable Wavelength-Routed Optical Networks. Department of Information Networking Graduate School of Information Science and Technology, February 2007.
    [6]Lubo Tancevski. Intelligent Next Generation WDM Optical Networks, Information Science, vol.149,2003, pp.211-217.
    [7]张海懿.下一代光传送网发展新趋势及标准化新进展,通信世界,No.31,2007,pp.2-3.
    [8]M. Jinno, H. Takara, B. Tsukishima, et. al. Spectrum-efficient and Scalable Elastic Optical Path Network:Architecture, Benefits, and Enabling Technologies. Commun. Mag., vol.47 (11),2009, pp.66-73.
    [9]Yang Wang, Xiaojun Cao, Yi Pan. A Study of the Routing and Spectrum Allocation in Spectrum-sliced Elastic Optical Path Networks. INFOCOM, April 2011, pp.1503-1511.
    [10]R.C. Alferness. The All-Optical Networks. Communication Technology Proceedings, vol.1, 2000, pp.14-15.
    [11]Min Zhang, Yongli Zhao, Yuefeng Ji, et al, DREAMSCAPE:A Dual-Routing-Engine-Enabled Multi-Domain Multi-Layer Optical Network Platform. ACP, December 2010, pp. 256-257.
    [12]Bernstein G, Young Lee. Extending GMPLS/PCE for Use in Wavelength Switched Optical Networks. OFC, March 2008, pp.1-3.
    [13]Jiuyu Xie, Min Zhang, Lifang Zhang, et al. A PCE/GMPLS-based Collision-avoiding Wavelength Assignment Scheme for WSONs. ACP, December 2010, pp.27-28.
    [14]Jiuyu Xie, Min Zhang, Lifang Zhang, et al. A Scheme of Wavelength Assignment for PCE/GMPLS-based Wavelength-Switched Optical Networks. IC-BNMT, October 2010, pp. 372-375.
    [15]Hui Ding, Min Zhang, Lei wang, et al. Dynamic Routing and Frequency Slot Allocation in Elastic Optical Path Network Using Adaptive Modulations with Consideration of both Spectrum Availability and Distance. ACP, October 2011, pp.1-3.
    [16]A.N. Patel, P.N. Ji, J.P. Jue, et al. Defragmentation of Transparent Flexible Opticl WDM (FWDM) Networks. OFC, March 2011, pp.1-3.
    [17]Xiaosong Yu, Jie Zhang, Yongli Zhao. Spectrum Compactness based Defragmentation in Flexible Bandwidth Optical Networks. OFC, March 2012.
    [18]Frisken S., Baxter G., Abakoumov D., et al. Flexible and Grid-less Wavelength Selective Switch using LCOS Technology. OFC, March 2011, pp.1-3.
    [19]Xi Yang, T. Lehman, C. Tracy, et.al. Policy-Based Resource Management and Service Provisioning in GMPLS Networks. INFOCOM, April 2006, pp.1-12.
    [20]I. W. Habib, Qiang Song, Zhaoming Li. Deployment of the GMPLS Control Plane for Grid Applications in Experimental High-Performance Networks. Communication Magazine. March 2006, vol.44 (3), pp.65-73.
    [21]Xi Yang, Lu Shen, A. Todimala, et al. An Efficient Scheduling Scheme for On-Demand Lightpath Reservations in Reconfigurable WDM Optical Networks. OFC, March 2006, pp. 1-3.
    [22]Q. Liu, C. Xie, T. Frangieh, et al. Inter-Domain Routing Scalability in Optical DWDM Networks. ICCCN,2008, pp.1-7.
    [23]Ghani, N, Qing Liu, D. Benhaddou, et al. Control Plane Design in Multi-domain/Multi-layer Optical Networks. Communications Magazine, June 2008, vol.46 (6), pp.78-87.
    [24]Q. Liu, N. Ghani, N.S.V. Rao, et al. Multi-Domain Multi-Granularity Service Provisioning in Hybrid DWDM/SONET Networks. High-Speed Networks Workshop, May 2007, pp.26-30.
