基于微/纳米结构单元的有序组装制备仿生结构功能复合材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在纳米材料合成日趋成熟的背景下,如何使得这些具有新颖性质的纳米材料在实际应用中发挥作用是当前面临的挑战之一。目前,利用先进的组装技术,将微纳功能结构单元集合成具有多级微纳结构的宏观块材是纳米材料应用研究的重要方向。通过微纳结构功能单元有序的组装,这些纳米结构单元的新颖性质在宏观块材中不仅能够得到了保留,而且还通过各个结构单元之间的协同和复合展现出多重性质和特殊功能。另一方面,仿生微纳结构材料的研究表明,在宏观尺度的人工块材中设计和仿造生物的多级微纳结构能够优化和提高材料的整体性质。在多级微纳结构材料的设计和制备上,自然界给予了我们很多启发和模型。比如,具有“砖-泥”微纳层状结构的珍珠母层,骨骼的多级“纤维板层”结构,木材的“多孔”结构,开心果壳以及仙人掌刺的“带状复合板层”结构,海绵的“三维网络”结构,等等。
     本论文将集中阐述基于仿生微纳结构模型和微纳结构单元的合成与组装制备多功能微纳结构复合材料。首先通过对生物材料的多级结构和组成单元的分析,寻找和设计合适的人工微纳结构组装单元;然后大量合成具有特殊形貌的微纳结构功能材料,如一维纤维状结构材料,二维片状或板状结构材料;最后利用先进的组装技术将合成得到的微纳结构单元与聚合物复合制得功能性的微纳结构复合薄膜和块材,并研究这些宏观材料优越的力学性质,特殊的光,电学性质,以及性质之间的协同和关联。所取得的主要研究结果总结如下:
     1.成功制备了仿珍珠母层状结构的无机微纳板材-聚合物高强功能性杂化薄膜。在本工作中,我们以珍珠母层状结构为模型,首先大量合成了具有板状形貌的双层氢氧化物(LDHs)和沸石(zeolites),然后通过界面组装和旋涂层层组装的方法得到了一系列的以LDHs或zeolites微米板为无机组装单元的高强、透光的类珍珠母结构的功能性杂化薄膜。此类薄膜具有类似珍珠母的层状微结构,在抗拉伸方面表现优异,可以同天然贝壳媲美。更有趣的是,此类有机无机杂化薄膜非常透明,并且光学性质可以通过使用不同的板块状结构单元来调控。
     2.利用天然粘土和生物大分子壳聚糖的自组装成功制备了仿珍珠母结构的有机无机杂化薄膜。此工作中,我们设计了一套粘土-壳聚糖杂化构筑单元自组装流程成功制备了具有珍珠母结构的有机无机生物纳米复合薄膜。所制得的薄膜拉伸强度可以达到100 MPa,具有良好的透光性,并且能在水中变得更加透明。更有意思的是,此类薄膜在抗火性上有良好表现,整体结构不会被破坏。另外,还通过原位生长法,在粘土-壳聚糖杂化纳米片表面修饰一层均匀的金纳米颗粒。然后再将修饰金纳米颗粒的二维杂化纳米结构组装成珍珠母层状结构的复合薄膜,在取得一定机械强度的基础上,扩展此类杂化薄膜的功能和应用。
     3.围绕二维纳米结构的氧化石墨烯(GO)设计和制备了具有珍珠母层状结构的陶瓷-石墨烯功能性复合薄膜和块材。(1).以二氧化钛(TiO)和氧化石墨烯(GO)纳米片作为功能性结构单元,我们可以通过TiO纳米薄片光还原GO成为还原型石墨烯(RGO)直接在GO/聚二烯丙基二甲基铵(PDDA)/TiO层层组装复合薄膜上设计光导图案。首先,高质量的GO/PDDA/TiO复合膜通过层层组装技术在玻璃衬底上交替浸涂GO、PDDA和TiO纳米薄片而得到。然后将复合膜在装备刻有图样的铝箔为遮光板的条件下用300W的Xe灯照射适当的时间,在光照区域形成具有光导性质的图案。(2).以GO为模板,在其表面包覆一层介孔氧化硅的前驱物。然后将得到的GO-介孔氧化硅前驱物杂化纳米片粉末放入模具,经过热压得到还原型石墨烯(RGO)-介孔氧化硅纳米复合块材。制得的RGO-介孔氧化硅纳米复合块材具有介孔氧化硅连接RGO纳米片的层状微观结构,表现出轻质,高强和导电的多重性质。
     4.以水热反应合成的Ag@聚乙烯醇(PVA)三维仿海绵网络为模板成功制备了宏观尺度的类海绵状弹性导体。由相互搭接的一维纳米材料组成的类似海绵体的三维网络材料,由于其多孔性,高比表面,轻质,和优越的机械性能,受到了材料学家的广泛关注。我们在以往合成Ag@PVA同轴微电缆的基础上,进一步改进实验,合成了自支撑的Ag@PVA同轴电缆的三维网络海绵结构。将Ag@PVA同轴电缆海绵体在惰性气氛下碳化,得到Ag-C纳米电缆和C纳米管组成的三维弹性导体。通过这种模板法制备得到的弹性导体表现出良好的弹性,高的导电性(导电率为1.28S·m~(-1)),和很好的压缩循环性。另外,硅树脂还能填充到制得的弹性导体网络中,形成具有更高弹性模量的导电复合块材。
     5.作为大量有效合成特殊纳米结构材料的普适方法,以小分子胺为模板合成一系列规整形貌的有机-无机杂化纳米材料,并以纳米杂化材料为前驱物制备了功能性无机纳米结构材料的思路被进一步发展。我们合成了一类新颖的具有蓝色荧光的超长亚碲酸镉-多胺有机无机杂化纳米纤维,并研究了其热稳定性和酸稳定性;合成了平板状的肼-亚碲酸镉杂化微米晶,并以此为前驱物得到了多孔碲化镉和碲微晶;以(Cd2Se2)(pa)(pa=丙胺)有机-无机杂化材料作为前驱物,在油相中热解得到各种CdSe纳米结构,并研究了其中的结构演变和光学性质。这些功能性纳米结构材料有望作为仿生微纳结构材料的组装单元。
In the past decades, various nanostructured materials have been synthesized via mature techniques. However, the currently emerging challenge is that how to efficiently utilize these novel functional nanomaterials in practical fields. The assembly of functional nano-building blocks into macroscale bulk materials within hierarchical micro-/nano- structures via advantaged fabrication techniques is a feasile route to broaden the practical applications of nanostructured materials. By hierarchical assembly of nano-building blocks, the obtained bulk materials not only own the properties of nano-building blocks but also behave the synergetic properties and multifunctionalities due to the hierarchical organizations. One the other hand, the research on bio-inspired hierarchical structures indicates that mimicking the?biological hierarchical structure in artificial material can enhance and optimize the property and functionality. For the design and fabrication of hierarchical structures, nature offers us much inspiration and many models. For example, the“brick and mortar”structured nacre, the bone’s“nanofiber consisted plate”structure, wood’s“cellular”structure, the“nanobelt assembled plate”structure of pistachio’s shell and cactus’s spicule, sponges’s“three dimensional network”structure, and so on.
     The present dissertation will focus on the fabrication of bio-inspired hierarchical structured functional composite materials based on the models of biomaterials and ordered assembly of artificially synthesized functional micro-/nano- building blocks. According to the components and structures analysis of biomaterials, we firstly searched and designed proper artificial building blocks. Then, we synthesized these artificial building blocks on large scale, such as one dimensional nano fibrious materials and two dimensional platelet-like or sheet-like nanomaterials. Finally, we assembled these artificial inorganic building blocks together with polymers to fabricate bio-inspired structural functional composite materials. The excellent mechanical propeties, special optical and electric properties, and their multifunctionalities have been studied. The main results can be summarized as follows:
     1. Biologically inspired, strong, transparent, and functional layered double hydroxides (LDHs) or zeolites micro-bricks reinforced composite films have been successfully fabricated. In this work, according to the model of layered structure of nacre, we firstly synthesized the platelet-like LDHs or zeolites microcrystals on large scale. Then, by using these LDHs or zeoites platelet-like microcrystals as inorganic building blocks, a series of strong, transparent, functional nacre-like layered hybrid films were fabricated via interfacial assembly and layer by layer spin coating technique. The obtained hybrid films displayed nacre-like layered microstructures and behaved excellent tensile strength which is comparable to that of natural nacre. Interestingly, these hybrid films are transparent and their optical properties can be tuned by using different inorganic functional building blocks.
     2. Artificial nacre-like chitosan-Montmorillonite (MTM) bionanocomposite films with amazing‘brick and mortar’microstructures have been fabricated based on using chitosan-MTM hybrid nanosheets as building blocks. In the designed fabrication procedure, we assembled hybrid building blocks with thin layer of chitosan coating on the MTM nanosheets to form chitosan-MTM bionanocomposite film via vacuum filtration or water evaporation. The obtained nacre-like films displayed higher performance in mechanical properties (Young’s modulus: 10 GPa, tensile strength: 100 MPa) compared with the film made by conventional method. Moreover, these hybrid films are transparent and fire-retardant. Addtionally, gold nanoparticles (Au NPs) can be modified on the surfaces of chitosan-MTM hybrid nanosheets via in situ growth method. The obtained chitosan-MTM-Au NPs hybrid building blocks can also been assembled to form nacre-like layer structured films with good tensile strength and novle optical properties expanding the applications of nacre-like chitosan-MTM hybrid films.
     3. Based on the ultrafine two dimensional structure of graphene oxide, we designed and fabricated a series of nacre-like layer structured reduced graphene oxide-ceramic nanocomposite films and bulk bricks: (1) By using graphene oxide (GO) and titania oxide (TiO) nanosheets as functional building blocks, high quality (PDDA/GO/PDDA/TiO)20 hybrid films were fabricated on the glass substrate through alternatively LBL self-assembly with GO, TiO nanosheets, and PDDA. Then, the photoconductive pattern was fabricated by illuminating the hybrid film equipped with a pre-designed aluminum foil as the shadow mask through the photothermal and photocatalyic reduction; (2) The graphene oxide nanosheets were firstly coated with mesoporous silicon precursor to form the GO-mesoporous silicon precursor hybrid nanosheets. Then, these obtained GO-mesoporous silicon precursor hybrid nanosheets were hot pressed together to yield a bulk brick which consisted of lamellar RGO connected by mesoporous silicon. The bulk brick is light weight, robust, and conductive due to its hierarchial structures.
