复杂网络抗毁性建模优化及其评估技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有自组织、自相似、吸引子、小世界、无标度中部分或全部性质的网络称为复杂网络。自然界和社会中的系统复杂性可归因于一个个交织的网络的复杂性,通过这些复杂网络,系统的各个组成部分互相之间发生着各种显性的、非线性的作用。近年来,关于复杂网络的研究应运而生,它是刚刚兴起的一个研究方向,在对复杂网络的研究过程中,科学家们发现复杂网络的幂率分布特性,即复杂网络中节点的度值K相对于它的概率P(K)满足幂率关系,且幂指数多在大于2小于3的范围内。人们给具有这种性质的网络起了一个特别的名字:无标度网络。这里的无标度是指网络缺乏一个特征度值(或平均度值),即节点度值的波动范围相当大。
     复杂网络的幂率特性使得在对网络进行攻击时,只需要破坏少数关键节点即可造成网络的全面瘫痪,即对故意攻击表现出很强的脆弱性;而另一方面,复杂网络对于网络中出现的随机攻击具有很强的鲁棒性,这就是复杂网络的“鲁棒又脆弱”的特性。因此,越来越多的科研机构都把复杂网络抗毁性问题作为一个关注的热点问题进行研究。
     目前对于复杂网络抗毁性还有以下几方面的问题亟待解决:1)对网络呈现的拓扑特性本质的认识尚不够深入:对网络的抗毁性进行研究必须对网络的拓扑特性有深入的了解,即了解网络幂率特性的成因,从网络发展的内部规律来解决复杂网络中存在的问题。2)网络抗毁性的优化方法限于图论及数学的方法,不能从网络发展的内部规律进行研究,忽略了抗毁性作为影响网络成因的作用。3)针对网络中现有的级联失效现象建立的失效模型,不能从节点本身的属性去考虑;4)现有的网络抗毁性评估标准过于复杂,缺乏一种简单有效的抗毁性评估技术。
     本文围绕上述问题,开展了以下研究:
     1)对高优化权衡/容忍—HOT (Highly Optimized Tolerance/Tradeoff)理论进行研究,并从系统优化发展的角度研究了复杂网络中幂率特性的成因。幂率特性是复杂网络的普遍现象,对于其成因也有很多种解释,本文通过一个简单的森林防火模型阐述了HOT理论在系统优化过程中如何得到具有幂率分布特性的输出,并对HOT理论在系统优化以及建立网络模型等方面的应用进行总结。
     2)提出了一种基于HOT理论的网络抗毁性动态演化模型:HOT理论关于复杂系统方面研究的一个热点是系统的鲁棒性与脆弱性之间的关系,系统必须要对其所在的环境中面临的不确定因素有较强的鲁棒性,然而系统的复杂性又使得这种鲁棒性对外界的不确定因素具有一定的选择性。本文利用HOT理论,综合考虑网络中节点的演化过程,研究网络中影响节点加入网络中的一系列因素,并将抗毁性作为新结点加入网络过程中的一个衡量标准,最终建立了具有抗毁性的网络动态演化模型。理论分析表明建立的模型在拓扑特性上与现实的Internet相一致,另外仿真分析表明建立的模型能够有效的抵御网络中的攻击。
     3)提出了一种基于节点重要性的层次分析法--AHP(Analytic Hierarchy Process)网络级联失效模型:针对网络中出现的级联失效现象,提出了一种基于节点重要性的AHP网络级联失效模型。其中,节点的重要性IMP由节点的度K,节点的最短路径数S,以及节点邻居的最短路径数Ne三个因素决定,各种因素在决定节点重要性时所占的比例使用AHP层次分析法计算得出。仿真分析了ER和BA网络在这种级联失效模型下受到不同类型攻击的网络效率变化情况,证明了这种模型的有效性;另外仿真分析还研究了当各种因素所占比例变化时网络在受到攻击后效率的变化情况,最终表明该模型能够降低网络在受到攻击时网络效率的下降幅度。
     4)提出了一种基于节点重要性熵的网络抗毁性评估技术:网络的无标度特性实际上是一种非同质特性,无标度网络中大部分节点节点都只有很少量的连接,而少量节点却拥有很高的度,这种节点度不均匀分布的特性导致了网络难以有效的抵抗网络中的故意攻击,能够在一定程度上反映网络的抗毁能力。本文提出了一种基于节点重要性熵的网络抗毁性评估算法,其中节点的重要性由其介数决定,能够很好的衡量节点的重要性在网络中的变化情况。通过对不同规模下网络受到攻击后的熵的计算,可以验证这种方法能够有效的评估网络的抗毁能力。
Network with some or all of the natures of self-organization, self-similarity, small world, scale-free is the complex network. The complexity of the nature and social can be attributed to the complexity of the network interwoven, through which, the various components of the system turn to be various dominant, nonlinear effect between them. In recent years, the reaearch on complex networks came into being, which is just the rise of a new direction. In the course of the study of complex networks, scientists have found that the degree of complex network follows the power law distribution, that is, the node degree K with respect to its probability P(K) meet the power law relationship, and the power exponent ranges from 2 to 3. Network with such properties has a special name:scale-free network. Here the scale-free means the network lakes a feature value (or an average value of degree), that is, the node degree range value flucted considerablely.