    [25]N.S.V. Rao, W.R. Wing, Qishi Wu, et al. Measurements On Hybrid Dedicated Bandwidth Connections. High-Speed Networks Workshop. May 2007, pp.44-45.
    [26]T. Lehman, Xi Yang, C.P. Guok, et al. Control Plane Architecture and Design Considerationsfor Multi-Service, Multi-Layer, Multi-Domain Hybrid Networks. High-SpeedNetworks Workshop. May 2007, pp.67-71.
    [27]Q. Liu, C. Xie, T. Frangieh, et.al. Routing Scalability in Multi-Domain DWDM Networks. Photonic Network Communications, vol.17 (1), February 2009, pp.63-74.
    [28]S. Azodolmolky, Y. Pointurier, M. Angelou, et al. An Offline Impairment Aware RWA Algorithm with Dedicated Path Protection Consideration. OFC, March 2009, pp.1-3.
    [29]T. Zami, A. Morea, F. Leplingard, et.al. The Relevant Impact of the Physical Parameters Uncertainties When Dimensioning An Optical Core Transparent Network. ECOC, September 2008, pp.1-2.
    [30]Y. Lee, G. Bernstein, and D. Li. Alternative Approaches to Traffic Engineering Database Creation and Maintenance for Path Computation Elements. draft-lee-pce-ted-alternatives-01, February 2009.
    [31]J.Y. Xie, M. Zhang, L.F. Zhang, et al. A PCE-based Collision-avoiding Wavelength Assignment Scheme for WSONs. ACP, December 2010, pp.27-28.
    [32]Jiuyu Xie, Min Zhang, Lifang Zhang, et al. A Scheme of Wavelength Assignment for PCE-based Wavelength-Switched Optical Networks. IC-BNMT, October 2010, pp.1-3.
    [33]ITU-T G.8081/Y.1353. Terms and definitions for Automatically Switched Optical Networks (ASON). December 2011.
    [34]ITU-T G.7716/Y1707. Architecture and Requirements of Link Resource Management for Automatically Wwitched Transport Networks. September 2007.
    [35]ITU-T G.7715/Y1706. Architecture and Requirements for Routing in the Automatically Switched Optical Networks. June 2002.
    [36]ITU-T G.7718/Y.1709. Framework for ASON management. February 2005.
    [37]A. Farrel, A. Ayyangar, JP. Vasseur. Inter-Domain MPLS and GMPLS Traffic Engineering-Resource Reservation Protocol-Traffic Engineering (RSVP-TE) Extensions. RFC 5151. February 2008.
    [38]JL. Le Roux, D. Papadimitriou. Evaluation of Existing GMPLS Protocols against Multi-Layer and Multi-Region Networks (MLN/MRN). RFC 5339. September 2008.
    [39]E. Oki, T. Takeda, JL. Le Roux. Framework for PCE-Based Inter-Layer MPLS and GMPLS Traffic Engineering. RFC 5623. September 2009.
    [40]D. Papadimitriou. OSPFv2 Routing Protocols Extensions for Automatically Switched Optical Network (ASON) Routing. RFC 5787. March 2010.
    [41]D. Papadimitriou, L.Ong, J. Sadler, et al. Evaluation of Existing Routing Protocols against Automatic Switched Optical Network (ASON) Routing Requirements. RFC 4652. October 2006.
    [42]Fatai Zhang, D. Ceccarelli. RSVP-TE Signaling Extensions in Support of Flexible Grid. IETF draft-zhang-ccamp-flexible-grid-rsvp-te-ext-01.txt, March 2012.
    [43]Fatai Zhang, Ramon Casellas. Requirements for GMPLS Control of Flexible Grids. IETF draft-zhang-ccamp-flexible-grid-requirements-01, Ocotober 2011.
