移动Ad Hoc网络自适应路由算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会信息化进程的不断加快,无线移动通信网络已经成为人们生产生活中不可替代的重要组成部分,其相关技术研究的不断深入和发展促使人类朝着“信息化世界和数字化地球”的目标大踏步前行。作为无线移动通信网络的重要分支,移动Ad Hoc网络无需依赖预先架设的基础设施以及能够快速组网和灵活开展等优点,使得其具有良好的环境适应性和结构健壮性,可以被广泛的应用到战场部署、临时会议召开、野外科考、矿区作业以及灾后救援等有着特殊需求的通信环境中。然而,正是这些极具优势和应用潜力的特点却为移动Ad Hoc网络相关技术的研究带来了新的问题和挑战。除了需要面对与传统无线移动网络一样带宽资源和供电能力受限、无线链路连接脆弱、安全性较低以及传输质量无法保证等问题以外,拓扑结构的频繁变化、业务分组的多跳转发以及缺少中心控制机构的调度协调等固有本质也极大的制约了移动Ad Hoc网络的发展。
     没有中心控制机构以及拓扑结构频繁变化的特征使得路由问题成为移动Ad Hoc网络最具特色也最难解决的技术环节之一。前者意味着需要采用多跳转发的形式实现业务传输,而后者则意味着路由上的每一条链路都是不稳定、不可靠的。因此,如何在复杂多变的环境下通过多跳方式建立端到端的路径便成为路由技术需要面对的重要问题。作为开展最早、所得成果最为丰富的研究领域,路由算法的设计仍然还有很多有待解决的问题。本课题的研究内容将主要针对移动Ad Hoc网络路由算法对网络环境适应性的不足,从节点邻域状态的更新维护、网络业务集中时的传输均衡以及链路失效后的本地修复三个方面展开,通过环路反馈控制算法和最优搜索理论算法建立环境变量与路由因素间的映射关系,使得路由算法能够根据网络环境的动态变化及时做出反应并进行调整,从而提高业务分组在网络中的传输效率和网络整体的服务质量。
     首先,围绕移动Ad Hoc网络路由技术,分别从节点邻域状态的维护问题、网络业务集中的均衡问题以及链路失效的修复问题三个方面入手,对问题产生的原因及其对网络性能产生的影响进行了阐述和分析。总结了目前针对上述问题从不用角度提出的具有代表性的解决方案,深入研究了这些方案所取得的成果及仍有待解决的问题。对面向动态环境的典型路由算法设计思想进行剖析,分析并给出移动Ad Hoc网络路由问题的本质以及网络环境与路由算法设计间的关系,并据此确定文本的研究思想路线。
     其次,研究了移动Ad Hoc网络路由技术中节点对邻域状态的维护与更新问题。分析了动态网络环境中采用固定更新周期进行邻域状态维护将产生大量的控制开销从而影响网络性能的本质。基于节点链路连接的变化情况,设计了本地拓扑振荡度,用于衡量其邻域网络环境的稳定程度。采用环路控制理论构造了状态更新周期的控制模型,并据此建立了本地拓扑振荡度与状态更新周期间的映射关系。结合本地拓扑振荡度及所得控制模型,提出了由HELLO分组自适应广播、邻居超时值自适应调整以及反应式HELLO信息重调度三种机制构成的邻域状态自适应更新算法,以保证状态更新周期能够根据网络环境的需要而进行动态设置和调整,从而实现降低网络控制开销并提高业务分组传输效率的研究目的。
     再次,研究了移动Ad Hoc网络中当业务集中在某些链路或节点处时分组传输的路径均衡问题。分析了在拓扑结构动态性较弱的网络环境中,由于采用反应式路由协议而较长时间利用某些路径进行业务传输对网络生存期及业务分组传输效率产生的影响。基于节点缓存业务转发后剩余功率的情况,设计了业务负载度的度量用于衡量节点业务的繁忙程度,并据此提出了一种包括主动均衡和被动均衡两种机制的自适应业务均衡路由算法,以实现节点根据自身业务负载度的不同而分别采用业务路径转移和放弃转发的方式实现业务均衡传输的目标。此外,针对均衡过程中可能出现的个别节点为了保存自身能量而拒绝转发其它节点的业务分组从而导致均衡受阻的现象,提出了一种自适应业务均衡公平性辅助算法,旨在快速、准确的检测出自私节点并迫使其参与到均衡过程中,以实现提高业务均衡效果并延长网络生存期的目标。
     最后,研究了移动Ad Hoc网络由于节点相对运动或无线环境变化所引起的链路失效的修复问题。分析了传统的本地修复方式采用全网泛洪所产生的大量控制开销对业务传输时延及分组成功交付率等方面产生的影响。基于最优搜索理论建立了链路失效时本地节点对下一跳节点的搜索模型并构造相应的状态方程,从而将最优搜索的数学问题转化为链路失效时本地节点对当前链路的修复问题。根据业务分组接收功率的情况,设计了路由质量检测方法用以缓解传统方式在链路失效后才发起修复过程对业务传输效率产生的影响,并建立网络环境与路由修复间的映射关系。结合路由质量检测结果和最优搜索模型的射线解,提出了控制修复信息传输范围的本地路由自适应修复算法,以较小代价和较高概率实现业务传输路径的修复。此外,针对最优搜索方程扩展后可能引起解的不唯一性,提出了路由修复后的优化算法,用以确保修复路径在稳定的前提下最短。
With the accelerating of social informationization, wireless mobile communication networks have become an irreplaceable component of daily life, and the development of relative researches has promoted the process towards“information world and the digital earth”. As an important branch, the strong points of infrastructureless, rapid networking and flexible to carry out of mobile Ad Hoc network make it adaptable and survivable, and it can meet special needs such as battlefield deployment and disaster relief. It is these advantages, however, that brings new challenges for mobile Ad Hoc network research. Besides the bandwidth and energy limit, weak wireless connection and so on, mobile Ad Hoc network has to meet more than topology frequent changes, multihop forwarding and lack of central scheduling, which restrict the development greatly.