     The pawer law properties of complex network makes it is fragile to the deliberate attacks, that is when attack only a few key nodes can cause the network parlay, while it is very robust to the random attacks. The complex network has the properties of'Robust-yet-Fragile', therefore, more and more research institution focus their attention on the network invulnerability.
     At present, many issues of the research on network invulnerability need to be investigated immediately, such as follows:1) there is no deeply understanding of the nature characteristics of the network topology:it needs to have a deeply understanding to study the problem of the complex network invulnerability. Learn the main cause of the pawer law and solve the problem in the complex network by the way of learning the development of the internal law of network.2) The present optimization of network invulnerability limited in the Picture Theory and the Mathematical, which can not seize the internal development laws of the network, which ignores the impact of the network invulnerability as the cause of the network.3) The present cascading models do not consider the attributes of the nodes.4) The existing network invulnerability evaluation criteria are too complex, lacking a simple and effective assessment of invulnerability technology.
     This thesis focuses on the issuses above and carries out the follows research:
     1) Researched the HOT(Highly Optimized Tolerance/Tradeoff) theory and the cause of the pawer law from the perspective of system optimization. Pawer law is a common phenomenon in complex networks, and there are many theories to explain its cause. This thesis explained how to get a power law distribution output by HOT optimization process through a simple model of fire forest, and summarized the applications of HOT thery on system optimization and modeling of the network.
     2) Porposed the invulnerable dynamic evoluation model of network based on HOT theory. A key aspect of complex systems that has been a main theme of HOT is the relationship between robustness and fragility. System should be robust to uncertainties in their environment, while the ensuing complexity makes these systems robust to the uncertainties for which such complexity was selected. This thesis solved the problem of building the invulnerable dynamic evolution model of the network as a HOT problem, and through the nodes preference attachment scheme, the invulnerability and self-recovery capabilities etc. of the system could evolve toward the optimal direction. Theoretical analysis shows that the node can adjust its properties to generate the invulnerable dynamic evolution model with power law distribution of node degree; simulation analysis indicates that the HOT model has a better invulnerability than that of BA model.
     3) Proposed a model for cascading network failures based on the nodes with different tolerance parameter. We proposed a simple model for cascading failures in the network to explore how the failures can have a great impact on the network performance, and allocated every node a Ci by the tolerance parameterαbased on the node importance IMP, and the IMP is determined by the node degree K, the number of the shortest paths S through a node, and the number of the shortest paths Ne through the neighbors of a node, then we fix every element a weight to compute the IMP by the AHP (Analytic Hierarchy Process) theory. Based on the model, we analyzed the influence of different types of attacks to the network performance, and also tabled some proposals for reducing the damage the networks suffered from the cascading failures.
     4) Proposed a network invulnerability assessment techniques based on the network entropy of node importance. The network scale-free characteristic is actually a non-homogeneous, which is, most of the nodes have a small number of connections while few of the nodes have a large number of connections. The uneven distribution of the node degree lead the network can not effectively resistant the deliberately attacks, which can reflect the ability of the network invulnerability in a certain extent. This thesis proposed a network invulnerability assessment techniques based on the network entropy of node importance, in which the node importance is consist of the constant and variable part, which can measure the node importance when the network changes. By comparing the network entropy after the attack with its initial entropy, this method can assess the network invulnerability effectively.