     4. Elastomeric conductors composed of sponge-like three dimensional silver-carbon hybrid nanocable/carbon nanotube networks have been fabricated by using hydrothermal synthesized Ag@PVA nanocables networks as templates. Sponge-like materials, composed of interconnected one dimensional nanostructures, have attracted intensive attention of researchers due to their high porosity, high surface area, light-weight, and excellent mechanical strength. By carefully controlling the conditions of hydrothermal reaction, we firstly demonstrated that the silver@PVA nanocables can grow and interconnect each other to form the cylinder-shaped three dimensional networks. Through carbonization of silver@PVA nanocable networks, the conductive silver-carbon hybrid nanocable/nanotube sponges can be fabricated as elastomeric conductors, which show good compressive properties and high conductivties (1.28 S·m-1), and good reversibility. Moreover, these artificial sponges can also be used to fabricate the conductive nanocomposites due to their percolating three-dimensional network nanostrucutres.
     5. As a feasible route to synthesize various nanostructured materials, the small organic amine templating synthesis of organic-inorganic hybrid nanostructured materials has been further developed. The obtained hybrid nanostructured materials can be also used as efficient precursors to synthesize functional inorganic nanomaterials. We synthesized a new kind of blue light emitting ultralong Cd(L)(TeO3) (L = ethylenediamine, diethylenetriamine) nanofibre bundles and studies their thermal and acidic stabilities; prepared uniform, well-defined, and platelet-like hydrazine-cadmium tellurite hybrid microcrystals and used them as precursors to yield porous cadmium telluride and tellurium architectures; synthesized the Cd2Se2(pa) hybrid materials and used them as a precursor to explore the“top-down”fabrication process of structural evolution from two dimensional layered structures to zero- or one- dimensional nanocrystals. These functional nanostructured materials are also promising to be used as building blocks in the fabrication of bio-inspired hierarchical structured materials.
引文
[1] Sanchez C, Arribart H, Giraud Guille MM. 2005. Biomimetism and bioinspiration as tools for the design of innovative materials and systems[J]. Nat Mater, 4:277-288.
    [2] Fratzl P. 2007. Biomimetic materials research: what can we really learn from nature's structural materials?[J]. J. R. Soc. Interface, 4:637-642.
    [3] Huebsch N, Mooney DJ. 2009. Inspiration and application in the evolution of biomaterials[J]. Nature, 462:426-432.
    [4] Barthelat F. 2007. Biomimetics for next generation materials[J]. Phil. Trans. R. Soc. A, 365:2907-2919.
    [5] Bhushan B. 2009. Biomimetics: lessons from nature–an overview[J]. Phil. Trans. R. Soc. A, 367:1445-1486.
    [6] Ruiz-Hitzky E, Darder M, Aranda P, Ariga K. 2010. Adv. Mater., 22:323–336.
    [7] Xia F, Jiang L. 2008. Adv. Mater., 20:2842–2858.
    [8] Sarikaya M, Tamerler C, Jen AKY, Schulten K, Baneyx F. 2003. Nat. Mater., 2:577–585.
    [9] Li X-M, Reinhoudt D, Crego-Calama M. 2007. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces[J]. Chem. Soc. Rev., 36:1350-1368.
    [10] Boesel LF, Greiner C, Arzt E, Campo Ad. 2010. Adv. Mater., 22:2125–2137.
    [11] Lee H, Lee BP, Messersmith PB. 2007. Nature, 448:338–341.
    [12] Qu L, Dai L, Stone M, Xia Z, Wang ZL. 2008. Science, 322:238–242.
    [13] Mayer G. 2005. Science, 310:1144–1147.
    [14] Mayer G. 2006. Mater. Sci. Eng., C, 26:1261–1268.
    [15] Ashby MF, Gibson LJ, Wegst U, Olive R. 1995. Proc. R. Soc. London, Ser. A, 450:123–140.
    [16] Gibson LJ, Ashby MF, Karam GN, Wegst U, Shercliff HR. 1995. Proc. R. Soc. London, Ser. A, 450:141–162.
    [17] Wegst UGK, Ashby MF. 2004. Philos. Mag., 84:2167–2186.
    [18] Fratzl P, Weinkamer R. 2007. Nature's hierarchical materials[J]. Prog. Mater Sci., 52:1263-1334.
    [19] Meyers MA, Chen P-Y, Lin AY-M, Seki Y. 2008. Prog. Mater. Sci., 53:1-206.
    [20] Espinosa HD, Rim JE, Barthelat F, Buehler MJ. 2009. Prog. Mater. Sci., 54: 1059–1100.
    [21] Munch E, Launey ME, Alsem DH, Saiz E, Tomsia AP, Ritchie RO. 2008. Tough, Bio-Inspired Hybrid Materials[J]. Science, 322:1516-1520.
    [22] Bonderer LJ, Studart AR, Gauckler LJ. 2008. Bioinspired Design and Assembly of PlateletReinforced Polymer Films[J]. Science, 319:1069-1073.
    [23] Podsiadlo P, Kaushik AK, Arruda EM, Waas AM, Shim BS, Xu J, Nandivada H, Pumplin BG, Lahann J, Ramamoorthy A, Kotov NA. 2007. Ultrastrong and Stiff Layered Polymer Nanocomposites[J]. Science, 318:80-83.
    [24] Porter JR, Ruckh TT, Popat KC. 2009. Bone tissue engineering: A review in bone biomimetics and drug delivery strategies[J]. Biotechnol. Progr., 25:1539-1560.
    [25] Alves NM, Leonor IB, Azevedo HS, Reis RL, Mano JF. 2010. J. Mater. Chem., 20:2911–2921.
    [26] Rutz BH, Berg JC. 2010. Adv. Colloid Interface Sci., 160:56–75.
    [27] Zhang H, Hussain I, Brust M, Butler MF, Rannard SP, Cooper AI. 2005. Nat. Mater., 4:787–793.
    [28] Paris O, Burgert I, Fratzl P. 2011. MRS Bull., 35:219–225.
    [29] Xia Y, Gates B, Yin Y, Lu Y. 2000. Adv. Mater., 12:693–713.
    [30] Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H. 2003. Adv. Mater., 15:353–389.
    [31] Ma R, Sasaki T. 2010. Adv. Mater., 22:5082.
    [32] Yin Y, Alivisatos AP. 2005. Nature, 437:664–670.
    [33] Min Y, Akbulut M, Kristiansen K, Golan Y, Israelachvili J. 2008. Nat. Mater., 7:527–538.
    [34] Tao AR, Huang J, Yang P. 2008. Acc. Chem. Res., 41:1662–1673.
    [35] Mann S. 2009. Nat. Mater., 8:781–792.
    [36] Jackson AP, Vincent JFV, Turner RM. 1988. The Mechanical Design of Nacre[J]. Proc. R. Soc. Lond. B, 234:415-440.
    [37] Bruet BJF, Song J, Boyce MC, Ortiz C. 2008. Materials design principles of ancient fish armour[J]. Nat. Mater., 7:748-756.
    [38] Barthelat F, Tang H, Zavattieri PD, Li CM, Espinosa HD. 2007. On the mechanics of mother-of-pearl: A key feature in the material hierarchical structure[J]. J. Mech. Phys. Solids, 55:306-337.
    [39] Meyers MA, Lin AYM, Chen PY, Muyco J. 2008. Mechanical strength of abalone nacre: Role of the soft organic layer[J]. J. Mech. Behav. Biomed., 1:76-85.
    [40] Currey JD. 1977. Mechanical Properties of Mother of Pearl in Tension[J]. Proc. R. Soc. Lond. B, 196:443-463.
    [41] Menig R, Meyers MH, Meyers MA, Vecchio KS. 2000. Quasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shells[J]. Acta Mater., 48:2383-2398.
    [42] Wang RZ, Wen HB, Cui FZ, Zhang HB, Li HD. 1995. Observations of damage morphologies in nacre during deformation and fracture[J]. J. Mater. Sci., 30:2299-2304.
    [43] Li X, Chang W-C, Chao YJ, Wang R, Chang M. 2004. Nanoscale Structural and Mechanical Characterization of a Natural Nanocomposite Material:
    [48] Song F, Bai YL. 2003. Effects of nanostructures on the fracture strength of the interfaces in nacre[J]. J. Mater. Res., 18:1741-1744.
    [49] Weiner S, Wagner HD. 1998. THE MATERIAL BONE: Structure-Mechanical Function Relations[J]. Annu. Rev. Mater. Sci., 28:271-298.
    [50] Weiner S, Traub W, Wagner HD. 1999. Lamellar Bone: Structure-Function Relations[J]. J. Struct. Biol., 126:241-255.
    [51] Fratzl P, Gupta HS, Paschalis EP, Roschger P. 2004. Structure and mechanical quality of the collagen-mineral nano-composite in bone[J]. J. Mater. Chem., 14:2115-2123.
    [52] Nalla RK, Kinney JH, Ritchie RO. 2003. Mechanistic fracture criteria for the failure of human cortical bone[J]. Nat. Mater., 2:164-168.
    [53] Fantner GE, Oroudjev E, Schitter G, Golde LS, Thurner P, Finch MM, Turner P, Gutsmann T, Morse DE, Hansma H, Hansma PK. 2006. Sacrificial bonds and hidden length: Unraveling molecular mesostructures in tough materials[J]. Biophys. J., 90:1411-1418.
    [54] Fantner GE, Hassenkam T, Kindt JH, Weaver JC, Birkedal H, Pechenik L, Cutroni JA, Cidade GAG, Stucky GD, Morse DE, Hansma PK. 2005. Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture[J]. Nat. Mater., 4:612-616.
    [55] Buehler MJ. 2007. Molecular nanomechanics of nascent bone: fibrillar toughening by mineralization[J]. Nanotechnology, 18:
    [56] Seto J, Gupta HS, Zaslansky P, Wagner HD, Fratzl P. 2008. Tough lessons from bone: Extreme mechanical anisotropy at the mesoscale[J]. Adv. Funct. Mater., 18:1905-1911.
    [57] Fratzl P. 2003. Cellulose and collagen: from fibres to tissues[J]. Curr. Opin. Colloid Interface Sci., 8:32-39.
    [58] Reiterer A, Lichtenegger H, Tschegg S, Fratzl P. 1999. Experimental evidence for a mechanical function of the cellulose microfibril angle in wood cell walls[J]. Philos. Mag., 79:2173 - 2184.
    [59] Lichtenegger H, Muller M, Paris O, Riekel C, Fratzl P. 1999. Imaging of the helical arrangement of cellulose fibrils in wood by synchrotron X-ray microdiffraction[J]. J. Appl. Crystallogr., 32:1127-1133.