     The characteristics of centerless control and topology frequent changes, make routing problem one of the most important technical keys. The former means multihop style needs to be adopted, and the latter indicates each link of the route is unstable and unreliable. As a field that carried out earliest and achieved most, routing design has many issues to be addressed. This dissertation will mainly focus on the deficiency of network adaptability from routing algorithm of mobile Ad Hoc network, and carry out from node neighborhood state update, transmission balancing and local repair after link invalidation to make the routing algorithm be able to react with dynamic environment through setting up mapping relationship between environment variables and routing factors by the loop control algorithm and optimal exploration theory, so as to improve traffic transmission efficiency and service quality.
     Firstly, this dissertation will analyze and expatiate on the causes and impacts of the neighborhood maintenance, the traffic balancing and the link repair around routing technology in mobile Ad Hoc network. With an introduction on representative solutions from different points of view, the achievements and problems remained will go into details. The design of dynamic environment-oriented typical routing algorithms has been taken apart, and the essence of routing issues as well as relationship between network environment and algorithms devising will be presented, based on which the ideological line of this dissertation will be mapped out.
     Secondly, the neighborhood state maintenance and update problems in routing issues will be addressed. The impacts of fixed updating cycle in neighborhood state maintenance will be analyzed. Local topology flapping measurement will be devised to judge the stability of neighborhood state. The control model of state updating cycle and its relationship with LTFM will be established based on loop control theory. The neighborhood state self-adaptive updating algorithm will be proposed to ensure that the updating cycle will be set and adjusted dynamically according to network environment so as to reduce the control overhead and improve traffic transmitting efficiency.
     Moreover, the issue of transmission balancing when the traffic concentrates on some links or nodes will be studied. Impacts of long time usage about some certain paths according to reactive routing protocol on the network life time and transmission efficiency will be analyzed in detail. The traffic load measurement will be devised to judge the busy degree. The self-adaptive traffic balancing routing algorithm will be proposed to make nodes balance the transmission according to the value of load measurement. Besides, considering some individual nodes may refuse to forward to save energy in balancing process, a self-adaptive traffic balancing fairness auxiliary algorithm will be proposed to detect the selfish nodes quickly and exactly to compel them to join in balancing process in order to prolong the network life time.
     Finally, the local link repair problem caused by relative motion or environment changing will be presented. The exploring model and corresponding state functions from the local node to the next hop will be established by the optimal exploration theory, so as to convert the optimal exploration problem into the local repair one. A route quality inspection approach based on traffic packets received power will be adopted to alleviate the delay cause by repair process initialed after the link invalid and establish the relationship between network and route repair. Combining route inspection result and radial solution from the optimal exploring model, a local link self-adaptive repair algorithm will be proposed by restricting the flooding region to repair the route with less cost and higher probability. Furthermore, an optimizing algorithm will be supplemented to solve the problem of more than one solution obtained so as to ensure the shortest route with stability.
引文
[1] Manuel C, Mireia F A, Qiu J L, et al. Mobile Communication and Society[M]. Massachusetts: MIT Press, 2006: 3-17.
    [2] Manuel C. End of Millennium-The information age: Economy, Society, and Culture[M]. 2nd Edition. UK: Wiley-Blackwell, 2010: 26-36.
    [3] Suho J, Seung M H, Suh S H. A conceptual framework for computer-aided ubiquitous system engineering: architecture and prototype[J]. International Journal of Computer Integrated Manufacturing, 2009, 22(7): 671-685.
    [4] Lee S K, Kim K. Mobile agent based framework for mobile ubiquitous application development[J]. Telecommunication Systems, 2011: 1-10
    [5] Savo G G. Advanced Wireless Communications and Internet: Future Evolving Technologies[M]. 3rd Edition. UK: Wiley, 2011: 5-16.
    [6] Wikipedia. Guglielmo Marconi[EB/OL]. [2011-03-24]. http://en.wikipedia.org /wiki/Guglielmo_Marconi.
    [7] Singal T L. Wireless Communications[M]. New Delhi: McGraw Hill, 2010: 1-12.