引文
[1]Barabasi A-L, Albert R. Emergency of scaling in random networks [J],1999, 286(5439):509-512
    [2]Vazquez A, Pastor-Satorras R, Vespignani A. Large-scale topological and dynamical properties of the Internet [J]. Phys Rev E,2002,65(6):066130
    [3]Amaral L A N, Scala A, Barthelemy M, et al. Classes of behavior of small-world networks [J].proc Natl Acad Sci U.S.A,2000,97,11149-11152
    [4]Albert-Laszlo, Barabasi. The Physics of the Web.2001. http://www.physicsWeb.org/article/world/14/7/09.
    [5]Faloutsos M, Faloutsos P, Faloutsos C. On Power-law Relationships of the Internet Topology [J]. ACM SIGCOMM Computer Communication Review, 1999, vol.29(4):251-262
    [6 Almer C, Steffan J. Generating Network Topologies that Obey Power Laws [C] GLOBECOM San Francisco,2001:434-438.
    [7]Tian B, Towsley Generators, On Distinguishing between Internet Power Law Topology[C], INFOCOM New York:IEEE 2002:638-647.
    [8]Chen Q, Chang H, Govindan R, et al. The Origin of Power Laws in Internet Topologies Revisited [C]. in INFOCOM New York:IEEE 2002:608617.
    [9]Siganos C, Faloutsos M, Faloutsos P, et al. Power-laws and the AS-level Internet topology [J]. IEEE/ACM Trans. on Networking,2003, vol.11(4): 514-524
    [10]http://bgp.potaroo.net/as1221/bgp-active.html,2008
    [11]J. M. Carlson and J. C. Doyle. Complexity and robustness [C]. In Proc Natl Acad Sci USA 2002,99 (Suppl 1):2538-2545
    [12]J. M. Carlson and J. C. Doyle. Highly Optimized Tolerance:a mechanism for power laws in designed systems. Physics Review E,60:1412-1428, 1999.
    [13]J. M. Carlson and J. C. Doyle. Highly Optimized Tolerance:Robustness and design in complex systems. Physics Review Letters, 2000,84(11):2529-2532,
    [14]J. C. Doyle and J. M. Carlson. Power laws, Highly Optimized Tolerance and generalized source coding[J]. Physics Review Letters,,2000,84(24):5656-5659
    [15]X. Zhu, J. Yu, and J. C. Doyle. Heavy tails, generalized coding, and optimal web layout[C]. In Proceedings of IEEE Infocom, April 2001.
    [16]Zolfangbari A et al. Framework for network sunvivability performance[C], IEEE JSAC.1994,12(1):46-51
    [17]Leiw S C. A Framework for characterizing Disaster-based Network survivability[C]. IEEE JSAC,1994,12(1):52-58
    [18]Redner, S. How popular is your paper? an empirical study of the citationdistribution[J]. Euro Phys. J. B.,1998,4:131-134.
    [19]Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. and Barabasi, A. The large-scale organization of metabolic networks[J]. Nature,2000,407, 651-654
    [20]Ebel, H., Mielsch, L. I., Bornholdt, S. Scale-free topology of email networks[J].2002. Phys. Rev. E 66,035103(R)
    [21]Faloutsos M, Faloutsos P, Falouts s C. On power-law relationships of the Internet topology[J]. Comput Commun Rev,1999,29:251-262.
    [22]Cohen R, Erez K, ben-Avraham D, et al. Resilience of the Internet to random breakdowns[J]. Phys. Rev. Lett.,2000,85(21):4626-4628.
    [23]Callaway D S, Newman M E J, Strogatz S H, et al. Network robustness and fragility:percolationon random graphs [J]. Phys. Rev. Lett.,2000,85(25): 5468-5471.
    [24]Newman M E J, Strogatz S H, Watts D J. Random graphs with arbitrary degree distributions and their applications [J]. Phys. Rev. E,2001,64(2) 26118.
    [25]Broadbent S R, Hammersley J M. Percolat ion processes:I. Crystals and mazes[J]. Proc. Cambridge Philos. Soc.,1957,53:629-641.
    [26]Hammersley J M. Percolation processes:Ⅱ. The connective constant[J]. Proc. Cambridge Philos. Soc,1957,53:642-645.
    [27]Schwarte N, Cohen R, Ben-Avr aham D, et al. Percolation in dir ected scale-free networks[J]. Phys. Rev. E,2002,66(1):015104.
    [28]Albert R, Jeong H, Barabsi A-L. Error and attack tolerance of complex networks[J]. Nature,2000,406:378-382.