    [60] Luz GM, Mano JF. 2009. Biomimetic design of materials and biomaterials inspired by the structure of nacre[J]. Phil. Trans. R. Soc. A, 367:1587-1605.
    [61] Tang Z, Kotov NA, Magonov S, Ozturk B. 2003. Nanostructured artificial nacre[J]. Nat Mater, 2:413-418.
    [62] Podsiadlo P, Shim BS, Kotov NA. 2009. Polymer/clay and polymer/carbon nanotube hybrid organic-inorganic multilayered composites made by sequential layering of nanometer scale films[J]. Coord. Chem. Rev., 253:2835-2851.
    [63] Long B, C.-A.Wang, Lin W, Huang Y, Sun J. 2007. Compos. Sci. Technol., 67:2770–2774.
    [64] Lin W, Wang C-a, Le H, Long B, Huang Y. 2008. Mater. Sci. Eng., 28:1031–1037.
    [65] Chen R, Wang C-a, Huang Y, Le H. 2008. Mater. Sci. Eng., C, 28:218–222.
    [66] Yao H-B, Tan Z-H, Fang H-Y, Yu S-H. 2010. Artificial Nacre-Like Bionanocomposite Films with High Performances: Self-assembly of Magic Building Blocks of Chitosan-Montmorillonite Hybrid Nanosheets[J]. Angew. Chem. Int. Ed., DOI: 10.1002/anie.201004748:
    [67] Walther A, Bjurhager I, Malho J-M, Pere J, Ruokolainen J, Berglund LA, Ikkala O. 2010. Large-Area, Lightweight and Thick Biomimetic Composites with Superior Material Properties via Fast, Economic, and Green Pathways[J]. Nano Lett.,
    [68] Walther A, Bjurhager I, Malho JM, Ruokolainen J, Berglund L, Ikkala O. 2010. SupramolecularControl of Stiffness and Strength in Lightweight High-Performance Nacre-Mimetic Paper with Fire-Shielding Properties[J]. Angew. Chem. Int. Ed., 49:6448-6453.
    [69] Deville S, Saiz E, Nalla RK, Tomsia AP. 2006. Freezing as a Path to Build Complex Composites[J]. Science, 311:515-518.
    [70] Launey ME, Munch E, Alsem DH, Saiz E, Tomsia AP, Ritchie RO. 2010. A novel biomimetic approach to the design of high-performance ceramic–metal composites[J]. J. R. Soc. Interface, 7:741-753.
    [71] Burghard Z, Zini L, Srot V, Bellina P, Aken PAv, Bill J. 2009. Toughening through Nature-Adapted Nanoscale Design[J]. Nano Lett., 9:4103-4108.
    [72] Arizaga GGC, Satyanarayana KG, Wypych F. 2007. Layered hydroxide salts: Synthesis, properties and potential applications[J]. Solid State Ionics, 178:1143-1162.
    [73] Liu Z, Ma R, Ebina Y, Iyi N, Takada K, Sasaki T. 2006. General Synthesis and Delamination of Highly Crystalline Transition-Metal-Bearing Layered Double Hydroxides[J]. Langmuir, 23:861-867.
    [74] Han JB, Lu J, Wei M, Wang ZL, Duan X. 2008. Heterogeneous ultrathin films fabricated by alternate assembly of exfoliated layered double hydroxides and polyanion[J]. Chem. Commun., 5188-5190.
    [75] Han J, Dou Y, Wei M, Evans DG, Duan X. 2010. Erasable Nanoporous Antireflection Coatings Based on the Reconstruction Effect of Layered Double Hydroxides[J]. Angew. Chem. Int. Ed., 49:2171-2174.
    [76] Lin T-H, Huang W-H, Jun I-K, Jiang P. 2009. Bioinspired Assembly of Colloidal Nanoplatelets by Electric Field[J]. Chem. Mater., 21:2039-2044.
    [77] Lin T-H, Huang W-H, Jun I-K, Jiang P. 2009. Electrophoretic co-deposition of biomimetic nanoplatelet-polyelectrolyte composites[J]. Electrochem. Commun., 11:1635-1638.
    [78] Yao H-B, Fang H-Y, Tan Z-H, Wu L-H, Yu S-H. 2010. Biologically Inspired, Strong, Transparent, and Functional Layered Organic-Inorganic Hybrid Films13[J]. Angew. Chem. Int. Ed., 49:2140-2145.
    [79] Oaki Y, Kotachi A, Miura T, Imai H. 2006. Bridged Nanocrystals in Biominerals and Their Biomimetics: Classical Yet Modern Crystal Growth on the Nanoscale[J]. Adv. Funct. Mater., 16:1633-1639.
    [80] Oaki Y, Imai H. 2005. The Hierarchical Architecture of Nacre and Its Mimetic Material[J]. Angew. Chem. Int. Ed., 44:6571-6575.
    [81] Chen SF, Yu SH, Wang TX, Jiang J, C?lfen H, Hu B, Yu B. 2005. Polymer-Directed Formation of Unusual CaCO3 Pancakes with Controlled Surface Structures[J]. Adv. Mater., 17:1461-1465.
    [82] Kato T. 2000. Polymer/Calcium Carbonate Layered Thin-Film Composites[J]. Adv. Mater., 12:1543-1546.
    [83] Gong H, Pluntke M, Marti O, Walther P, Gower L, C?lfen H, Volkmer D. 2010. Multilayered CaCO3/block-copolymer materials via amorphous precursor to crystal transformation[J]. Colloids Surf., A, 354:279-283.
    [84] Hollister SJ. 2009. Scaffold Design and Manufacturing: From Concept to Clinic[J]. Adv. Mater., 21:3330-3342.
    [85] Martins AM, Alves CM, Kurtis Kasper F, Mikos AG, Reis RL. 2010. Responsive and in situ-forming chitosan scaffolds for bone tissue engineering applications: an overview of the last decade[J]. J. Mater. Chem., 20:1638-1645.
    [86] Smith IO, Liu XH, Smith LA, Ma PX. 2009. Nanostructured polymer scaffolds for tissue engineering and regenerative medicine[J]. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 1:226-236.
    [87] Oyen ML. 2008. The materials science of bone: Lessons from nature for biomimetic materials synthesis[J]. MRS Bull., 33:49-55.
    [88] Ozin GA, Varaksa N, Coombs N, E. Davies J, Perovic DD, Ziliox M. 1997. Bone mimetics: a composite of hydroxyapatite and calcium dodecylphosphate lamellar phase[J]. J. Mater. Chem., 7:1601-1607.
    [89] Taboas JM, Maddox RD, Krebsbach PH, Hollister SJ. 2003. Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds[J]. Biomaterials, 24:181-194.
    [90] Broedling NC, Hartmaier A, Buehler MJ, Gao H. 2008. The strength limit in a bio-inspired metallic nanocomposite[J]. J. Mech. Phys. Solids, 56:1086-1104.
    [91] Sehaqui H, Salajkova M, Zhou Q, Berglund LA. 2010. Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions[J]. Soft Matter, 6:1824-1832.
    [92] Wu X, Liu Y, Li X, Wen P, Zhang Y, Long Y, Wang X, Guo Y, Xing F, Gao J. 2010. Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method[J]. Acta Biomaterialia, 6:1167-1177.
    [93] Gawryla MD, Nezamzadeh M, Schiraldi DA. 2008. Foam-like materials produced from abundant natural resources[J]. Green Chemistry, 10:1078-1081.
    [94] Colombo P, Vakifahmetoglu C, Costacurta S. 2010. Fabrication of ceramic components with hierarchical porosity[J]. Journal of Materials Science, 45:5425-5455.
    [95] Cao J, Rambo CR, Sieber H. 2004. Preparation of Porous Al2O3-Ceramics by Biotemplating of Wood[J]. J. Porous Mater., 11:163-172.
    [96] Tang Z, Kotov NA, Giersig M. 2002. Spontaneous Organization of Single CdTe Nanoparticles into Luminescent Nanowires[J]. Science, 297:237-240.
    [97] Tang Z, Zhang Z, Wang Y, Glotzer SC, Kotov NA. 2006. Self-Assembly of CdTe Nanocrystals into Free-Floating Sheets[J]. Science, 314:274-278.
    [98] Srivastava S, Santos A, Critchley K, Kim K-S, Podsiadlo P, Sun K, Lee J, Xu C, Lilly GD, Glotzer SC, Kotov NA. 2010. Light-Controlled Self-Assembly of Semiconductor Nanoparticles into Twisted Ribbons[J]. Science, 327:1355-1359.
    [99] Mohanan JL, Arachchige IU, Brock SL. 2005. Porous Semiconductor Chalcogenide Aerogels[J]. Science, 307:397-400.
    [100] Arango AC, Oertel DC, Xu Y, Bawendi MG, Bulovi? V. 2009. Heterojunction Photovoltaics Using Printed Colloidal Quantum Dots as a Photosensitive Layer[J]. Nano Lett., 9:860-863.
    [101] Kim L, Anikeeva PO, Coe-Sullivan SA, Steckel JS, Bawendi MG, Bulovi? V. 2008. Contact Printing of Quantum Dot Light-Emitting Devices[J]. Nano Lett., 8:4513-4517.
    [102] Anikeeva PO, Halpert JE, Bawendi MG, Bulovi? V. 2009. Quantum Dot Light-Emitting Devices with Electroluminescence Tunable over the Entire Visible Spectrum[J]. Nano Lett., 9:2532-2536.
    [103] Anikeeva PO, Halpert JE, Bawendi MG, Bulovi? V. 2007. Electroluminescence from a Mixed Red?Green?Blue Colloidal Quantum Dot Monolayer[J]. Nano Lett., 7:2196-2200.
    [104] Tomczak N, Janczewski D, Han M, Vancso GJ. 2009. Designer polymer-quantum dotarchitectures[J]. Prog. Polym. Sci., 34:393-430.
    [105] Zhang H, Cui Z, Wang Y, Zhang K, Ji X, LüC, Yang B, Gao M. 2003. From Water-SolubleCdTe Nanocrystals to Fluorescent Nanocrystal-Polymer Transparent Composites UsingPolymerizable Surfactants[J]. Adv. Mater., 15:777-780.
    [106] Lin YW, Tseng WL, Chang HT. 2006. Using a Layer-by-Layer Assembly Technique toFabricate Multicolored-Light-Emitting Films of CdSe@CdS and CdTe Quantum Dots[J]. Adv.Mater., 18:1381-1386.