    [8] Ramjee P, Albena M. New Horizons in Mobile and Wireless Communications[M]. UK: Artech House, 2009: 4-14.
    [9] Wikipedia. Advanced Mobile Phone System[EB/OL]. (2011-03-05) [2011-03-26]. http://en.wikipedia.org/wiki/Advanced_Mobile_Phone_System.
    [10] Andrea G S. Wireless Communications[M]. New York: Cambridge University Press, 2005: 1-15.
    [11]中华人民共和国工业与信息化部. 2011年1月份通信业运行状况[R/OL] (2011-03-01) [2011-04-24]. http://www.miit.gov.cn/n11293472/n11293832 /n11294132/n12858447/13610452.html
    [12] Du K L, Swamy M N S. Wireless Communication Systems: From RF Subsystems to 4G Enabling Technologies[M]. New York: Cambridge University Press, 2010: 21-29.
    [13]鲁士文.发展中的通信网络新技术[M].北京:清华大学出版社, 2008: 202-210.
    [14] Talukder A K, Ahmed H, Yavagal R R. Mobile Computing: Technology, Applications and Service Creation[M]. Delhi: Tata McGraw Hill, 2010: 251-256.
    [15] Hsu C H, Feng K T. A Dynamically Self-organized Clustering Protocol for Mobile Ad Hoc Networks[J]//Sfakis K. 4G Mobile & Wireless Communications Technologies. Denmark: River Publishers ApS, 2008: 61-74.
    [16] Misra S, Woungang I, Misra S C. Guide to Wireless Ad Hoc Networks[M]. London: Springer, 2009: 21-26.
    [17]陈林星,曾曦,曹毅.移动Ad Hoc网络:自组织分组无线网络技术[M].北京:电子工业出版社, 2006: 13-17.
    [18] Mohapatra P, Krishnamurthy S. Ad Hoc Networks: Technologies and Protocols[M]. New York: Springer Science and Business Media, 2005: 1-5.
    [19] Xu Z, Sun L, Zhai W Y, et al. Wireless Ad-hoc Network Model for Video Transmission in the Tunnel of Mine[J]. Journal of Networks, 2011, 6(1): 129-136.
    [20] Wang Z J, Bulut E, Szymanski B K, et al. An Energy Efficient Dynamic Location Server Hierarchy for Mobile Ad Hoc Networks[C]. International Technology Alliance. London: ITU, 2010: 1-4.
    [21] Liang J C, Chen J C, Zhang T. An adaptive low-overhead resource discovery protocol for mobile ad hoc network[J]. Wireless Networks, 2011, 17(2): 437-452.
    [22] Chai K T, Le A N, Cho Y Z, et al. Load Balanced Routing Protocols for Ad Hoc Mobile Wireless Networks[J]. Communication Magazine, 2009, 47(8): 2-8.
    [23] Boukerche A. Algorithms and protocols for wireless and mobile ad hoc networks[M]. New Jersey: John Wiley & Sons, 2009: 219-233.
    [24]郑少仁,王海涛,赵志峰等. Ad Hoc网络技术[M].北京:人民邮电出版社, 2004: 4-5, 203-229.
    [25] Xing F, Wang W Y. On the Survivability of Wireless Ad Hoc Networks with Node Misbehaviors and Failures[J]. IEEE Transactions on Dependable and Secure Computing, 2010, 7(3): 284-299.
    [26] Lima M, Dos S A, Pujolle G. A Survey of survivability in mobile ad hoc networks[J]. IEEE Communications Surveys & Tutorials, 2009, 11(1): 66-77.
    [27]于宏毅.无线移动自组织网[M].北京:人民邮电出版社, 2005: 13-14.
    [28] Jubin J, Tornow J D. The DARPA packet radio network protocols[C]. Proceedings of the IEEE, USA: IEEE Press, 1987, 75(1): 21-32.
    [29] DARPA. DARPA continues Progress on Technologies for Ad-Hoc Networking, Cognitive Radio[EB/OL]. (2010-9-24)[2011-04-23]. .
    [30] Wikipedia. SURAN[EB/OL]. (2010-12-4)[2011-04-24]. http://en.wikipedia.org/ wiki/SURAN.
    [31] William C F, Frederick J B. The Low-Cost Packet Radio[C]. Proceedings of the IEEE, USA: IEEE Press, 1987, 75(1): 33-42.
    [32] Mikko J S. GloMo[EB/OL]. (2002-10-17)[2011-04-24]. http://users.tkk.fi/ msarela/texts/cs/military/node11.html.
    [33] Garcia-Luna-Aceves J J, Fullmer C L, Madrua E, et al. Wireless internet gateways (WINGs)[C]. MILCOM, CA: IEEE Press, 1997, 3: 1271-1276.
    [34] Agrwal P, Hyden E, Krazyzanowski P, et al. SWAN: a mobile multimedia wireless network[J]. Personal Communications, 1996, 3(2): 18-33.
