低压动态无功补偿装置的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电力系统负荷的增加,对无功功率的需求也日益增加。无功功率在电网中传输会造成网络损耗以及受电端电压下降,使电能利用率大大降低且严重影响供电质量。因此,在电网中的适当位置装设无功补偿装置是满足电网无功需求的必要手段。
     本文介绍了无功补偿的目的和意义,阐述了国内外无功补偿的现状与发展趋势。针对低压电网,本文分析了无功补偿原理及补偿接线方式,讨论了几种不同负荷情况下电网最佳补偿点的位置及容量配置的问题。同时,在分析各种无功补偿控制策略的基础上,将模糊控制理论引入电容器的投切控制,兼顾了提高功率因数与改善电压质量,并且避免了无功补偿装置往复投切问题。
     本文设计了一种适用于低压电网进行集中无功补偿的晶闸管投切电容器装置。在装置设计中采用电压无功复合投切判据,以无功功率作为主判据、电压作为辅助判据,有效地克服了以功率因数作为投切判据的控制方式中的轻载时容易产生投切振荡而重载时容易出现补偿不充分的缺点,同时兼顾了降低功率损耗与改善电压质量;投切复合开关采用单独的脉冲触发装置触发,保证了晶闸管在两端电压过零时触发,从而在硬件电路上实现电容器组的无过渡过程投切,且简单可靠;控制系统采用价格比较便宜的AT89C51单片机作为控制系统主体。装置能够实现无功功率的快速、准确补偿且成本较低,具有较好的实用性以及广阔的应用前景。论文阐述了该控制系统的原理及软硬件设计过程。
     最后,本文通过软件MATLAB/Simulink对装置进行了仿真研究,仿真结果表明该装置可以有效的对系统无功进行补偿。
Due to increasing loads of electric power system, demand on reactive power was also increasing. Because transmission of reactive power in electric network can lead to network loss and step-down voltage, resulted in reduction of using efficiency of power energy and severely effected voltage quality. It became necessary means that reactive power compensation devices were installed in proper position of electric network.
     This paper introduced the principle and objective of var compensation, and presented the developmental actuality and trend of reactive power compensation system. Based on compensation principle and connection way, this paper studied switches of capacitors and the model of reactive power optimization planning about low voltage system. Based on analysis of other criterion methods, the paper introduced fuzzy control into var compensation. This new method can manage the relationship between voltage quality and power factor properly and eliminate the repeatedly switching problem.
     A TSC reactive power compensation device which was fit for low-voltage distribution network was introduced in this paper. The compound criterion whose main criterion is reactive power and whose assistant criterion is voltage was applied in the device, which effectively overcame the defects of the power factor criterion in which switching oscillation was often resulted in under light load and compensation was insufficient under heavy load, and the compound criterion gave attention to decreasing power loss and improving voltage quality.The system adopted thyristor as switch that connect capacitors to main circuit, and the Thyristor was triggered by a special device in the zero-voltage condition and thus greatly reduced surge current. This sort of switch circuit achieved switching of capacitors without transition course and was simple and reliable. The device took the AT89C51 which is a sort of cheap single chip micro-controller as main control chip. This device could fleetly and truly compensate reactive power and was low-cost. It processed preferably practicability and wide application foreground in low voltage network.
     At last, the device was simulated through software MATLAB/Simlink, and simulation and experiment show that the basic principle and method was totally feasible and effectual.