    [29]Jeong H,Mason S, Bar absi A-L, et al. Lethality and centrality in protein networks[J]. Nature,2001,411:41-42
    [30]Dunne J A, Williams R J, Mar tinez N D. Network structure and biodiversity loss in foodwebs:robustness increases with connect ance[J]. Ecology Letters,2002,5:558-567.
    [31]Newman M E J, Forrest S, Balthrop J. Email networks and the spread of computer viruses[J]. Phys. Rev. E,2002,66(3):035101.
    [32]Magoni D. Tearing down the internet[J]. IEEE J. Sel. Areas Commun,2003, 21(6):949-960.
    [1]http://www.worldbank.org/data/databytopic/GDP.pdf.2004
    [2]http://www.worldbank.org/data/databytopic/GDP.pdf.2005
    [3]A-L. Barabasi and R. Albert, Emergence of scaling in random networks, Science,1999.10, vol.286:509-512
    [4]Albert R, Barabasi A L.Statistical mechanics of complex networks[J].Rev Mod Phys,2002,74(1):47-97
    [5]W. Stallings, High-Speed Networks and Internets:Performance and Quality of Service[C]. Englewood Cliffs, NJ 07632:P T R Prentice-Hall,2002.
    [6]Lada A. Adamic, Zipf, Power-law, Pareto-a ranking tutorial,Information Dynamics Lab[C], HP Labs Palo Alto, CA 94304,2000.
    [7]Newman M E J. Power laws, Pareto distributions and Zipfs law, arXiv:cond-mat/041,2004
    [8]Gutenberg B, Richter R F. Bulletin of the Seismological Society of America, 1944,34:185
    [9]张济忠,分形[M],北京:清华大学出版社,1997.326[zhang J Z, Fractal[M].Beijing:Tsing hua university Press,1997,326(in Chinese)]
    [10]Crovella M,"Bestavros A. Self-Similarity in the World Wide Web:Evidence and Possible Causes[C], IEEE/ACM Transactions on Networking,1997,5(6):835
    [11]Lotka A J. The frequency distribution of scientific productivity[J]. Washington Acad Sci,1926,16(12):317-324.
    [12]Price, D. J. deS. Networks of scientific papers[J]. Science,1965.149,510-515
    [13]Adamic L A, Huberman B A. Highly Optimize tolerance[C],Quarterly Journal of Electronic Commerce,2000,1:5[14]李幼平,无尺度现象引发的思考[J],中国传媒杂志,2005,7(2):16-20.
    [15]Teslyuk A B, Krashakov S A, Shchur L N. On the universality of rank distributions of website popularity[C]//. Arxiv preprint cs. NI/0404010,2004
    [16]张宇,张建玮,王正行.金融市场中幂律分布的经验和理论研究进展[J].物理,2004,33(10):734-740
    [17]Newman M E J. SIAM, The structure and function of complex networks[J], Phys.review,2003,45:167.
    [18]T.S.Evans, Complex Networks, Contemporary Physics,2004,45:455 [cond-mat/0405123]. Scholar
    [19]周涛,柏文洁,汪秉宏等.复杂网络研究概述[J].物理,2005,34(1):31-36
    [20]http://news.qdu.edu.cn/news.aspx?newsid=1514,2003
    [21]Faloutsos M, Faloutsos P, Faloutsos C. On power-law relationships of the Internet topology[J], Computer Communications Review,1999,29:251
    [22]Adamic L A, Huberman B A., Power-law distribution of the World Wide Web[J], Science,2000,287:2115
    [23]Albert R, Jeong H, Barabasi A-L, Internet-diameter of the World-Wide Web[J], Nature,1999,401:130
    [24]Ebel H, Mielsch L-I, Bornholdt S, Scale-free topology of E-mail networks[J], Phys. Rev. E,2002,66:035103(R).
    [25]Albert R, Barabasi A-L.Emergence of scaling in random networks[J], Science,1999,286:509
    [26]Redner S, How popular is your paper? An emprical study of the citation distribution[J], Eur. Phys. J. B,1998,4:131
    [27]Jeong H, Tombor B, Albert R, et al, The large scale organisation of metabolic networks, [J]. Nature,2000,407:651
    [28]Jeong H, Mason S P, Barabasi A-L et al.Lethality and centrality in protein networks[J], Nature,2001,411:41
    [29]Montoya, J.M., Sole, R.V.,2000. Small World Patterns in. Food Web[J]. Santa Fe Institute Working Paper 00-10-059
    [30]Bollobas B随机图/Random Graphs, Second Edition北京:世界图书出版公司北京公司,2003
    [31]http://physicsweb.org/articles/world/14/7/9/1,2001
    [32]Watts D J, Strogatz S H, Collective dynamics of'small-world'networks[J], Nature,1998,393:440.