    [35] Australian Research Council. Evolution of Ad Hoc Networks: The early Influence of Military Applications[EB/OL]. (2002-10)[2011-04-26]. http://www.acorn. net.au/telecoms/adhocnetworks/adhocnetworks.cfm
    [36] Naval Studies Board. 2000 Assessment of the Office of Naval Research’s Marine Corps Science and Technology Program[R]. Commission on Physical Sciences, Mathematics, and Applications, 2000: 65-69.
    [37] IEEE 802.11. IEEE 802.11 Wireless Local Area Networks[EB/OL]. (2011-03-26)[2011-04-25]. http://www.ieee802.org/11/.
    [38] IETF. The Internet Engineering Task Force[EB/OL]. [2011-04-25]. http://www.ietf.org/.
    [39] IRTF. Internet Research Task Force[EB/OL]. [2011-04-25]. http://www.irtf.org/.
    [40] Perkins C E, Bhagwat P. Highly Dynamic Destination-Sequenced Distance-Vector Routing (DSDV) for Mobile Computers[J]. ACM SIGCOMM Computer Communication Review, 1994, 24(4): 234-244.
    [41] Clausen T, Jacquet P. RFC 3626: Optimized Link State Routing (OLSR)[S/OL]. (2003-10)[2011-04-25]. http://www.ietf.org/rfc/rfc3626.txt
    [42] Perkins C E, Belding-Royer E, Da S. RFC 3561: Ad Hoc On-Demand Distance Vector (AODV) Routing[S/OL]. (2003-2)[2011-4-24]. http://tools.ietf.org/html/ draft-ietf-manet-aodv-13.txt.
    [43] Haas Z, Pearlman M, Samar P. The Zone Routing Protocol (ZRP) for Ad Hoc Networks[S/OL]. (2002-8)[2011-04-24]. http://tools.ietf.org/html/draft-ietf-manet- zone-zrp-04.txt.
    [44] Park V, Corson S. Temporally-Ordered Routing Algorithm (TORA)[S/OL]. (2001-4)[2011-04-24]. http://tools.ietf.org/html/draft-ietf-manet-tora-spec-04.
    [45] Pei G Y, Gerla M, Hong X Y, et al. Landmark Routing Protocol (LANMAR)[S/OL]. (2001-8)[2011-04-24]. http://tools.ietf.org/html/draft-ietf- manet-lanmar-05.
    [46] Wata A I, Ching C, Pei G, et al. Fisheye State Routing Protocol (FSR)[S/OL]. (2003-12)[2011-04-25]. http://tools.ietf.org/id/draft-ietf-manet-fsr-01.
    [47] Toh C K. WNNCC: Ad Hoc Wireless Networking & Computing Consortium[EB/OL]. [2011-04-25]. http://www.ece.gatech.edu/research/labs/ bwn/projects.html
    [48] Gerla M. Network Research Lab[EB/OL]. (2010-08-10)[2011-04-25]. http://www.cs.ucla.edu/NRL/.
    [49] Belding E M. Mobility Management and Networking Laboratory[EB/OL].[2011-04-25]. http://moment.cs.ucsb.edu/.
    [50] MONET. Mobile Network Communication for ECE[EB/OL]. [2011-04-11]. http://www.ece.illinois.edu/research/communications.asp.
    [51] Barrett C L. ICTAS: Institute for Critical Technology and Applied Science[EB/OL]. [2011-03-25]. http://www.ictas.vt.edu/.
    [52] Haas Z J. Wireless Networks Lab[EB/OL]. (2010-06-18)[2011-03-27]. http://people.ece.cornell.edu/haas/wnl/.
    [53] Henning S. Columbia Networking Research Center: Projects[EB/OL]. (2008-01-10)[2011-03-24]. http://cnrc.columbia.edu/projects.html.
    [54] Sarkar S K, Basavaraju T G, Puttamadappa C. Ad Hoc Mobile Wireless Networks[M]. New York: CRC Press, 2007: 23-27, 281-291.
    [55] Monarch Project. The Rice University Monarch Project: Mobile Networking Architectures[EB/OL]. (2004-10)[2011-03-28]. http://www.monarch.cs.rice.edu/.
    [56] MURI. Office of Naval Research[EB/OL]. (2007-02-01)[2011-01-19]. http://www.onr.navy.mil/muri.
    [57]中华人民共和国中央人民政府.国务院发布今后15年国家中长期科技发展规划纲要[EB/OL]. (2006-02-09)[2010-12-29]. http://www.gov.cn/node_11140/ 2006-02/09/content_184045.htm.
    [58] Bany S H, Krunz M. Channel access protocols for multihop opportunistic networks: challenges and recent developments[J]. Network, 2009, 23(4): 14-19.
    [59] Sarla K, Poonam B, Rajeshwar S. Ad Hoc Network routing protocols: an overiew[J]. International Journal of Technology and Applied Science, 2010, 1: 19-23.
    [60] Anastasi G, Conti M, Francesco M D, et al. Energy conservation in wireless sensor networks: A survey[J]. Ad Hoc Networks, 2009, 7(3): 537-568.
    [61] Abusalah L, Khokhar A, Guizani M. A survey of secure mobile Ad Hoc routing protocols[J]. Communications Surveys & Tutorials, 2008, 10(4): 78-93.