    [107] Mamedov AA, Belov A, Giersig M, Mamedova NN, Kotov NA. 2001. Nanorainbows: Graded Semiconductor Films from Quantum Dots[J]. J. Am. Chem. Soc., 123:7738-7739.
    [108] Lee S, Lee B, Kim BJ, Park J, Yoo M, Bae WK, Char K, Hawker CJ, Bang J, Cho J. 2009.Free-Standing Nanocomposite Multilayers with Various Length Scales, Adjustable InternalStructures, and Functionalities[J]. J. Am. Chem. Soc., 131:2579-2587.
    [109] Tetsuka H, Ebina T, Mizukami F. 2008. Highly Luminescent Flexible Quantum Dot-ClayFilms[J]. Adv. Mater., 20:3039-3043.
    [110] Zhou L, Gao C, Xu W. 2010. Simultaneous photoluminescence import and mechanicalenhancement of polymer films using silica-hybridized quantum dots[J]. J. Mater. Chem.,20:5675-5681.
    [111] Eustis S, El-Sayed MA. 2006. Why gold nanoparticles are more precious than pretty gold:Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiativeproperties of nanocrystals of different shapes[J]. Chem. Soc. Rev., 35:209-217.
    [112] Xia Y, Xiong Y, Lim B, Skrabalak Sara E. 2009. Shape-Controlled Synthesis of MetalNanocrystals: Simple Chemistry Meets Complex Physics?[J]. Angew. Chem. Int. Ed.,48:60-103.
    [113] Jiang C, Markutsya S, Tsukruk VV. 2004. Compliant, Robust, and Truly NanoscaleFree-Standing Multilayer Films Fabricated Using Spin-Assisted Layer-by-Layer Assembly[J].Adv. Mater., 16:157-161.
    [114] Jiang C, Markutsya S, Shulha H, Tsukruk VV. 2005. Freely Suspended Gold NanoparticleArrays[J]. Adv. Mater., 17:1669-1673.
    [115] Jiang C, Markutsya S, Pikus Y, Tsukruk VV. 2004. Freely suspended nanocomposite membranesas highly sensitive sensors[J]. Nat Mater, 3:721-728.
    [116] Lu C, D?nch I, Nolte M, Fery A. 2006. Au Nanoparticle-based Multilayer Ultrathin Films withCovalently Linked Nanostructures: Spraying Layer-by-layer Assembly and MechanicalProperty Characterization[J]. Chem. Mater., 18:6204-6210.
    [117] Sakai N, Sasaki T, Matsubara K, Tatsuma T. 2010. Layer-by-layer assembly of goldnanoparticles with titania nanosheets: control of plasmon resonance and photovoltaicproperties[J]. J. Mater. Chem., 20:4371-4378.
    [118] Kim J, Lee SW, Hammond PT, Shao-Horn Y. 2009. Electrostatic Layer-by-Layer Assembled AuNanoparticle/MWNT Thin Films: Microstructure, Optical Property, and ElectrocatalyticActivity for Methanol Oxidation[J]. Chem. Mater., 21:2993-3001.
    [119] Kharlampieva E, Kozlovskaya V, Gunawidjaja R, Shevchenko VV, Vaia R, Naik RR, KaplanDL, Tsukruk VV. 2010. Flexible Silk-Inorganic Nanocomposites: From Transparent to HighlyReflective[J]. Adv. Funct. Mater., 20:840-846.
    [120] Chen C-F, Tzeng S-D, Chen H-Y, Lin K-J, Gwo S. 2007. Tunable Plasmonic Response fromAlkanethiolate-Stabilized Gold Nanoparticle Superlattices: Evidence of Near-FieldCoupling[J]. J. Am. Chem. Soc., 130:824-826.
    [121] Tao A, Sinsermsuksakul P, Yang P. 2007. Tunable plasmonic lattices of silver nanocrystals[J]. Nat Nano, 2:435-440.
    [122] Tao AR, Ceperley DP, Sinsermsuksakul P, Neureuther AR, Yang P. 2008. Self-Organized Silver Nanoparticles for Three-Dimensional Plasmonic Crystals[J]. Nano Lett., 8:4033-4038.
    [123] Lin M-H, Chen H-Y, Gwo S. 2010. Layer-by-Layer Assembly of Three-Dimensional Colloidal Supercrystals with Tunable Plasmonic Properties[J]. J. Am. Chem. Soc., 132:11259-11263.
    [124] Fuertes MC, López-Alcaraz FJ, Marchi MC, Troiani HE, Luca V, Míguez H, Soler-Illia GJAA. 2007. Photonic Crystals from Ordered Mesoporous Thin-Film Functional Building Blocks[J]. Adv. Funct. Mater., 17:1247-1254.
    [125] Marlow F, Muldarisnur, Sharifi P, Brinkmann R, Mendive C. 2009. Opals: Status and Prospects[J]. Angew. Chem. Int. Ed., 48:6212-6233.
    [126] Lotsch BV, Ozin GA. 2008. Clay Bragg Stack Optical Sensors[J]. Adv. Mater., 20:4079-4084.
    [127] Puzzo DP, Arsenault AC, Manners I, Ozin GA. 2009. Electroactive Inverse Opal: A Single Material for All Colors[J]. Angew. Chem. Int. Ed., 48:943-947.
    [128] Vigneron JP, Colomer J-F, ccedil, ois, Vigneron N, Lousse V. 2005. Natural layer-by-layer photonic structure in the squamae of Hoplia coerulea (Coleoptera)[J]. Physical Review E, 72:061904.
    [129] Parker AR, Townley HE. 2007. Biomimetics of photonic nanostructures[J]. Nat Nano, 2:347-353.
    [130] Aizenberg J, Tkachenko A, Weiner S, Addadi L, Hendler G. 2001. Calcitic microlenses as part of the photoreceptor system in brittlestars[J]. Nature, 412:819-822.
    [131] Galusha JW, Jorgensen MR, Bartl MH. 2010. Diamond-Structured Titania Photonic-Bandgap Crystals from Biological Templates[J]. Adv. Mater., 22:107-110.
    [132] Pyun J. 2007. Nanocomposite Materials from Functional Polymers and Magnetic Colloids[J]. Polymer Reviews, 47:231 - 263.
    [133] Jeong U, Teng X, Wang Y, Yang H, Xia Y. 2007. Superparamagnetic Colloids: Controlled Synthesis and Niche Applications[J]. Adv. Mater., 19:33-60.
    [134] Luechinger NA, Booth N, Heness G, Bandyopadhyay S, Grass RN, Stark WJ. 2008. Surfactant-Free, Melt-Processable Metal–Polymer Hybrid Materials: Use of Graphene as a Dispersing Agent[J]. Adv. Mater., 20:3044-3049.
    [135] Fuhrer R, Athanassiou EK, Luechinger NA, Stark WJ. 2009. Crosslinking Metal Nanoparticles into the Polymer Backbone of Hydrogels Enables Preparation of Soft, Magnetic Field-Driven Actuators with Muscle-Like Flexibility[J]. Small, 5:383-388.
    [136] Olsson RT, Azizi Samir MAS, Salazar Alvarez G, BelovaL, StromV, Berglund LA, IkkalaO, NoguesJ, Gedde UW. 2010. Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates[J]. Nat Nano, 5:584-588.
    [137] Ge J, Hu Y, Yin Y. 2007. Highly Tunable Superparamagnetic Colloidal Photonic Crystals[J]. Angew. Chem. Int. Ed., 46:7428-7431.
    [138] Zou H, Wu SS, Shen J. 2008. Polymer/silica nanocomposites: Preparation, characterization, properties, and applications[J]. Chem. Rev., 108:3893-3957.
    [139] Dorozhkin S. 2009. Calcium orthophosphate-based biocomposites and hybrid biomaterials[J]. J. Mater. Sci., 44:2343-2387.
    [140] Mann S, Webb J, RJP W Biomineralization; Wiley, Weinheim, 1989.
    [141] Meldrum FC, C?lfen H. 2008. Controlling Mineral Morphologies and Structures in Biological and Synthetic Systems[J]. Chem. Rev., 108:4332-4432.
    [142] Yu SH In Top. Curr. Chem. 2007; Vol. 271, p 79-118.
    [143] Kim Y-Y, Ribeiro L, Maillot F, Ward O, Eichhorn SJ, Meldrum FC. 2010. Bio-Inspired Synthesis and Mechanical Properties of Calcite-Polymer Particle Composites[J]. Adv. Mater., 22:2082-2086.
    [144] Baughman RH, Zakhidov AA, de Heer WA. 2002. Carbon Nanotubes--the Route Toward Applications[J]. Science, 297:787-792.
    [145] Li Y-L, Kinloch IA, Windle AH. 2004. Direct Spinning of Carbon Nanotube Fibers from Chemical Vapor Deposition Synthesis[J]. Science, 304:276-278.
    [146] Zhong X-H, Li Y-L, Liu Y-K, Qiao X-H, Feng Y, Liang J, Jin J, Zhu L, Hou F, Li J-Y. 2010. Continuous Multilayered Carbon Nanotube Yarns[J]. Adv. Mater., 22:692-696.
    [147] Davis VA, Parra-Vasquez ANG, Green MJ, Rai PK, Behabtu N, Prieto V, Booker RD, Schmidt J,Kesselman E, Zhou W, Fan H, Adams WW, Hauge RH, Fischer JE, Cohen Y, Talmon Y, Smalley RE, Pasquali M. 2009. True solutions of single-walled carbon nanotubes for assembly into macroscopic materials[J]. Nat Nano, 4:830-834.
    [148] Wang B, Ma Y, Li N, Wu Y, Li F, Chen Y. 2010. Adv. Mater., 22:3067–3070.
    [149] Gui X, Wei J, Wang K, Cao A, Zhu H, Jia Y, Shu Q, Wu D. 2010. Adv. Mater., 22:617–621.
    [150] Eichhorn S, Dufresne A, Aranguren M, Marcovich N, Capadona J, Rowan S, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito A, Mangalam A, Simonsen J, Benight A, Bismarck A, Berglund L, Peijs T. 2010. Review: current international research into cellulose nanofibres and nanocomposites[J]. J. Mater. Sci., 45:1-33.
    [151] Shanmuganathan K, Capadona JR, Rowan SJ, Weder C. Biomimetic mechanically adaptive nanocomposites[J]. Prog. Polym. Sci., 35:212-222.
    [152] Capadona JR, Shanmuganathan K, Tyler DJ, Rowan SJ, Weder C. 2008. Stimuli-Responsive Polymer Nanocomposites Inspired by the Sea Cucumber Dermis[J]. Science, 319:1370-1374.