    [33]Milgram S. The small world problem[J], Psychology Today,1967,2:60
    [34]Travers J, Milgram S.An experimental study of the small world[J], problem Sociometry,1969,32:425
    [35]Buchanan M, Know the neighbour[J], New Scientist,2004,181(2430):32.
    [36]Faloutsos M, Faloutsos P, Faloutsos C. On power-law relationships of the Internet topology [J]. ACM SIGCOMM Computer Communication Review, 1999,29(4):251-262.
    [37]Freeman LC. A Set of Measures of Centrality Based on Betweenness[J], Sociometry 1977; 40:35-41.
    [38]Newman M E J. Assortative mixing in networks[J],Phys Rev Lett,2002,89: 208701.
    [39]Newman, M. E. Mixing patterns in networks[J], Phys Rev E,2003, 67(2):026126
    [40]E. Ravasz and A.-L. Barabasi. Hierarchical organization in complex networks[J]. Phys. Rev. E,2003,67(2):026112
    [41]Bak P, Tang C, Wiesenfeld K. Self-organized criticality:an explanation of 1/f noise[J], Phys. Rev. Lett.,1987,59:381
    [42]帕巴克.大自然如何工作[M].武汉:华中师范大学出版社,2001,[Bak P. How Nature Works[M]. Wuhan:Central China Normal University Press, 2001(in Chinese)]
    [43]Reynolds P J, Klein W, Stanley H E. J. A Real-space Renormalization Group for Site and Bond[J]. Percolation, Phys. C,1977,10:L167.
    [44]Wilson K G, Kogut J. The renormalization group and the expansion[J], Physics Reports,1974,12:75
    [45]Reed W J, Hughes B D. From Gene Families and Genera to Incomes and internet file sizes:Why Power Laws are so Common in Nature[J], Phys. Rev. E,2002,66:067103
    [46]Newman M E J.Power laws, Pareto distributions and Zipfs Law, arXiv: cond-mat/0412004v2.
    [47]Sornette D.Critical Phenomena in Natural Sciences[J]. New York: Springer-Verlag,2000,288
    [48]Miller G A. Some effects of intermittent silence[J], American Journal of Psychology,1957,70:311
    [49]Barabasi A-L, Albert R.Mean-Field Theory for Scale-Free Random Networks[J], Physica A,1999,272:173
    [50]Merton R K.The Matthew effect in science [J]., Science,1968,159:56
    [51]Yule G U. A mathematical theory of evolution based on the conclusions of power laws[J], Philos.Trans. R. Soc. London B,1925,213:21
    [52]Simon H A. On a class of skew distribution functions[J], Biometrika,1955, 42:425.
    [53]斯图亚特·考夫曼.科学新领域的探索[M].长沙:湖南科学技术出版社,2004,236, [Kauffman S A. Investigations[M]. Changsha:Hunan Science & Technology Press,2004,236(in Chinese)]
    [54]Sneppen K, Bak P, Flyvbjerg H et al.Evolution as a self-organized critical phenomenon[C], Proc. Natl. Acad. Sci. USA,1995,92:5209
    [55]Willis J C, Yule G U.Some statistics of evolution and geographical distribution in plants and animals, and their significance[J],Nature,1922, 109:177
    [56]Carlson J M, Doyle J.Highly optimized tolerance:A mechanism for power laws in designed systems[J], Phys. Rev. E,1999,60:1412-1427
    [57]Carlson J M, Doyle J.Highly optimized tolerance:robustness and design in complex system[J]s, Phys. Rev. Lett.,2000,84:2529-2532
    [58]Sornette D. Critical Phenomena in Natural Sciences[J], New York: Springer-Verlag,2000,317
    [59]Xiaoyun, Zhu Jie Yu, John Doyle, Heavy Tails, Generalized Coding, and Optimal Web Layout[J], Proceedings of IEEE INFOCOM 2001,P1617-1626.
    [60]John Doyle, J. M. Carlson, Power Laws, Highly Optimized Tolerance, and Generalized Source Coding[J], Phys. Rev. E 60,1412, (1999).