    [62] Ismail Z, Hassan R, Patel A, et al. A study of routing protocol for topology configuration management in mobile ad hoc network[C]. Electrical Engineering and Information, USA: IEEE Press, 2009: 412-417.
    [63] Zhang N, Anpalagan A. Comparative Review of QoS-Aware On-Demand Routing in Ad Hoc Wireless Networks[J]. Wireless Sensor Network, 2010, 2: 274-284.
    [64] Matthew S G. 802.11 Wireless Networks: The Definitive Guide[M]. 2nd Edition. US: O’Reilly, 2005: 25-33.
    [65] Kapadia, Patel S N, Jhaveri R H. Comparative study of hidden node problem and solution using different techniques and protocols[J]. Journal of Computing, 2010, 2(3), 231-241.
    [66] Karn P. MACA-A new channel access method for packet radio[C]. Computer Networking, USA: ARRL/CRRL, 1990: 1-4.
    [67] Jian N, Srikant R. Distributed CSMA/CA algorithms for achieving maximum throughput in wireless networks[C]. Information Theory and Applications workshop, San Diego: IET Press, 2009: 250-254.
    [68] Cui H, Wei G, Zhang Z, et al. Medium access control scheme supporting real-time traffic with power control in wireless ad hoc networks[J]. IET Communications, 2010, 4(4): 377-383.
    [69] Marek N, Katarzyna K S, Szymon S, et al. Supporting QoS in integrated ad hoc networks[J]. Wireless Personal Communications, 2011, 56(2): 183-206.
    [70] Ulf K, Ali H, Michal P, et al. A distributed MAC scheme to achieve QoS in ad hoc networks[J]. Annales des Telecommunications, 2010: 1-10.
    [71] Westphal C, Chaskar H. QoS signaling for mobile IP[P]. US 7,813,343 B2, 2010.
    [72] Kiyoshi T, Takuya T, Toshinori T. A novel MAC protocol for QoS in ad hoc wireless networks[J]. IEICE Transactions on Communications, 2008, E91-B(10): 3297-3306.
    [73] Tang J, Zhang Y G. Mobile awareness based hybrid MAC protocol for tactical data link networks[C]. Multimedia Information Networking and Security, USA: IEEE Press, 2010: 203-207.
    [74] Hong S E, Kang C G, Kwon O H. Terminal-assisted hybrid MAC protocol for differentiated QoS guarantee in TDMA-based broadband access networks[J]. IEEE EITR Journal, 2006, 28(3): 311-319.
    [75] Biplab S. An analytic model for the delay in IEEE 802.11 PCF MAC-based wireless networks[J]. IEEE Transactions on Wireless Communications, 2007, 6(4): 1542-1550.
    [76] Yang W F. A multigroup queuing MAC protocol for wireless networks with multipacket reception[J]. Eurasip Journal on Wireless Communications and Networking, 2008: 197-209.
    [77] Robinson J W, Randhawa T S. Saturation throughput analysis of IEEE 802.11e Enhanced distributed coordination function[J]. IEEE Journal on Selected Areas in Communications, 2004, 22(5): 917-928.
    [78] Bianchi G. Performance analysis of the IEEE 802.11 distributed coordination function[J]. IEEE Journal on Selected Areas in Communications, 2000, 18(3): 535-547.
    [79] Yaser P F, Samer E H, Hussein A. A generalized saturation throughput analysis for IEEE 802.11e contention-based MAC[J]. Wireless Personal Communications, 2008, 47(2): 235-245.
    [80] Choi H S, Byun H J, Lim J T. Adaptive Power Control MAC in wireless ad hoc networks[J]. IEICE Transactions on Communications, 2008, E91-B: 309-313.
    [81]朱荣波,高波. Ad Hoc网络中联合功率节省与功率控制的MAC协议[J].先电子科技大学学报, 2008, 3(35): 563-571.
    [82] Chen H H, Fan Z Y, Li J. Autonomous power control MAC protocol for mobile Ad Hoc networks[J]. Eurasip Journal on Wireless Communications and Networking, 2006: 1-10.
    [83]文凯,郭伟,黄广杰.无线Ad Hoc网络中基于节点位置的功率控制算法[J].电子与信息学报, 2009, 31(1): 201-205.
    [84] Ghasemi A, Faez K. A non-cooperative game approach for power-aware MAC in ad hoc wireless networks[J]. Computer Communications, 2010, 33(12): 1440-1451.
    [85] Kim D K, Toh C K. F-PCM: A fragmentation-based power control MAC protocol for IEEE 802.11 mobile ad hoc networks[J]. Wireless Communications and Mobile Computing, 2006, 6(5): 727-739.
    [86] Li W X, Guo C C. A symmetric transmission power control strategy for mobile ad hoc networks in realistic environment[C]. Web information Systems and Mining, USA: IEEE, 2009: 686-690.
    [87] Lane J R. Best-Effort network layer packet reordering in support of multipath overlay packet dispersion[C]. Global Telecommunications, USA: IEEE Press, 2008: 2457-2462.