    [44]Fatai Zhang, Ramon Casellas. GMPLS OSPF-TE Extensions in Support of Flexible Grid in DWDM Networks. IETF draft-zhang-ccamp-flexible-grid-ospf-ext-01.txt. March 2012.
    [45]L. Wang, GY. Zhang. OSPF Extentions for Routing Constraint Encoding in Flexible-Grid Networks. IETF draft-wangl-ccamp-ospf-ext-constraint-flexi-grid-01.txt, March 2012.
    [46]N. Amaya, I. Muhammad. Experimental Demonstration of a Gridless Multi-granular Optical Network Supporting Flexible Spectrum Switching. OFC 2011.
    [47]Roman Dischler, Fred Buchali and Axel Klekamp. Demonstration of Bit Rate Variable ROADM Functionality on An Optical OFDM Superchannel. OFC 2011.
    [48]J.-K. Rhee. Variable Passband Optical Add-Drop Multiplexer Using Wavelength Selective Switch. ECOC 2011.
    [49]Sterling Perrin, The Need for Next Generation ROADM Networks, white paper,2010.
    [50]A. Ayyangar, K. Kompella, JP. Vasseur. Label Switched Path Switching with Generalized Multiprotocol Label Switching Traffic Engineering (GMPLS-TE). RFC 5150. February 2008.
    [51]D. Li, D. McDysan. Requirements for the Conversion between Permanent Connections and Switched Connections in a Generalized Multiprotocol Label Switching (GMPLS) Network. RFC 5493. April 2009.
    [52]L. Berger, A. Takacs, D. Caviglia. GMPLS Asymmetric Bandwidth Bidirectional Label Switched Paths (LSPs). RFC 5467. March 2009.
    [53]OIF-Jim Jones. Control Plane Security. March 2012.
    [54]OIF-E-NNI 2.0 Recovery Amendment. May 2011.
    [55]OIF-E-NNI 2.0 Multilayer Amendment. September 2011.
    [1]Lifang Zhang, Min Zhang, Jiuyu Xie, et al.. A PCE-based dynamic backup-reservation wavelength assignment scheme for wSONs. Photonic Network Communications, April 2012, vol. (23),pp.191-197.
    [2]Lifang Zhang, Min Zhang, Shengwei Meng, et al. A backup-reservation-based dynamic wavelength assignment scheme for WSONs. IEEE IPOC 2011.
    [3]Xiaowen Chu, Bo Li, Zhensheng Zhang. A dynamic RWA algorithm in a wavelength-routed all-optical network with wavelength converters. INFOCOM, vol.3, March 2003, pp. 1795-1804.
    [4]Farrel A., J.-P. Vasseur, J. Ash. A Path Computation Element (PCE)-based Architecture. RFC4655. August 2006.
    [5]Y. Lee, G. Bernstein, Jonas Martensson, et al. PCEP Requirements for WSON Routing and Wavelength Assignment. IETF draft-ietf-pce-wson-routing-wavelength-07.txt, April 2012.
    [6]Yongli Zhao, Jie Zhang, Yuefeng Ji, et al. Routing and Wavelength Assignment Problem in PCE-based Wavelength-switched Optical Networks. JOCN, vol.2(4),2010, pp.196-205.
    [7]谢久雨,基于PCE的多层多域智能光网络关键技术研究.[学位论文],北京邮电大学,2011.
    [8]Giorgetti, F. Paolucci, Cugini F., et al. Routing and Wavelength Assignment in PCE-based Wavelength Switched Optical Networks. ECOC, September 2008, pp.1-2.
    [9]Kejie Lu, Gwoxi Xiao, Chlamtac I. Blocking Analysis of Dynamic Lightpath Establishment in Wavelength-routed Networks.ICC, vol.5,2002, pp.2912-2916.
    [10]Sridharan A., Sivarajan K.N.. Blocking in all-optical networks. Transactions on Networking. vol.12(2),2004, pp.384-394.
    [11]Satyanarayana and R. Rahman. Extensions to GMPLS Resource Reservation Protocol (RSVP) Graceful Restart. RFC5063, October 2007.