    [61]Fabrikant A, Koutsoupias E, Papadimitriou. C. Heuristically Optimized Trade-offs:A new paradigm for Power-laws in the Internet[C],ICALP: IEEE,2002:110-122.
    [62]L. Li, D. Alderson, W. Willinger, and J. Doyle. A first-principles approach to understanding the Internet's router-level topology[J]. In SIGCOMM,2004.
    [63]Alderson D, Doyle J, Willinger W. Internet Connectivity at the AS level:An optimization Driven Modeling Approach [C]. In SIGCOMM. Karlsruhe, Germany:ACM,2003.
    [1]Faloutsos M, Faloutsos P, Faloutsos C. On Power-law Relationships of the Internet Topology [J]. ACM SIGCOMM Computer Communication Review, 1999, vol.29(4):251-262
    [2]Almer C, Steffan J. Generating Network Topologies that Obey Power Laws [C] GLOBECOM San Francisco,2001:434-438.
    [3]Tian B, Towsley G. On Distinguishing between Internet Power Law Topology[C], INFOCOM New York:IEEE 2002,vol(2):638-647.
    [4]Chen Q, Chang H, Govindan R, et al. The Origin of Power Laws in Internet Topologies Revisited [C]. in INFOCOM New York:IEEE 2002:608617.
    [5]Siganos C, Faloutsos M, Faloutsos P, et al. Power-laws and the AS-level Internet topology [J]. IEEE/ACM Trans. on Networking,2003, vol.11(4): 514-524
    [6]JC Willis, GU Yule, Some statistics of evolution and geographical distribution in plants and animals, and their significance[J], Nature,1922, 109:177-179
    [7]Carlson J M, Doyle J.Highly optimized tolerance:A mechanism for power laws in designed systems[J], Phys. Rev. E,1999,60:1412-1427
    [8]Carlson J M, Doyle J.Highly optimized tolerance:robustness and design in complex systems[J], Phys. Rev. Lett.,2000,84:2529-2532
    [9]熊蔚明,刘有恒.关于通信网可靠性的研究进展[J].通信学报,1990,11(4):43-49.
    [10]熊庆旭,刘有恒.基于网络状态之间关系的网络可靠性分析[J].通信学报,1998,18(3):55-61.
    [11]张学渊.梁雄健.关于通信网可靠性的研究方法[J].通信学报,1997,18(4):54-58.
    [12]张学渊.梁雄健.关于通信网可靠性定义的探讨[J].北京邮电大学学报,1997,18(2):31-35.
    [13]陈太一,陈常嘉.通信网的可靠性[J].电信科学,1992,8(5):18-25.
    [14]丁开盛,张学渊,梁雄健.电信网可靠性综合评估方法[J].北京邮电大学学报,1999,20(1).
    [15]江光杰,李德毅.通信网络的可靠性评估[J].通信学报,1997.18(8):85-89.
    [16]于全.夏启斌,高春蓉.军用通信网可靠性评估方法[J].现代军事通信,1995,3(3):36-42.
    [17]李安涛.通信网的抗毁性[J].军事通信技术,1992,10(43):1-9.
    [18]李瑛.概率性网络的抗毁性方法[J].军事通信技术,1993,5(48):1-8.
    [19]赖仪一.军事通信系统生存能力评估的探讨[J].通信工程学院学报,1996,10(1):73-86.
    [20]赖仪一.通信系统生存能力设计思考[J].军事通信技术,1993.9(47):1-10.
    [21]Dahlberg T. Ramaswamy S and D Tipper, SurvivabilityIssue in W ireless M obile Network[C]. Proc of First International Workshop on Mobile and Wireless Communication Network, Paris, France,1997.5.
    [22]蒋玉鹏,刘晓明.通信网可靠性评估方法和模拟[J].通信工程学院学报,1996,10(3):74-79.
    [23]Jothi R, Raghavachari B. Survivable network design:the capacitate dminimum spanning network problem[J]. Information Processing Letters, 2004,91:183-190.
    [24]BrostrEm P, Holmberg K. Multi-objective design of survivable IP networks[J]. Ann Oper Res,2006,147:235-253.
    [25]于波.遗传算法在网络流量及带宽分配中的应用[J].中南民族学院学报:自然科学版,2001(9):14-17.
    [26]申健,许福永.基于禁忌搜索算法的计算机通信网络中容量与流量分配问题的优化研究[J].兰州大学学报:自然科学版,2003(3):35-39.