    [88] Stefano B, Marco C, Silvia G, et al. Mobile Ad Hoc Networks (MANETs): Routing Technology for Dynamic, Wireless Networking[M]. Mobile ad hoc Networking, USA: IEEE Press, 2004: 255-274.
    [89] Weng C C, Chen C W, Ku C J, et al. A bandwidth-based power-aware routing protocol with low route discovery overhead in mobile ad hoc network[J]. Computer Journal, 2010, 53(7): 969-990.
    [90] Rahman M M, Hong C S, Lee S W. A high throughput on-demand routing protocol for multirate ad hoc wireless networks[J]. IEICE Transactions on Communications, 2010, E93-B(1): 29-39.
    [91] Labiod H. Wireless Ad Hoc and Sensor Networks[M]. New Jersey: John Wiley & Sons, 2008: 7-21.
    [92] Pongthawornkamol T, Nahrstedt K, Wang G J. HybridCast: A hybrid probabilistic/deterministic approach for adjustable broadcast reliability in mobile wireless ad hoc networks[C]. Communications, USA: IEEE Press, 2009: 1-4.
    [93] Shukla A. On the reduction of broadcast traffic in mobile ad hoc networks[C]. Wireless Communications, Networking and Mobile Computing, USA: IEEE Press,2007: 1581-1584.
    [94] Suri N R, Narahari Y. Design of an optimal Bayesian incentive compatible broadcast protocol for ad hoc networks with rational nodes[J]. Journal on Selected Areas in Communications, 2008, 26(7): 1138-1148.
    [95] Yu C W, Wu T K, Cheng R H. A low overhead dynamic route repairing mechanism for mobile ad hoc networks[J]. Advances in Computer Communications Networks, 2007, 30(5): 1152-1163.
    [96] Gowrishankar S, Basavaraju T G, Sarkar S K. Analysis of overhead control mechanisms in mobile ad hoc networks[J]. Lecture Notes in Electrical Engineering, 2009, 39: 329-341.
    [97] Quadros G, Monteiro E, Boavida F. QoS metric for packet networks[C]. International Society for Optical Engineering, MA: SPIE Press, 1998: 70-81.
    [98] Han S, Zhang S S, Li G Q, et al. An on-demand QoS service composition protocol for MANETs[J]. IEICE Transactions on Information and Systems, 2007, E90-D(11): 1877-1880.
    [99] Sucec J. Hierarchical Routing Overhead in Mobile Ad Hoc Networks[J]. IEEE Transactions on Mobile Computing, 2004, 3(1): 46-56.
    [100] Zhou N J, Abouzeid A A. Information theoretic analysis of proactive routing overhead in mobile Ad Hoc networks[J]. IEEE Transactions on Information Theory, 2009, 55(10): 4608-4625.
    [101] Liang J C. Chen J C, Zhang T. An adaptive low-overhead resource discovery protocol for Mobile Ad-hoc networks[J]. Wireless Network, 2011, 17(2): 437-452.
    [102] Chizari H, Hosseini M, Salleh S, et al. EF-MPR, a new energy efficient multi-point relay selection algorithm for MANET[J]. Journal of Supercomputing, 2010: 1-18.
    [103] Lin T H, Chao H C, Woungang I. An enhanced MPR-based solution for flooding of broadcast messages in OLSR wireless ad hoc networks[J]. Mobile Information Systems, 2010, 6(3): 249-257.
    [104] Cai K Y, Cao J, Dong Z, et al. Emergence of relativistic effect in probabilistic flooding of Mobile Ad hoc Networks[J]. Physical A: Statistical Mechanics and its Applications, 2011, 390(8): 1474-1480.
    [105]王竹荣,张九龙,崔杜武.一种求解度约束最小生成树问题的优化算法[J].软件学报, 2010, 21(12): 2068-3081.
    [106] Ogier, Templin F, Lewis M. Topology Dissemination Based on Reverse-Path Forwarding (TBRPF)[S/OL]. (2003-10-14)[2011-02-12]. http://tools.ietf.org/html/ draft-ietf-manet-tbrpf-11.
    [107] Zhang Z S. Routing in intermittently connected mobile ad hoc networks and delaytolerant networks: overview and challenges[J]. Communications Surveys Tutorials, 2006, 8(1): 24-37.
    [108]余旭涛. Ad Hoc网络能量有效性的研究[D].江苏:东南大学学位论文, 2004: 12-24.
    [109] Ouadoudi Z, Mohamed E A, Driss A. An energy efficient clustering protocol for routing in wireless sensor network[J]. Journal of Ad Hoc and Ubiquitous Computing, Special Issue on Wireless and Mobile Networks, 2011, 7(1): 54-59.
    [110] Saoucene M, Pascale M. EOLSR: An energy efficient routing protocol in wireless ad hoc and sensor networks[J]. Journal of Interconnection Networks, 2008, 9(4): 389-408.
    [111] Floriano D R, Marco F, Salvatore M. EE-OLSR: Energy efficient OLSR routing protocol for mobile ad-hoc networks[C]. Military Communications, USA: IEEE Press, 2008: 1-4.