    [12]Birman. Computing Approximate Blocking Probability for a Class of All-optical Networks. IEEE J. Select. Areas Commun., vol.5(14),1996, pp.852-857.
    [13]Lei Wang, Jie Zhang, Guanjun Gao, et al. A Collision-aware Wavelength Assignment Scheme for GMPLS-based WDM networks. Communications Letters, vol.12(8),2008, pp.593-595.
    [14]Gaoxi Xiao, Chlamtac Ⅰ. Analysis of Blocking Probability for Distributed Lightpath Establishment in WDM Optical Networks. Transactions on Networking, vol.13(1),2005, pp.187-197.
    [15]Pointurier Y, Brandt-Pearce M, Subramaniam S. Analysis of Blocking Probability in Noise and Crosstalk Impaired All-optical Networks. IEEE INFOCOM, May 2007, pp.2486-2490.
    [16]G. Bernstein and Y. Lee. Extending GMPLS/PCE for use in Wavelength Switched Optical Networks. OFC, February 2008, pp.1-3.
    [17]JP. Vasseur, JL. Le Roux. Path Computation Element (PCE) Communication Protocol (PCEP). RFC 5440, March 2009.
    [18]Jiuyu Xie, Min Zhang, Lifang Zhang, et al. A PCE/GMPLS-based Collision-avoiding Wavelength Assignment Scheme for WSONs. ACP, December 2010, pp.27-28.
    [19]Ashwin Sridharan and Kumar N. Sivarajan. Blocking in All-optical Networks. Transactions on Networking, vol.12(2),2004, pp.384-397.
    [20]Jiuyu Xie, Min Zhang, Lifang Zhang, et al. A Scheme of Wavelength Assignment for PCE/GMPLS-based Wavelength-Switched Optical Networks. IC-BNMT,October 2010, pp. 372-375.
    [21]Joan Triay. An Ant-based Algorithm for Distributed Routing and Wavelength Assignment in Dynamic Optical Networks. Journal on Selected Areas in Communications, vol.28(4),2010, pp.542-552.
    [1]Lifang Zhang, Min Zhang, Jiuyu Xie, et al. A classified service-based in Routing and Spectrum Allocation Scheme in Spectrum-sliced Elastic Optical Path Networks. Photonic Network Communications.
    [2]Lifang Zhang, Min Zhang, Jiuyu Xie, et al. A service flow monitoring-based elastic modulation schemesified in Spectrum-sliced Elastic Optical Path Networks. IET Communications.
    [3]张民,张力方,陈雪,张娟,谢久雨.频谱资源重构方法.(12113889.3)
    [4]Kozicki B., Takara H., Watanabe A., et al. Distance-Adaptive Spectrum Resource Allocation in Spectrum-Sliced Elastic Optical Path Network. OECC, July 2010, pp.98-99.
    [5]陈章渊,李巨浩,杨川川.光正交频分复用技术及其应用(3).中兴通讯技术.2011,17(6):56-61.
    [6]Munoz, R., Casellas, R., Martinez R., et al. Dynamic Distributed Spectrum Allocation in GMPLS controlled Elastic Optical Networks. ECOC, Sept.2011, pp,1-3.
    [7]M. Jinno, H. Takara, and B. Kozichi. Dynamic optical mesh networks:drivers, challenges, and solutions for the future. ECOC,2009, pp.1-5.
    [8]M. Jinno, H. Takara, B. Kozichi, et al. Spectrum efficient and scalable elastic optical path network:Architecture, benefits, and enabling technologies. Communications Magazine, vol. 47(11),2009, pp.66-73.
    [9]Yang Wang, Xiaojun Cao, Qian Hu. Routing and Spectrum Allocation in Spectrum-sliced Elastic Optical Path Networks. IEEE ICC 2011, pp.1-5.