引文
[1] 王兆安,杨君,刘进军.谐波抑制和无功功率补偿.机械工业出版社,2002.7
    [2] 韦炳干,王卫安.动态无功补偿装置在电气化铁路上的应用.机车电传动,2006(2):17~19
    [3] 朱罡.电力系统静止无功补偿技术的现状及发展.电力电容器,2001(4):31~34
    [4] 孙筠,徐小俊.静止无功补偿技术的现状及发展.湖北教育学院学报,2006.23(2):69~71
    [5] 谷永刚,肖国春,裴云庆等.晶闸管投切电容器(TSC)技术的研究现状与发展.电力电子技术,2003.37(2):85~88
    [6] 沈国敏,郝服明,毛开富等.低压电动机的静态和动态无功功率补偿.甘肃工业大学学报,2000.26(1):76~80
    [7] 刘智勇,余志东.无功功率补偿技术及发展趋势.农村电气化,2004(6):9~10
    [8] Gyugyi L.Reactive Power Generation and Control by Thyristor Circuits. IEEE 1976 PESC Record,1976:174~184
    [9] S.M.Al-Alawi,K.A.Ellithy. Tuning of SVC damping controllers over a wide range of load models using an artificial neural network. Electrical Power and Energy Systems,22(2000):405~420
    [10] Y.Wang,H.Chen,R.Zhou. A nonlinear controller design for SVC to improve power system voltage stability. Electrical Power and Energy Systems,2000(22):463~470
    [11] Yingqin Ruan,Jie Wang. The coordinated control of SVC and excitation of generators in power systems with nonlinear loads. Electrical Power and Energy Systems,2005(27):550~555
    [12] 任丕德,刘发友,周胜军.动态无功补偿技术的应用现状.电网技术,2004.28(23):81~83
    [13] 刘俊丰,同向前,陈贵亮.不对称负荷动态无功补偿方法的研究.电力电容器,2005(1):14~17
    [14] 翁利民.电力电子技术与谐波抑制、无功功率补偿技术研究综述.电力电容器,2004(3):6~10
    [15] 苏崇文. 配电网低压无功补偿的应用现状及发展趋势. 武汉船舶职业技术学院学报,2006.3:76~78
    [16] 翁利民,张莉. SV C 与 SVG 的比较研究.供用电,2005.111(5):1~4
    [17] R.Mohan Mathur,Rajia K.Varma 著,徐政 译.基于晶闸管的柔性交流输电控制装置.机械工业出版社,2005.2
    [18] Y L.Tan. Analysis of Line Compensation by Shunt-Connected FACTS Contro-llers: A Comparison between SVC and STATCOM. IEEE Power Engineering Review, 1999, 19(8): 57~58
    [19] 张军利. D-STATCOM 无功补偿装置的研究. 宝鸡文理学院学报(自然科学版),2006.26(3):222~224
    [20] Sameh K.M.Kodsi,Claudio A.Canizares,Mehrdad Kazerani. Reactive current control through SVC for load power factor correction. Electric Power Systems Research,2006(76):701~708
    [21] 吴文辉,刘会金.静止同步补偿器(STATCOM)技术的研究现状与发展.华东交通大学学报,2005.22(2):89~94
    [22] Ye Yang. Dissertation Abstracts International. University of Waterloo (Canada). Ph.D.2002: 7~9
    [23] 徐益民,刘岫岭,姜志成.STATCOM 原理及控制方法研究.煤矿机械,2006.27(8):56~58
    [24] 程汉湘,吴春芳,鄂飞,朱约章.触发模式变化的StatCom实验研究.电力电子技术,2005.39(4):63~65
    [25] 姜齐荣,谢小荣,陈建业.电力系统并联补偿-结构、原理、控制与应用.机械工业出版社,2004:175~177
    [26] 汤新光.用 FACTS 技术提高电缆系统静态负荷裕度能力.江苏电机工程,2006.25(5):38~41
    [27] 栗时平,刘桂英 编著.静止无功功率补偿技术.北京:中国电力出版社,2006
    [28] 郭培源.电力系统自动控制新技术.科学出版社,2001:153~154
    [29] 柳春芳,陈剑光,柳山.低压无功补偿的应用与效益分析.电工技术杂志,2002(5): 33~34