    [27]Ramasubramanian S, Harjani A. Comparison of failure dependent protection strategies in optical networks[J]. Photon Netw Commun,2006,12:195-210.
    [28]郭磊,虞红芳,李乐民.WDM网状网中双链路失效的保护设计[J].电子学报,2005(5):883-888.
    [29]ShargelB, Sayama H, Ep stein IR, et al. Optimization of robustness and connectivity in complex networks[J]. Phys.Rev. Lett.,2003,90 (6):068701. [30] Paul G, Tanizawa T, Havlin S, et al. Optimization of robustness of complex networks[J]. Eur. Phys. J. B,2004,38 (2):187-191.
    [31]Valente A X C N, SarkarA, Stone H A. Two-peak and three-peak optimal complex networks[J]. Phys. Rev. Lett.,2004,92 (11):118702.
    [32]Tanizawa T, Paul G, Cohen R, et al. Optimization of network robustness to waves of targeted and random attacks[J]. Phys. Rev.E,2005,71(4):047101.
    [33]Wang B, Tang H W, Guo C H, et al. Entropy Optimization of Scalefree Networks Robustness to Random Failures [J]. Physica A,2005,363: 591-596.
    [34]Sole R V, Alverde S V. Information theory of complex networks:on evolution and architectural constraints [J].Lect. Notes. Phys.,2004,650: 189-207.
    [35]Beygelzimer A, Grinstein G Improving network robustness by edge modification[J]. Physica A,2005,357:593-612.
    [36]WattsD J, Strogatz S H. Collective dynamics of small-world networks[J]. Nature,1998,393:440-442.
    [37]NewmanM E J. Mixing patterns in networks[J]. Phys. Rev. E,2003,67 (2): 026126.
    [38]NewmanM E J. A ssortative mixing in networks[J]. Phys. Rev. Lett.,2002, 89 (20):208701.
    [39]N. Goldenfeld and L. Kadano, Renormalization group theory in the new millennium[J], Science 1999,284,87-89
    [40]G. Nicolis and I. Prigogine, Self Organization in Nonequilibrium Systems[C],Wiley, New York,1977.
    [41]P. Bak, C. Tang, K. Wiesenfeld, Self-Organized Criticality:An Explanation of 1/f Noise[J],Phys. Rev. Lett.1987,59:381-384
    [42]See, e.g., P. Bak, How Nature Works:The Science of Self-Organized Criticality[C], Copernicus, New York,1996.
    [43]S. A. Kau_man, The Origins of Order:Self-Organization and Selection in Evolution[M], Oxford Univ. Press, New York,1993.
    [44]B. Mandelbrot, The Fractal Geometry of Nature [M],New York,1983.
    [45]C. C. Barton and P. R. Lapointe, Fractals in the EarthSciences[C], Plenum Press, New York,1994.
    [46]M. Schroeder, Fractals, Chaos, and Power Laws[C], Freeman, New York, 1991.
    [47]R. Lewin, Complexity-Life at the Edge of Chaos,Macmillan[C], New York, 1992.
    [48]M. M. Waldrop, Complexity:The Emerging Science at the Edge of Order and Chaos, Simon & Schuster[C], New York,1992.
    [49]Goodwin, B.C, How the Leopard Changed Its Spots:the Evolution of Complexity[C]. New York,1994.12.12
    [50]L. Smolin, The Life of the Cosmos, Oxford Univ. Press,New York,1997.
    [51]A. Gore, Earth in the Balance[C], Houston Miain, Boston,1992
    [52]W. E. Leland, M.S. Taqqu, W. Willinger, and D. V. Wilson,network efficiency[J],ACM/SIGCOMM Computer Communications Review,1993. 23,183
    [53]W. Willinger and V. Paxson. Where Mathematics meets the Internet[J],Notices of the American Mathematical Society, 1998,Vol(45):961-970
    [54]W. Stallings, High-Speed Networks:Tcp/Ip and ATM Design Principles[M], 1997,Prentice Hall, New York
    [55]W. Willinger and J. C. Doyle. Robustness and the Internet:Design and Evolution In Robust design:A Repertoire of Biological, Ecological, and Engineering Case Studies[M], E. Jen, Editor, Oxford University Press
    [56]Fabrikant A, Koutsoupias E, Papadimitriou. C. Heuristically Optimized Trade-offs:A new paradigm for Power- laws in the Internet [C]. ICALP: IEEE,2002:110-122.