    [10]Gangxiang Shen, Qi yang. From Coarse Grid to Mini-Grid to Gridless:How Much can Gridless Help Contentionless? OFC 2011, pp.1-3.
    [11]Xin Wan, Lei Wang, Nan Hua, et al. Dynamic Routing and Spectrum Assignment in Flexible Optical Path Networks. OFC 2011, pp.1-3.
    [12]M. Jinno, Bartlomiej Kozicki, et al. Distance-Adaptive Spectrum Resource Allocation in Spectrum-Sliced Elastic Optical Path Network. IEEE Communication Magazine, vol.48(8), 2010, pp.138-145.
    [13]Yang Wang, Xiaojun Cao, Yi Pan. A Study of the Routing and Spectrum Allocation in Spectrum-sliced Elastic Optical Path Networks. INFOCOM, April 2011, pp.1503-1511.
    [14]Hui Ding, Min Zhang, et al. Dynamic Routing and Frequency Slot Allocation in Elastic Optical Path Network Using Adaptive Modulations with Consideration of both Spectrum Availability and Distance. ACP 2012, pp.1-3.
    [15]Ankitkumar N. Patel, Jue J. P., et. al. Defragmentation of Transparent Flexible Optical WDM (FWDM) Networks. OFC 2011, pp.1-3.
    [16]Ke Wen, Yawei Yin, Geisler D. J., et al. Dynamic On-demand Lightpath Provisioning Using Spectral Defragmentation in Flexible Bandwidth Networks. ECOC 2011, pp.1-3.
    [1]谢久雨,基于PCE的多层多域智能光网络关键技术研究。[学位论文],北京邮电大学,2011。
    [2]李金金,多层多域光网络基于PCE的体系结构与路由优化算法。[学位论文],北京邮电大学,2011。
    [3]Yuefeng Ji, Jie Zhang, Yongli Zhao, et al. DREAMSCAPE:Dual Routing Engine Architecture in Multi-layer/multi-domain Scalable Constraint-Aware Policy-Enabled optical networks. OECC 2009, pp.1-2.
    [4]Min Zhang, Yongli Zhao, Yuefeng Ji, et al. DREAMSCAPE:A Dual-Routing-Engine-Enabled Multi-Domain Multi-Layer Optical Network Platform. ACP 2010, pp.256-257.
    [5]JP. Vasseur, JL. Le Roux. A Backward-Recursive PCE-Based Computation (BRPC) Procedure to Compute Shortest Constrained Inter-Domain Traffic Engineering Label Switched Paths. IETF RFC5441, April 2009.
    [6]J. Moy. OSPF Version 2. IETF RFC2328, April 1998.
    [7]R. Coltun. The OSPF Opaque LSA Option. IETF RFC2370, July 1998.
    [8]D. Katz. Traffic Engineering (TE) Extensions to OSPF Version 2. IETF RFC3630, September 2003.
    [9]Min Zhang, Hui Ding, Yongli Zhao, et al. Performance Metric of Convergence Time of Information Flooding in Multi-Domain GMPLS Networks. IETF draft-zhangm-metric-00, 2010.
    [1]Min Zhang, Lifang Zhang, Yuefeng Ji, et al. Network Survivability Evaluation Metrics in Multi-domain Generalized MPLS Networks. IETF draft-zhangm-ccamp-reroute-01.txt, November 2010.
    [2]http://www.ptsn.net.自动交换光网络的保护与恢复.龙月祥,广东电信研究院.2009.8.
    [3]Mannie, E. and D. Papadimitriou. Recovery (Protection and Restoration) Terminology for Generalized Multi-Protocol Label Switching (GMPLS). RFC 4427, March 2006.
    [4]Anna UrrA. Multi-layer Network Survivability:Routing Schemes For GMPLS-Based Networks. July 2006.
    [5]J. Lang. Link Management Protocol (LMP). RFC 4204, October 2005.
    [6]D. Gan, T. Li. RSVP-TE Extension to RSVP for LSP Tunnels. RFC 3209, December 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700