    [153] Cao Y, Zhou YM, Shan Y, Ju HX, Xue XJ. 2006. Triple-Helix Scaffolds of Grafted Collagen Reinforced by Al2O3–ZrO2 Nanoparticles[J]. Adv. Mater., 18:1838-1841.
    [154] Sinani VA, Koktysh DS, Yun B-G, Matts RL, Pappas TC, Motamedi M, Thomas SN, Kotov NA. 2003. Collagen Coating Promotes Biocompatibility of Semiconductor Nanoparticles in Stratified LBL Films[J]. Nano Lett., 3:1177-1182.
    [155] Caves JM, Kumar VA, Xu W, Naik N, Allen MG, Chaikof EL. 2010. Microcrimped Collagen Fiber-Elastin Composites[J]. Adv. Mater., 22:2041-2044.
    [156] Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A. 2009. Graphene: The New Two-Dimensional Nanomaterial[J]. Angew. Chem. Int. Ed., 48:7752-7777.
    [157] Osada M, Sasaki T. 2009. Exfoliated oxide nanosheets: new solution to nanoelectronics[J]. J. Mater. Chem., 19:2503-2511.
    [158] Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS. 2007. Preparation and characterization of graphene oxide paper[J]. Nature, 448:457-460.
    [159] Putz KW, Compton OC, Palmeri MJ, Nguyen ST, Brinson LC. 2010. High-Nanofiller-Content Graphene Oxide–Polymer Nanocomposites via Vacuum-Assisted Self-Assembly[J]. Adv. Funct. Mater., 20:3322-3329.
    [160] Wang X, Bai H, Yao Z, Liu A, Shi G. 2010. Electrically conductive and mechanically strongbiomimetic chitosan/reduced graphene oxide composite films[J]. J. Mater. Chem.,20:9032-9036.
    [161] Wang D-W, Li F, Zhao J, Ren W, Chen Z-G, Tan J, Wu Z-S, Gentle I, Lu GQ, Cheng H-M. 2009.Fabrication of Graphene/Polyaniline Composite Paper via In Situ AnodicElectropolymerization for High-Performance Flexible Electrode[J]. ACS Nano, 3:1745-1752.
    [162] Wang D, Kou R, Choi D, Yang Z, Nie Z, Li J, Saraf LV, Hu D, Zhang J, Graff GL, Liu J, PopeMA, Aksay IA. 2010. Ternary Self-Assembly of Ordered Metal Oxide?GrapheneNanocomposites for Electrochemical Energy Storage[J]. ACS Nano, 4:1587-1595.
    [163] Yao H-B, Wu L-H, Cui C-H, Fang H-Y, Yu S-H. 2010. Direct fabrication of photoconductivepatterns on LBL assembled graphene oxide/PDDA/titania hybrid films by photothermal andphotocatalytic reduction[J]. J. Mater. Chem., 20:5190-5195.
    [164] Talapin DV, Nelson JH, Shevchenko EV, Aloni S, Sadtler B, Alivisatos AP. 2007. SeededGrowth of Highly Luminescent CdSe/CdS Nanoheterostructures with Rod and TetrapodMorphologies[J]. Nano Lett., 7:2951-2959.
    [165] Zhao N, Qi L. 2006. Low-Temperature Synthesis of Star-Shaped PbS Nanocrystals in AqueousSolutions of Mixed Cationic/Anionic Surfactants[J]. Adv. Mater., 18:359-362.
    [166] Ould-Ely T, Prieto-Centurion D, Kumar A, Guo W, Knowles WV, Asokan S, Wong MS,Rusakova I, Lüttge A, Whitmire KH. 2006. Manganese(II) Oxide Nanohexapods: Insightinto Controlling the Form of Nanocrystals[J]. Chem. Mater., 18:1821-1829.
    [167] Liu B, Yu S-H, Li L, Zhang Q, Zhang F, Jiang K. 2004. Morphology Control of StolziteMicrocrystals with High Hierarchy in Solution[J]. Angew. Chem., 116:4849-4854.
    [168] Zhu J-P, Yu S-H, He Z-B, Jiang J, Chen K, Zhou X-Y. 2005. Complex PbTe hopper (skeletal)crystals with high hierarchy[J]. Chem. Commun., 5802-5804.
    [169] Wu C, Yu S-H, Antonietti M. 2006. Complex Concaved Cuboctahedrons of Copper SulfideCrystals with Highly Geometrical Symmetry Created by a Solution Process[J]. Chem. Mater.,18:3599-3601.
    [170] Warren SC, DiSalvo FJ, Wiesner U. 2007. Nanoparticle-tuned assembly and disassembly ofmesostructured silica hybrids[J]. Nat Mater, 6:156-161.
    [171] Huang T, Zhao Q, Xiao J, Qi L. 2010. Controllable Self-Assembly of PbS Nanostars intoOrdered Structures: Close-Packed Arrays and Patterned Arrays[J]. ACS Nano, 4:4707-4716.
    [172] Gur I, Fromer NA, Chen C-P, Kanaras AG, Alivisatos AP. 2006. Hybrid Solar Cells withPrescribed Nanoscale Morphologies Based on Hyperbranched Semiconductor Nanocrystals[J].Nano Lett., 7:409-414.
    [173] Rambo C, Sieber H, Genova L. 2008. Synthesis of porous biomorphicα/β-Si3N4 compositefrom sea sponge[J]. J. Porous Mater., 15:419-425.
    [174] Losic D, Mitchell JG, Voelcker NH. 2009. Diatomaceous Lessons in Nanotechnology andAdvanced Materials[J]. Adv. Mater., 21:2947-2958.
    [175] Shi H-Y, Hu B, Yu X-C, Zhao R-L, Ren X-F, Liu S-L, Liu J-W, Feng M, Xu A-W, Yu S-H. 2010.Ordering of Disordered Nanowires: Spontaneous Formation of Highly Aligned, Ultralong AgNanowire Films at Oil-Water-Air Interface[J]. Adv. Funct. Mater., 20:958-964.
    [176] Liu J-W, Zhu J-H, Zhang C-L, Liang H-W, Yu S-H. 2010. Mesostructured Assemblies ofUltrathin Superlong Tellurium Nanowires and Their Photoconductivity[J]. J. Am. Chem. Soc.,132:8945-8952.
    [1] Sellinger A, Weiss PM, Nguyen A, Lu Y, Assink RA, Gong W, Brinker CJ. 1998. Continuous self-assembly of organic-inorganic nanocomposite coatings that mimic nacre[J]. Nature, 394:256-260.
    [2] Aksay IA, Trau M, Manne S, Honma I, Yao N, Zhou L, Fenter P, Eisenberger PM, Gruner SM. 1996. Biomimetic pathways for assembling inorganic thin films[J]. Science, 273:892-898.
    [3] Decher G. 1997. Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites[J]. Science, 277:1232-1237.
    [4] Atlan G, Delattre O, Berland S, LeFaou A, Nabias G, Cot D, Lopez E. 1999. Interface between bone and nacre implants in sheep[J]. Biomaterials, 20:1017-1022.
    [5] Li X, Chang W-C, Chao YJ, Wang R, Chang M. 2004. Nanoscale structural and mechanical characterization of a natural nanocomposite material: The shell of red abalone[J]. Nano Lett., 4:613-617.
    [6] Koester KJ, Ager JW, Ritchie RO. 2008. The true toughness of human cortical bone measured with realistically short cracks[J]. Nat Mater, 7:672-677.
    [7] Aizenberg J, Weaver JC, Thanawala MS, Sundar VC, Morse DE, Fratzl P. 2005. Skeleton ofeuplectella sp.: Structural hierarchy from the nanoscale to the macroscale[J]. Science, 309:275-278.
    [8] Almqvist N, Thomson NH, Smith BL, Stucky GD, Morse DE, Hansma PK. 1999. Methods for fabricating and characterizing a new generation of biomimetic materials[J]. Mater. Sci. Eng., C, 7:37-43.
    [9] Barthelat F. 2007. Biomimetics for next generation materials[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365:2907-2919.
    [10] Nalla RK, Kinney JH, Ritchie RO. 2003. Effect of orientation on the in vitro fracture toughness of dentin: the role of toughening mechanisms[J]. Biomaterials, 24:3955-3968.
    [11] Nalla RK, Kruzic JJ, Kinney JH, Ritchie RO. 2005. Mechanistic aspects of fracture and R-curve behavior in human cortical bone[J]. Biomaterials, 26:217-231.
    [12] Song F, Soh AK, Bai YL. 2003. Structural and mechanical properties of the organic matrix layers of nacre[J]. Biomaterials, 24:3623-3631.
    [13] Meyers MA, Chen P-Y, Lin AY-M, Seki Y. 2008. Biological materials: Structure and mechanical properties[J]. Prog. Mater Sci., 53:1-206.
    [14] Messersmith PB, Giannelis EP. 2002. Synthesis and characterization of layered silicate-epoxy nanocomposites[J]. Chem. Mater., 6:1719-1725.
    [15] Schoonheydt RA. 2002. Smectite-type clay minerals as nanomaterials[J]. Clays and Clay Minerals, 50:411-420.
    [16] Rexer J, Anderson E. 1979. Composites with planar reinforcements (flakes, ribbons) - A review[J]. Polym. Eng. Sci., 19:1-11.
    [17] Tang Z, Kotov NA, Magonov S, Ozturk B. 2003. Nanostructured artificial nacre[J]. Nat Mater, 2:413-418.
    [18] Podsiadlo P, Kaushik AK, Arruda EM, Waas AM, Shim BS, Xu J, Nandivada H, Pumplin BG, Lahann J, Ramamoorthy A, Kotov NA. 2007. Ultrastrong and stiff layered polymer nanocomposites[J]. Science, 318:80-83.
    [19] Deville S, Saiz E, Nalla RK, Tomsia AP. 2006. Freezing as a path to build complex composites[J]. Science, 311:515-518.
    [20] Munch E, Launey ME, Alsem DH, Saiz E, Tomsia AP, Ritchie RO. 2008. Tough, bio-Inspired hybrid materials[J]. Science, 322:1516-1520.
    [21] Bonderer LJ, Studart AR, Gauckler LJ. 2008. Bioinspired design and assembly of platelet reinforced polymer films[J]. Science, 319:1069-1073.
    [22] Gunawan P, Xu R. 2009. Lanthanide-doped layered double hydroxides intercalated with sensitizing anions: efficient energy transfer between host and guest layers[J]. J. Phys. Chem. C, 113:17206-17214.