    [112]刘玉梅,郭黎利,马慧珠.一种能量有效及负载均衡的Ad hoc路由协议[J].哈尔滨工程大学学报, 2008, 29(3): 294-298.
    [113] Mehrzad A, Sarajodin K, Mehdi B, et al. A novel multi routing in ad-hoc networks based on maximum node energy[C]. European Modeling Symposium on Computer Modeling and Simulation, USA: IEEE Press, 2010: 432-437.
    [114] Park G, Byeon Y S, Song J. A routing protocol considering both energy efficiency and link stability in mobile Ad Hoc network[J]. WSEAS Transactions on Communications, 2007, 6(3): 426-431.
    [115] Zhang X M, Zou F F, Wang E B, et al. Exploring the dynamic nature of mobile nodes for predicting route lifetime in mobile Ad hoc networks[J]. IEEE Transactions on Vehicular Technology, 2010, 59(3): 1567-1572.
    [116] Umang S, Reddy B V R, Hoda M N. Enhanced intrusion detection system for malicious node detection in ad hoc routing protocols using minimal energy consumption[J]. IET Communications, 2010, 4(17): 2084-2094.
    [117] Lin B Y, Chen C H, Lo C C. An energy efficient geocast routing protocol based on a Defer-Time Control Function for Vehicular Ad-hoc Network[J]. Materials, Mechatronics and Automation-Key Engineering Materials, 2011: 972-977.
    [118] Woo K T, Yu C S, Lee D M. Non-Blocking, Localized Routing Algorithm for Balanced Energy Consumption in Mobile Ad hoc Networks[C]. Modeling, Analysis and Simulation of Computer and Telecommunication Systems, USA: IEEE Press, 2001: 481-191.
    [119]孙强.移动Ad hoc网络高能效路由技术的研究[D].武汉:武汉理工大学学位论文, 2007: 10-15.
    [120] Michael P C, Javier Gomez, Victor R, et al. Route duration modeling for mobilead-hoc networks[J]. Wireless Networks, 2010, 16(3): 743-757.
    [121] Basagni, Chlamtac I, Syrotiuk V R. A distance routing effect algorithm for mobility (DREAM)[C]. Mobile Computing and Networking, USA: ACM Press, 1998: 76-84.
    [122] Benzaid M, Minet P, Agha K. Integrating fast mobility in the OLSR routing protocol[C]. Mobile and Wireless Communications Networks, USA: IEEE Press, 2004: 217-221.
    [123] Tseng Y C, Ni S Y, Shih E Y. Adaptive Approaches to Relieving Broadcast Storms in a Wireless Multihop Mobile Ad Hoc Network[J]. IEEE Transactions on Computers, 2003, 52(5): 545-557.
    [124] Huang Y C, Bhatti S, Handurukande S. Autonomic Tuning of Routing for MANETs[C]. Network Operations and Management, USA: IEEE Press, 2008: 314-320.
    [125] Mehdi E P, Mohammad R E P, Amir D S, et al. Load balancing and route stability in mobile ad hoc networks base on AODV protocol[C]. Electronic Devices, Systems and Applications, USA: IEEE Press, 2010: 258-263.
    [126] Toh C K, Le A N, Cho Y Z. Load balanced routing protocols for ad hoc mobile wireless networks[J]. IEEE Communications Magazine, 2009, 47(8): 78-84.
    [127]胡甜,周颢,赵保华.无线Ad Hoc网络中的负载平衡广播路由算法[J].通信学报, 2008, 29(7): 129-134.
    [128] Pei X B, Wang Q P, Zhu G X, et al. Load balancing strategy of heterogeneous wireless networks based on multi-hop routing algorithm of ad hoc network[J]. High Technology Letters, 2009, 15(1): 44-50.
    [129]沙毅,张婷,陈进等.基于流量的Ad Hoc网络负载均衡路由协议[J].东北大学学报(自然科学版), 2010, 31(3): 350-353.
    [130] Meghanatham N, Mitton L C. Performance Comparison of Stability, Load-Balancing and Power-Aware Routing Protocols for Mobile Ad Hoc Networks[J]. Journal of Advancements in Technology, 2010, 1(1): 50-72.
    [131] Gomez J, Campbell A T. PARO: Supporting Dynamic Power Controlled Routing in Wireless Ad hoc Networks[J]. Wireless Networks, 2003, 9: 443-460.
    [132] Varaprassad G. Network connectivity based power-aware routing algorithm for mobile ad hoc networks[J]. Journal of Ad Hoc and Ubiquitous Computing, 2011, 7(2): 71-76.
    [133] Natarajan M. On-demand maximum battery life routing with power sensitive power control in ad hoc networks[C]. Mobile Communications and Learning Technologies, USA: IEEE Press, 2006: 1-6.
    [134] Lee S J, Gerla M. Dynamic load-aware routing in Ad hoc networks[C].Communications, USA: IEEE Press, 2001, 10: 3206-3210.
    [135] Hossam H, Zhou A. Routing with load balancing in wireless ad hoc networks[C]. Modeling, Analysis and Simulation of Wireless and Mobile Systems, USA: ACM Press, 2011: 89-96.