    [30] 轧超.城市配电网的无功补偿方式.天津城市建设学院学报,2005.11(3):207~209
    [31] 靳龙章,丁毓山.电网无功补偿实用技术.中国水利水电出版社,1997:21~24
    [32] 王铮.无功补偿容量的确定.电工技术杂志,2002(9):69~70
    [33] C.S.Chang,J.S.Huang. Optimal SVC placement for voltage stability einforcement. Electric Power Systems Research,1997(42):165~172
    [34] 邓彦国.智能低压无功补偿装置的研制.北京交通大学硕士学位论文,2007.3
    [35] 高宇英,刘乾业.智能型低压无功补偿装置若干问题的探讨.电力电容器,2002(2):44~45
    [36] 李君权,张国军.谐波电流对电力电容器的影响.辽宁工程技术大学学报,2005.24(3):397~399
    [37] 国海,李咏鹿.无功补偿方案的确定及其问题的解决.现代农业科技,2006.11:162~163
    [38] D.Thukaram,Abraham Lomi. Selection of static VAR compensator location and size for system voltage stability improvement. Electric Power Systems Research,2000(54):139~150
    [39] 王雷.无功补偿计算及电压无功投切判据分析.电力自动化设备.2001.21(6):17~19
    [40] 凌玉华 主编.单片机原理及应用系统设计.中南大学出版社,2006.4
    [41] 严天峰 编著.单片机应用系统设计与仿真调试.北京航空航天大学出版社,2005.8
    [42] 陈坚.电力电子学-电力电子变换和控制技术.高等教育出版社,2002: 350
    [43] 童诗白,华成英 主编.模拟电子技术基础.高等教育出版社,2001
    [44] 袁江,高沁翔. TSC 无功补偿控制器的研究.应用能源技术,2006.103(7):25~29
    [45] 李淼.智能型无功补偿控制器的研制.电力电容器,2005(4):12~17
    [46] 徐爱钧,彭秀华 编著.Keil Cx51 V7.0 单片机高级语言编成与 uVision2 应用实践.北京:电子工业出版社,2004.6:271~280
    [47] 刘汉民.LED 显示驱动器 MAX7219 的单片机接口技术及编程.仪表技术与互感,2002 (4): 30~31
    [48] 史延龄,邹来智,王正兰.X25045 与单片机的接口及编程仪器仪表用户,2002(1): 42~45
    [49] 王建元,纪延超.一种自动无功功率补偿模糊控制策略的研究.中国电力,2002.35 (2):41~43
    [50] 陈奇.模糊控制 TSC 无功补偿控制器设计.电力电子技术,2005.39(4):77~81
    [51] 刘文胜,高俊如,马士英. 利用模糊控制技术的动态无功补偿装置.农村电气化,2006.229(6):55~56
    [52] I.Colak,R.Bayindir,I.Sefa. Experimental study on reactive power compensation using a fuzzy logic controlled synchronous motor. Energy Conversion and Management,2004(45) 2371~2391
    [53] J.Lu,M.H.Nehrir,D.A.Pierre. A Fuzzy Logic-based Adaptive Damping Controller for Static Var Compensator. Electric Power Systems Research,2004(68):113~118
    [54] 孙增圻等 编著.智能控制理论与技术.北京:清华大学出版社,1997.4
    [55] 马忠梅,籍顺心,张凯等.单片机的 C 语言应用程序设计.北京航空航天大学出版社,1999
    [56] 杨文.一种无功补偿电容组编码投切的算法.微机算计应用,2005.26(1):122~124
    [57] 夏继强等 编著.单片机试验与实践教程(二)(第二版).北京:北京航空航天大学出版社,2006.5
    [58] 夏祖华,沈斐,胡爱军,童陆园.动态无功补偿技术应用综述.电力设备,2004.5(10): 27~31
    [59] 王幸之,王雷,翟成等.单片机应用系统抗干扰技术.北京航空航天大学出版社,2000
    [60] 王玉斌,吕燕,田召广等.谐波抑制与无功补偿装置控制技术的进展.电测与仪表,2006.43(4):1~4
    [61] 吴天明,谢小竹,彭彬 编著. MATLAB 电力系统设计与分析.国防工业出版社,2004.1
    [62] 陈茂勇,郭西进.基于 MSP430 系列单片机的智能无功补偿控制器.电力建设,2005.26(6):57~59
    [63] 门洪,梁志珊.一种通用 TSC 型无功补偿控制器的研制.吉林电力.2002.159(2):20~22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700