    [23] Liu ZP, Ma RZ, Osada M, Iyi N, Ebina Y, Takada K, Sasaki T. 2006. Synthesis, anion exchange, and delamination of Co-Al layered double hydroxide: Assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies[J]. J. Am. Chem. Soc., 128:4872-4880.
    [24] Kagunya W, Hassan Z, Jones W. 1996. Catalytic Properties of Layered Double Hydroxides and Their Calcined Derivatives[J]. Inorg. Chem., 35:5970-5974.
    [25] Zhang H, Zou K, Sun H, Duan X. 2005. A magnetic organic-inorganic composite: Synthesis and characterization of magnetic 5-aminosalicylic acid intercalated layered double hydroxides[J]. J. Solid State Chem., 178:3485-3493.
    [26] Jiao CM, Wang ZZ, Ye Z, Hu Y, Fan WC. 2006. Flame Retardation of Ethylene-Vinyl Acetate Copolymer Using Nano Magnesium Hydroxide and Nano Hydrotalcite[J]. Journal of Fire Sciences, 24:47-64.
    [27] Arizaga GGC, Satyanarayana KG, Wypych F. 2007. Layered hydroxide salts: Synthesis, properties and potential applications[J]. Solid State Ionics, 178:1143-1162.
    [28] Costa F, Saphiannikova M, Wagenknecht U, Heinrich G In Wax Crystal Control·Nanocomposites·Stimuli-Responsive Polymers 2008, p 101-168.
    [29] Mann S. 2009. Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions[J]. Nat Mater, 8:781-792.
    [30] Nicole L, Rozes L, Sanchez C. 2010. Integrative Approaches to Hybrid Multifunctional Materials: From Multidisciplinary Research to Applied Technologies[J]. Advanced Materials, 22:3208-3214.
    [31] Fratzl P, Weinkamer R. 2007. Nature's hierarchical materials[J]. Progress in Materials Science, 52:1263-1334.
    [32] Barthelat F, Tang H, Zavattieri PD, Li CM, Espinosa HD. 2007. On the mechanics of mother-of-pearl: A key feature in the material hierarchical structure[J]. Journal of the Mechanics and Physics of Solids, 55:306-337.
    [33] Weiner S, Wagner HD. 1998. THE MATERIAL BONE: Structure-Mechanical Function Relations[J]. Annual Review of Materials Science, 28:271-298.
    [34] Fratzl P. 2003. Cellulose and collagen: from fibres to tissues[J]. Current Opinion in Colloid nd Interface Science, 8:32-39.
    [35] Mayer G. 2005. Rigid Biological Systems as Models for Synthetic Composites[J]. Science, 310:1144-1147.
    [36] Sanchez C, Arribart H, Giraud Guille MM. 2005. Biomimetism and bioinspiration as tools for the design of innovative materials and systems[J]. Nat Mater, 4:277-288.
    [37] Mayer G. 2006. New classes of tough composite materials--Lessons from natural rigid biological systems[J]. Materials Science and Engineering C, 26:1261-1268.
    [38] Fratzl P. 2007. Biomimetic materials research: what can we really learn from nature's structural materials?[J]. Journal of The Royal Society Interface, 4:637-642.
    [39] Ortiz C, Boyce MC. 2008. MATERIALS SCIENCE: Bioinspired Structural Materials[J]. Science, 319:1053-1054.
    [40] Ruiz-Hitzky E, Darder M, Aranda P, Ariga K. 2010. Advances in Biomimetic and Nanostructured Biohybrid Materials[J]. Advanced Materials, 22:323-336.
    [41] Yao H-B, Fang H-Y, Wang X-H, Yu S-H. 2011. Hierarchical assembly of micro-/nano-building blocks: bio-inspired rigid structural functional materials[J]. Chemical Society Reviews,
    [42] Luz GM, Mano JF. 2009. Biomimetic design of materials and biomaterials inspired by the structure of nacre[J]. Philosophical Transactions of the Royal Society A: Mathematical, , 367:1587-1605.
    [43] Yoon KB. 2006. Organization of Zeolite Microcrystals for Production of Functional Materials[J]. Accounts of Chemical Research, 40:29-40.
    [44] Lee J, Kim J, Lee Y, Jeong N, Yoon K. 2007. Manual Assembly of Microcrystal Monolayers on Substrates[J]. Angewandte Chemie International Edition, 46:3087-3090.
    [45] Zhou M, Liu X, Zhang B, Zhu H. 2008. Assembly of Oriented Zeolite Monolayers and Thin Films on Polymeric Surfaces via Hydrogen Bonding[J]. Langmuir, 24:11942-11946.
    [1] Gross RA, Kalra B. 2002. Biodegradable Polymers for the Environment[J]. Science, 297:803-807.
    [2] Chivrac F, Pollet E, Avérous L. 2009. Progress in nano-biocomposites based on polysaccharides and nanoclays[J]. Mater. Sci. Eng., R, 67:1-17.
    [3] Darder M, Aranda P, Ruiz-Hitzky E. 2007. Bionanocomposites: A New Concept of Ecological, Bioinspired, and Functional Hybrid Materials[J]. Adv. Mater., 19:1309-1319.
    [4] Chen B, Evans JRG, Greenwell HC, Boulet P, Coveney PV, Bowden AA, Whiting A. 2008. A critical appraisal of polymer-clay nanocomposites[J]. Chem. Soc. Rev., 37:568-594.
    [5] Ruiz-Hitzky E, Darder M, Aranda P. 2005. Functional biopolymer nanocomposites based onlayered solids[J]. J. Mater. Chem., 15:3650-3662.
    [6] Alexandre M, Dubois P. 2000. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials[J]. Mater. Sci. Eng., R, 28:1-63.
    [7] Sheng N, Boyce MC, Parks DM, Rutledge GC, Abes JI, Cohen RE. 2004. Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle[J]. Polymer, 45:487-506.
    [8] Chen B, Evans JRG. 2009. Impact strength of polymer-clay nanocomposites[J]. Soft Matter, 5:3572-3584.
    [9] Sinha Ray S, Bousmina M. 2005. Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world[J]. Prog. Mater Sci., 50:962-1079.
    [10] Rhim J-W, Hong S-I, Park H-M, Ng PKW. 2006. Preparation and Characterization of Chitosan-Based Nanocomposite Films with Antimicrobial Activity[J]. J. Agric. Food. Chem., 54:5814-5822.
    [11] Xu Y, Ren X, Hanna MA. 2006. Chitosan/clay nanocomposite film preparation and characterization[J]. J. Appl. Polym. Sci., 99:1684-1691.
    [12] Darder M, Colilla M, Ruiz-Hitzky E. 2003. Biopolymer?Clay Nanocomposites Based on Chitosan Intercalated in Montmorillonite[J]. Chem. Mater., 15:3774-3780.
    [13] Bhushan B. 2009. Biomimetics: lessons from nature - an overview[J]. Phil. Trans. R. Soc. A, 367:1445-1486.
    [14] Fratzl P. 2007. Biomimetic materials research: what can we really learn from nature's structural materials?[J]. J. R. Soc. Interface, 4:637-642.
    [15] Sanchez C, Arribart H, Giraud Guille MM. 2005. Biomimetism and bioinspiration as tools for the design of innovative materials and systems[J]. Nat Mater, 4:277-288.
    [16] Dujardin E, Mann S. 2002. Bio-inspired Materials Chemistry[J]. Adv. Mater., 14:775-788.
    [17] Luz GM, Mano JF. 2009. Biomimetic design of materials and biomaterials inspired by the structure of nacre[J]. Phil. Trans. R. Soc. A, 367:1587-1605.
    [18] Jackson AP, Vincent JFV, Turner RM. 1988. The Mechanical Design of Nacre[J]. Proc. R. Soc. Lond. B, 234:415-440.
    [19] Song F, Soh AK, Bai YL. 2003. Structural and mechanical properties of the organic matrix layers of nacre[J]. Biomaterials, 24:3623-3631.
    [20] Li X, Chang W-C, Chao YJ, Wang R, Chang M. 2004. Nanoscale Structural and Mechanical Characterization of a Natural Nanocomposite Material: The Shell of Red Abalone[J]. Nano Lett., 4:613-617.
    [21] Tang Z, Kotov NA, Magonov S, Ozturk B. 2003. Nanostructured artificial nacre[J]. Nat Mater, 2:413-418.
    [22] Podsiadlo P, Kaushik AK, Arruda EM, Waas AM, Shim BS, Xu J, Nandivada H, Pumplin BG, Lahann J, Ramamoorthy A, Kotov NA. 2007. Ultrastrong and stiff layered polymer nanocomposites[J]. Science, 318:80-83.
    [23] Deville S, Saiz E, Nalla RK, Tomsia AP. 2006. Freezing as a Path to Build Complex Composites[J]. Science, 311:515-518.
    [24] Munch E, Launey ME, Alsem DH, Saiz E, Tomsia AP, Ritchie RO. 2008. Tough, Bio-Inspired Hybrid Materials[J]. Science, 322:1516-1520.
    [25] Bonderer LJ, Studart AR, Gauckler LJ. 2008. Bioinspired Design and Assembly of PlateletReinforced Polymer Films[J]. Science, 319:1069-1073.
    [26] Chen R, Wang C-a, Huang Y, Le H. 2008. An efficient biomimetic process for fabrication of artificial nacre with ordered-nanostructure[J]. Mater. Sci. Eng., C, 28:218-222.
    [27] Yao HB, Fang HY, Tan ZH, Wu LH, Yu SH. 2010. Biologically Inspired, Strong, Transparent, and Functional Layered Organic-Inorganic Hybrid Films[J]. Angew. Chem. Int. Ed., 49:2140-2145.
    [28] Balazs AC, Emrick T, Russell TP. 2006. Nanoparticle Polymer Composites: Where Two Small Worlds Meet[J]. Science, 314:1107-1110.
    [29] Hortigüela MaJ, Aranaz I, Gutiérrez MaC, Ferrer ML, del Monte F. 2010. Chitosan Gelation Induced by the in Situ Formation of Gold Nanoparticles and Its Processing into Macroporous Scaffolds[J]. Biomacromolecules, 12:179-186.
    [30] Ofir Y, Samanta B, Rotello VM. 2008. Polymer and biopolymer mediated self-assembly of gold nanoparticles[J]. Chemical Society Reviews, 37:1814-1825.
    [31] Murugadoss A, Chattopadhyay A. 2008. A 'green' chitosan–silver nanoparticle composite as a heterogeneous as well as micro-heterogeneous catalyst[J]. Nanotechnology, 19:015603.