    [136] Kim S K, Par N, Kim C W. An enhanced route recovery protocol for mobile ad hoc networks[J]. IEICE Transactions on Communications, 2008, E91-B(2): 597-600.
    [137]肖百龙,郭伟,刘军等.移动自组网路由局部修复算法的研究[J].计算机研究与发展, 2007, 44(8): 1383-1389.
    [138] Kumar S D, Bhuvaneswaran R S. ALRP: Scalability study of ant based local repair routing protocol for mobile adhoc networks[J]. WSEAS Transactions on Computer Research, 2008, 3(4): 224-233.
    [139] Chang B J. Reliable distributed local repair approach for maximizing reliability and packet delivery rate in wireless on demand AODV networks[J]. Wireless Personal Communications, 2008, 45(1): 11-30.
    [140] Costa L, Henrigure M K, Amorim D, et al. Reducing latency and overhead of route repair with controlled flooding[J]. Wireless Networks, 2004, 10(4): 347-358.
    [141] Duggirala R, Gupta R, Zeng Q A, et al. Performance Enhancements of Ad Hoc Networks with Localized Route Repair[J]. IEEE Transactions on Computers, 2003, 52(7): 854-861.
    [142] Jonhnson D B, Maltz D A, Hu Y C. The Dynamic Source Routing Protocol (DSR)[S/OL]. (2003-12)[2011-03-28]. http://tools.ietf.org/html/draft-ietf-manet- dsr-10.
    [143] Costa R, Sargento S. Mobility between infrastructure and Ad-Hoc environments: Experimental validation[C]. Computers and Communications, USA: IEEE Press, 2009: 837-843.
    [144] Javad A T, Reza M M. A mobility-based cluster formation algorithm for wireless mobile ad-hoc networks[J]. Cluster Computing, 2011: 1-14.
    [145] Allen T T. Introduction to Engineering Statistics and Lean Sigma: Statistical Quality Control and Design of Experiments and Systems[M]. 2nd Edition. USA: Springer, 2010: 179-183.
    [146] Cai L, Shen X M, Mark J W. Multimedia services in wireless internet: modeling and analysis[M]. New York: John Wiley & Sons, 2009: 75-79.
    [147] Yan H M, Yin G, Zhang Q. Stochastic processer, optimization, and control theory: applications in financial engineering, queuing networks and manufacturing systems[M]. New York: Springer, 2006: 2-6.
    [148] ISI. The Network Simulator ns-2: Building Ns version 2[EB/OL]. (2009-07-17)[2010-12-23]. http://www.isi.edu/nsnam/ns/ns-build.html.
    [149] Yoo Y W, Agrawal D P. Why does it pay to be selfish in a MANET[J]. Wireless Communications, 2007, 13(6): 87-97.
    [150] Alshanyour A, Baroudi U. A simulation study: The impact of random and realistic mobility models on the performance of bypass-AODV in ad hoc wireless networks[J]. Eurasip Journal on Wireless Communications and Networking, 2010, 37(6): 1452-1470.
    [151]朱清新.离散和连续空间中的最优搜索理论[M].北京:科学出版社. 2005: 12-18.
    [152] Barclay L W. Propagation of radiowaves[M]. 2nd Edition. London: Institute of Engineering and Technology, 2003: 175-182.
    [153] Surhone L M, Timpledon M T, Marseken S F. Eikonal Approximation[M]. USA: VDM, 2010: 39-44.
    [154]吕英华.计算电磁学的数值方法[M].北京:清华大学出版社. 2006: 317-318.
    [155] Myunghyun O, Kevin Z. Stability and Asymptotic Behavior of Periodic Traveling Wave Solutions of Viscous Conservation Laws in Several Dimensions[J]. Archive for Rational Mechanics and Analysis, 2010, 196(1): 1-20.
    [156] Sharvani G S, Rangaswamy T M, Goel A, et al. Improving QoS for Ad-Hoc Wireless Networks Using Predictive Preemptive Local Route Repair Strategy[J]. Advances in Networks and Communications, 2011, 132(1): 55-62.
    [157] Ramesh V, Subbaiah P, Supriya S. Modified DSR (Preemptive) to reduce link breakage and routing overhead for MANET using Proactive Route Maintenance (PRM)[J]. Global Journal of Computer Science and Technology, 2010, 9(5): 124-129.
    [158] Cheng R H, Wu T K, Yu C W. A highly topology adaptable ad hoc routing protocol with complementary preemptive link breaking avoidance and path shortening mechanisms[J]. Wireless Networks, 2010, 16(5): 1289-1311.
    [159] Namboodiri V, Gao L X. Prediction-based routing for vehicular Ad Hoc networks[J]. IEEE Transactions on Vehicular Technology, 2007, 56(4): 2332-2345.
    [160] Kumar S, Sharma S C, Suman B. Simulation Based Performance Analysis of Routing Protocols Using Random Waypoint Mobility Model immobile Ad Hoc Network[J]. Global Journal of Computer Science and Technology, 2011, 11(1): 17-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700