    [32] Liu T, et al. 2008. Ordered assemblies of clay nano-platelets[J]. Bioinsp. Biomim., 3:016005.
    [33] Lotsch BV, Ozin GA. 2008. All-Clay Photonic Crystals[J]. J. Am. Chem. Soc., 130:15252-15253.
    [34] Li Y-C, Schulz J, Grunlan JC. 2009. Polyelectrolyte/Nanosilicate Thin-Film Assemblies: Influence of pH on Growth, Mechanical Behavior, and Flammability[J]. ACS Appl. Mater. Interfaces, 1:2338-2347.
    [35] Li Y-C, Schulz J, Mannen S, Delhom C, Condon B, Chang S, Zammarano M, Grunlan JC. 2010. Flame Retardant Behavior of Polyelectrolyte?Clay Thin Film Assemblies on Cotton Fabric[J]. ACS Nano, 4:3325-3337. ??
    [1] Balazs AC, Emrick T, Russell TP. 2006. Nanoparticle Polymer Composites: Where Two Small Worlds Meet[J]. Science, 314:1107-1110.
    [2] Shenhar R, Rotello VM. 2003. Nanoparticles:  Scaffolds and Building Blocks[J]. Acc. Chem. Res., 36:549-561.
    [3] Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A. 2009. Graphene: The New Two-Dimensional Nanomaterial[J]. Angew. Chem. Int. Ed., 48:7752-7777.
    [4] Osada M, Sasaki T. 2009. Exfoliated oxide nanosheets: new solution to nanoelectronics[J]. J. Mater. Chem., 19:2503-2511.
    [5] Decher G. 1997. Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites[J]. Science, 277:1232-1237.
    [6] Srivastava S, Kotov NA. 2008. Composite Layer-by-Layer (LBL) Assembly with Inorganic Nanoparticles and Nanowires[J]. Acc. Chem. Res., 41:1831-1841.
    [7] Crisp MT, Kotov NA. 2003. Preparation of Nanoparticle Coatings on Surfaces of Complex Geometry[J]. Nano Lett., 3:173-177.
    [8] Wang Y, Tang Z, Podsiadlo P, Elkasabi Y, Lahann J, Kotov NA. 2006. Mirror-Like Photoconductive Layer-by-Layer Thin Films of Te Nanowires: The Fusion of Semiconductor, Metal, and Insulator Properties[J]. Adv. Mater., 18:518-522.
    [9] Tang Z, Kotov NA, Magonov S, Ozturk B. 2003. Nanostructured artificial nacre[J]. Nat Mater, 2:413-418.
    [10] Podsiadlo P, Kaushik AK, Arruda EM, Waas AM, Shim BS, Xu J, Nandivada H, Pumplin BG, Lahann J, Ramamoorthy A, Kotov NA. 2007. Ultrastrong and stiff layered polymer nanocomposites[J]. Science, 318:80-83.
    [11] Mallouk TE, Gavin JA. 1998. Molecular Recognition in Lamellar Solids and Thin Films[J]. Acc. Chem. Res., 31:209-217.
    [12] Cassagneau T, Fendler JH. 1998. High Density Rechargeable Lithium-Ion Batteries Self-Assembled from Graphite Oxide Nanoplatelets and Polyelectrolytes[J]. Adv. Mater., 10:877-881.
    [13] Kotov NA, Dekany I, Fendler JH. 1996. Ultrathin graphite oxide-polyelectrolyte composites prepared by self-assembly: Transition between conductive and non-conductive states[J]. Adv. Mater., 8:637-641.
    [14] Sasaki T, Ebina Y, Tanaka T, Harada M, Watanabe M, Decher G. 2001. Layer-by-layer assembly of titania nanosheet/polycation composite films[J]. Chem. Mater., 13:4661-4667.
    [15] Sasaki T, Ebina Y, Fukuda K, Tanaka T, Harada M, Watanabe M. 2002. Titania nanostructured films derived from a titania nanosheet/polycation multilayer assembly via heat treatment and UV irradiation[J]. Chem. Mater., 14:3524-3530.
    [16] Shibata T, Sakai N, Fukuda K, Ebina Y, Sasaki T. 2007. Photocatalytic properties of titania nanostructured films fabricated from titania nanosheets[J]. PCCP, 9:2413-2420.
    [17] Sakai N, Ebina Y, Takada K, Sasaki T. 2004. Electronic band structure of titania semiconductor nanosheets revealed by electrochemical and photoelectrochemical studies[J]. J. Am. Chem. Soc., 126:5851-5858.
    [18] Eda G, Fanchini G, Chhowalla M. 2008. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material[J]. Nat Nano, 3:270-274.
    [19] Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y. 2008. Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors[J]. ACS Nano,2:463-470.
    [20] Cote LJ, Cruz-Silva R, Huang J. 2009. Flash Reduction and Patterning of Graphite Oxide and Its Polymer Composite[J]. J. Am. Chem. Soc., 131:11027-11032.
    [21] Williams G, Seger B, Kamat PV. 2008. TiO2-Graphene Nanocomposites. UV-Assisted Photocatalytic Reduction of Graphene Oxide[J]. ACS Nano, 2:1487-1491.
    [22] Manga KK, Zhou Y, Yan Y, Loh KP. 2009. Multilayer Hybrid Films Consisting of Alternating Graphene and Titania Nanosheets with Ultrafast Electron Transfer and Photoconversion Properties[J]. Adv. Funct. Mater., In press:
    [23] Gilje S, Han S, Wang M, Wang KL, Kaner RB. 2007. A Chemical Route to Graphene for Device Applications[J]. Nano Lett., 7:3394-3398.
    [24] Tae EL, Lee KE, Jeong JS, Yoon KB. 2008. Synthesis of Diamond-Shape Titanate Molecular Sheets with Different Sizes and Realization of Quantum Confinement Effect during Dimensionality Reduction from Two to Zero[J]. J. Am. Chem. Soc., 130:6534-6543.
    [25] Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD. 1999. Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Sized Graphite Oxide Sheets and Polycations[J]. Chem. Mater., 11:771-778.
    [26] Sasaki T, Watanabe M. 1998. Osmotic swelling to exfoliation. Exceptionally high degrees of hydration of a layered titanate[J]. J. Am. Chem. Soc., 120:4682-4689.
    [27] Kou LA, Gao C. 2011. Making silica nanoparticle-covered graphene oxide nanohybrids as general building blocks for large-area superhydrophilic coatings[J]. Nanoscale, 3:519-528.
    [28] Yang SB, Feng XL, Wang L, Tang K, Maier J, Mullen K. 2010. Graphene-Based Nanosheets with a Sandwich Structure[J]. Angew Chem Int Edit, 49:4795-4799.
    [29] Wang ZM, Wang WD, Coombs N, Soheilnia N, Ozin GA. 2010. Graphene Oxide-Periodic Mesoporous Silica Sandwich Nanocomposites with Vertically Oriented Channels[J]. Acs Nano, 4:7437-7450. ??
    [1] Tappan BC, Steiner SA, Luther EP. 2010. Nanoporous Metal Foams[J]. Angew. Chem. Int. Ed.,49:4544-4565.
    [2] Koerner H, Price G, Pearce NA, Alexander M, Vaia RA. 2004. Remotely actuated polymer nanocomposites[mdash]stress-recovery of carbon-nanotube-filled thermoplastic elastomers[J]. Nat Mater, 3:115-120.
    [3] Ko H-F, Sfeir C, Kumta PN. 2010. Novel synthesis strategies for natural polymer and composite biomaterials as potential scaffolds for tissue engineering[J]. Phil. Trans. R. Soc. A, 368:1981-1997.
    [4] Moreno-Castilla C, Maldonado-Hódar FJ. 2005. Carbon aerogels for catalysis applications: An overview[J]. Carbon, 43:455-465.
    [5] Capadona JR, Shanmuganathan K, Tyler DJ, Rowan SJ, Weder C. 2008. Stimuli-Responsive Polymer Nanocomposites Inspired by the Sea Cucumber Dermis[J]. Science, 319:1370-1374.
    [6] Olsson RT, Azizi Samir MAS, Salazar Alvarez G, BelovaL, StromV, Berglund LA, IkkalaO, NoguesJ, Gedde UW. 2010. Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates[J]. Nat Nano, 5:584-588.
    [7] Perlich J, Kaune G, Memesa M, Gutmann JS, Müller-Buschbaum P. 2009. Sponge-like structures for application in photovoltaics[J]. Phil. Trans. R. Soc. A, 367:1783-1798.
    [8] Rogers JA, Someya T, Huang Y. 2010. Materials and Mechanics for Stretchable Electronics[J]. Science, 327:1603-1607.
    [9] Kim DH, Xiao J, Song J, Huang Y, Rogers JA. 2010. Stretchable, Curvilinear Electronics Based on Inorganic Materials[J]. Adv. Mater., 22:2108-2124.
    [10] Sekitani T, Someya T. 2010. Stretchable, Large-area Organic Electronics[J]. Adv. Mater., 22:2228-2246.
    [11] Sekitani T, Nakajima H, Maeda H, Fukushima T, Aida T, Hata K, Someya T. 2009. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors[J]. Nat Mater, 8:494-499.
    [12] Ahn BY, Duoss EB, Motala MJ, Guo X, Park S-I, Xiong Y, Yoon J, Nuzzo RG, Rogers JA, Lewis JA. 2009. Omnidirectional Printing of Flexible, Stretchable, and Spanning Silver Microelectrodes[J]. Science, 323:1590-1593.
    [13] Khang D-Y, Jiang H, Huang Y, Rogers JA. 2006. A Stretchable Form of Single-Crystal Silicon for High-Performance Electronics on Rubber Substrates[J]. Science, 311:208-212.
    [14] Kim D-H, Ahn J-H, Choi WM, Kim H-S, Kim T-H, Song J, Huang YY, Liu Z, Lu C, Rogers JA. 2008. Stretchable and Foldable Silicon Integrated Circuits[J]. Science, 320:507-511.
    [15] Sekitani T, Noguchi Y, Hata K, Fukushima T, Aida T, Someya T. 2008. A Rubberlike Stretchable Active Matrix Using Elastic Conductors[J]. Science, 321:1468-1472.
    [16] Bryning MB, Milkie DE, Islam MF, Hough LA, Kikkawa JM, Yodh AG. 2007. Carbon Nanotube Aerogels[J]. Adv. Mater., 19:661-664.
    [17] Gui X, Cao A, Wei J, Li H, Jia Y, Li Z, Fan L, Wang K, Zhu H, Wu D. 2010. Soft, Highly Conductive Nanotube Sponges and Composites with Controlled Compressibility[J]. ACS Nano, 4:2320-2326.
    [18] Chun K-Y, Oh Y, Rho J, Ahn J-H, Kim Y-J, Choi HR, Baik S. 2010. Highly conductive, printable and stretchable composite films of carbon nanotubes and silver[J]. Nat Nano, 5:853-857.
    [19] Hu B, Wang K, Wu L, Yu SH, Antonietti M, Titirici MM. 2010. Engineering Carbon Materials from the Hydrothermal Carbonization Process of Biomass[J]. Adv. Mater., 22:813-828.
    [20] Qian H-S, Yu S-H, Luo L-B, Gong J-Y, Fei L-F, Liu X-M. 2006. Synthesis of UniformTe@Carbon-Rich Composite Nanocables with Photoluminescence Properties and Carbonaceous Nanofibers by the Hydrothermal Carbonization of Glucose[J]. Chem. Mater., 18:2102-2108.
    [21] Wen Z, Wang Q, Li J. 2008. Template Synthesis of Aligned Carbon Nanotube Arrays using Glucose as a Carbon Source: Pt Decoration of Inner and Outer Nanotube Surfaces for Fuel-Cell Catalysts[J]. Adv. Funct. Mater., 18:959-964.
    [22] Zhan Y-J, Yu S-H. 2008. Direct Synthesis of Carbon-Rich Composite Sub-microtubes by Combination of a Solvothermal Route and a Succeeding Self-Assembly Process[J]. J. Phys. Chem. C, 112:4024-4028.
    [23] Yu S, Cui X, Li L, Li K, Yu B, Antonietti M, C?lfen H. 2004. From Starch to Metal/Carbon Hybrid Nanostructures: Hydrothermal Metal-Catalyzed Carbonization[J]. Adv. Mater., 16:1636-1640.
    [24] Qian HS, Antonietti M, Yu SH. 2007. Hybrid“Golden Fleece”: Synthesis and Catalytic Performance of Uniform Carbon Nanofibers and Silica Nanotubes Embedded with a High Population of Noble-Metal Nanoparticles[J]. Adv. Funct. Mater., 17:637-643.
    [25] Sahoo S, Husale S, Karna S, Nayak SK, Ajayan PM. 2011. Controlled Assembly of Ag Nanoparticles and Carbon Nanotube Hybrid Structures for Biosensing[J]. J. Am. Chem. Soc., 133:4005-4009.
    [26] Luo L-B, Yu S-H, Qian H-S, Zhou T. 2005. Large-Scale Fabrication of Flexible Silver/Cross-Linked Poly(vinyl alcohol) Coaxial Nanocables by a Facile Solution Approach[J]. J. Am. Chem. Soc., 127:2822-2823.
    [27] Meyers MA, Chen P-Y, Lin AY-M, Seki Y. 2008. Biological materials: Structure and mechanical properties[J]. Prog. Mater Sci., 53:1-206.
    [1] Sanchez C, Julian B, Belleville P, Popall M. 2005. Applications of hybrid organic-inorganic nanocomposites[J]. J. Mater. Chem., 15:3559-3592.
    [2] Welbes LL, Borovik AS. 2005. Confinement of Metal Complexes within Porous Hosts:  Development of Functional Materials for Gas Binding and Catalysis[J]. Acc. Chem. Res., 38:765-774.
    [3] Allouche J, Boissiere M, Helary C, Livage J, Coradin T. 2006. Biomimetic core-shell gelatine/silica nanoparticles: a new example of biopolymer-based nanocomposites[J]. J. Mater. Chem., 16:3120-3125.
    [4] Andrade G, Barbosa-Stancioli EF, Mansur AAP, Vasconcelos WL, Mansur HS. 2006. Design of novel hybrid organic-inorganic nanostructured biomaterials for immunoassay applications[J]. Biomedical Materials, 1:221-234.
    [5] Adina Arvinte AS, Vesa Virtanen, Camelia Bala,. 2008. Evaluation of Meldola Blue-Carbon Nanotube-Sol-Gel Composite for Electrochemical NADH Sensors and Their Application for Lactate Dehydrogenase-Based Biosensors[J]. Electroanalysis, 20:2355-2362.
    [6] Bruce PG, Scrosati B, Tarascon JM. 2008. Nanomaterials for rechargeable lithium batteries[J].Angew. Chem. Int. Ed., 47:2930-2946.
    [7] Hatchett DW, Josowicz M. 2008. Composites of Intrinsically Conducting Polymers as Sensing Nanomaterials[J]. Chem. Rev., 108:746-769.
    [8] Soler-Illia GJdAA, Sanchez C, Lebeau B, Patarin J. 2002. Chemical Strategies To Design Textured Materials:  from Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures[J]. Chem. Rev., 102:4093-4138.
    [9] Wan Y, Zhao. 2007. On the Controllable Soft-Templating Approach to Mesoporous Silicates[J]. Chem. Rev., 107:2821-2860.
    [10] Zou H, Wu SS, Shen J. 2008. Polymer/silica nanocomposites: Preparation, characterization, properties, and applications[J]. Chem. Rev., 108:3893-3957.
    [11] Yaghi OM, O'Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J. 2003. Reticular synthesis and the design of new materials[J]. Nature, 423:705-714.
    [12] Ferey G, Serre C, Mellot-Draznieks C, Millange F, Surble S, Dutour J, Margiolaki I. 2004. A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction[J]. Angewandte Chemie-International Edition, 43:6296-6301.
    [13] Ockwig NW, Delgado-Friedrichs O, O'Keeffe M, Yaghi OM. 2005. Reticular chemistry: Occurrence and taxonomy of nets and grammar for the design of frameworks[J]. Acc. Chem. Res., 38:176-182.
    [14] Wei-Tang Yao S-HY. 2008. Synthesis of Semiconducting Functional Materials in Solution: From II-VI Semiconductor to Inorganic-Organic Hybrid Semiconductor Nanomaterials13[J]. Adv. Funct. Mater., 18:3357-3366.
    [15] Li Y-D, Liao H-W, Ding Y, Qian Y-T, Yang L, Zhou G-E. 1998. Nonaqueous Synthesis of CdS Nanorod Semiconductor[J]. Chem. Mater., 10:2301-2303.
    [16] Yu S-H, Wu Y-S, Yang J, Han Z-H, Xie Y, Qian Y-T, Liu X-M. 1998. A Novel Solventothermal Synthetic Route to Nanocrystalline CdE (E = S, Se, Te) and Morphological Control[J]. Chem. Mater., 10:2309-2312.
    [17] Jian Yang CX, Shu-Hong Yu, Jing-Hui Zeng, Yi-Tai Qian,. 2002. General Synthesis of Semiconductor Chalcogenide Nanorods by Using the Monodentate Ligand-Butylamine as a Shape Controller13[J]. Angew. Chem. Int. Ed., 41:4697-4700.
    [18] Deng Z-X, Wang C, Sun X-M, Li Y-D. 2002. Structure-Directing Coordination Template Effect of Ethylenediamine in Formations of ZnS and ZnSe Nanocrystallites via Solvothermal Route[J]. Inorg. Chem., 41:869-873.
    [19] S.-H. Yu, M. Yoshimura. 2002. Shape and Phase Control of ZnS Nanocrystals: Template Fabrication of Wurtzite ZnS Single-Crystal Nanosheets and ZnO Flake-like Dendrites from a Lamellar Molecular Precursor ZnS(NH2CH2CH2NH2)0.5 [J]. Adv. Mater., 14:296-300.
    [20] Deng Z-X, Li L, Li Y. 2003. Novel Inorganic-Organic-Layered Structures:  Crystallographic Understanding of Both Phase and Morphology Formations of One-Dimensional CdE (E = S, Se, Te) Nanorods in Ethylenediamine[J]. Inorg. Chem., 42:2331-2341.
    [21] W. Yao S. H Y, X. Y. Huang, J. Jiang, L. Q. Zhao, L. Pan, J. Li,. 2005. Nanocrystals of an Inorganic-Organic Hybrid Semiconductor: Formation of Uniform Nanobelts of [ZnSe](Diethylenetriamine)0.5 in a Ternary Solution[J]. Adv. Mater., 17:2799-2802.
    [22] Zang ZA, Yao HB, Zhou YX, Yao WT, Yu SH. 2008. Synthesis and magnetic properties of new [Fe18S25](TETAH)(14) (TETAH equals protonated triethylenetetramine) nanoribbons: An efficient precursor to Fe7S8 nanowires and porous Fe2O3 nanorods[J]. Chem. Mater.,20:4749-4755.
    [23] Yao H-B, Li X-B, Yu S-H. 2009. New Blue Light Emitting Ultralong Cd(L)(TeO3) (L = polyamine) Organic-Inorganic Hybrid Nanofibre Bundles: Their Thermal Stability and Acidic Sensitivity[J]. Chem. Eur. J., 15: 7611-7618
    [24] Yao WT, Yu SH, Wu QS. 2007. From mesostructured wurtzite ZnS-nanowire/amine nanocomposites to ZnS nanowires exhibiting quantum size effects: A mild-solution chemistry approach[J]. Adv. Funct. Mater., 17:623-631.
    [25] Gao M-R, Yao W-T, Yao H-B, Yu S-H. 2009. Synthesis of Unique Ultrathin Lamellar Mesostructured CoSe2-Amine (Protonated) Nanobelts in a Binary Solution[J]. J. Am. Chem. Soc., 131:7486-7487.
    [26] Panda AB, Acharya S, Efrima S. 2005. Ultranarrow ZnSe Nanorods and Nanowires: Structure, Spectroscopy, and One-Dimensional Properties[J]. Adv. Mater., 17:2471-2474.
    [27] Pacholski C, Kornowski A, Weller H. 2002. Self-Assembly of ZnO: From Nanodots to Nanorods[J]. Angew. Chem. Int. Ed., 41:1188-1191.
    [28] Pradhan N, Efrima S. 2004. Supercrystals of Uniform Nanorods and Nanowires, and the Nanorod-to-Nanowire Oriented Transition[J]. The Journal of Physical Chemistry B, 108:11964-11970.
    [29] Tang Z, Kotov NA, Giersig M. 2002. Spontaneous Organization of Single CdTe Nanoparticles into Luminescent Nanowires[J]. Science, 297:237-240.
    [30] Pradhan N, Xu H, Peng X. 2006. Colloidal CdSe Quantum Wires by Oriented Attachment[J]. Nano Lett., 6:720-724.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700