    [57]Alderson D, Doyle J, Willinger W. Internet Connectivity at the AS level:An optimization Driven Modeling Approach [C].in SIGCOMM. Karlsruhe, Germany:ACM,2003.
    [58]Freeman, L. C.A set of measures of centrality based on betweenness[J]. Sociometry,1997,40:35-41.
    [59]Crucitti P, Latora V, Marchiori M. Model for cascading failures in complex networks[J], Phys. Rev.2004,E69(4),045104
    [1]J. Glanz and R. Perez-Pena,90 Seconds That Left Tens of Millions of People in the Dar[C]k, New York Times, August 26,2003.
    [2]R. Albert, H. Jeong, and A.-L. Baraba'si, Error and attack tolerance of complex networks[J], Nature,2000,406:378-382.
    [3]P. Holme, B. J. Kim, C.N.Yoon, S.K. Han, Attack vulnerabiliy of complex networks[J],Phys. Rev.2002, E 65.056109.
    [4]P. Crucitti, V. Latora, M. Marchiori, and A. Rapisarda, Efficiency of Scale-Free Networks:Error and Attack Tolerance[J], Physica A,2003.320, 622
    [5]M. Girvan and M.E.J. Newman, Community Structure in Social and Biological Networks[C], Proc. Natl. Acad. Sci. USA 99, (2002),8271-8276
    [6]A.E. Motter, T. Nishikawa, and Y. Lai, A perspective on nonlinear dynamics[J], Phys. Rev.2002,E (66):065103
    [7]Albert R,Jeong H,Barabasi A L. Error and attack tolerance of complexnetworks [J]. Nature,2000,406(6794):378-382
    [8]Broder A,Kumar R,Maghoul F,et al.Graph structure in the Web[J].Comput. Netw,2000,33(1):309-320
    [9]Jeong H, Mason S,Barabasi A L,et al.Lethality and centrality in protein networks[J]. Nature,2001,411(6833):41-42
    [10]Dunne J A,Williams R J, Martinez N D. Network structure and biodiversity loss in food webs:Robustness increases with connectance[J]. Ecology Letters,2002,5(4):558-567
    [11]Newman M E J,Forrest S,Balthrop J.Email networks and the spread of computer viruses [J]. Phys.Rev.E,2002,66(3):035101
    [12]Magoni D.Tearing down the Internet [J].IEEE J.Sel.Areas Commun,2003,21 (6):949-960
    [13]Samant K, Bhattacharyya S.Topology, search and fault tolerance in unstructured P2P networks. Proceedings of the Hawaii International Conference on System Sciences[C].Hawaii:IEEE Press,2004
    [14]Holme P, Kim B J, Yoon C N, et al.Attack vulnerability of complex networks [J]. Physical Review E,2002,65(5):
    [15]Freeman L C.A set of measures of centrality based upon betweenness[J]. Sociometry,1977,40(1):35-41
    [16]Cohen R,Erez K,ben-Avraham D,et al.Resilience of the Internet to random breakdowns[J].Phys.Rev.Lett.,2000,85(21):4626-4628
    [17]Newman M E J, Strogatz S H,Watts D J.Random graphs with arbitrary degree distributions and their applications[J].Phys.Rev.E,2001,64(2):26118
    [18]Broadbent S R, Hammersley J M.Percolation processes:Ⅰ.Crystals and mazes. Proceedings of the Cambridge Philosophical Society[C].Cambridge: Cambridge Univ.Press 1957
    [19]Hammersley J M.Percolation processes:The connective constant[J].Proc. Cambridge Philos.Soc.,1957,53 642-645
    [20]Callaway D S, Newman M E J, Strogatz S H,et al. Network Robustness and Fragility:Percolation on Random Graphs[J]. Physical Review Letters,2000,85 (25):5468-5471
    [21]Gallos L K,Cohen R,Argyrakis P,et al. Stability and Topology of Scale-Free Networks under Attack and Defense Strategies[J].Physical Review Letters, 2005,94(18):188701 [22]Albert R, Barabasi A-L. Statistical mechanics of complex networks [J].Rev. Mod.Phys.,2002,74(1):47-51 [23]Dobson I, Carreras B A, Newman D E.A Probabilistic Loading-dependent Model of Cascading Failure[J]. Probability in the Engineering and Informational Sciences,2005,19(1):15-32
    [24]Dobson I, Carreras B A, Newman D E. A probabilistic loading-dependent model of cascading failure and possible implications for blackouts. Proceedings of the 36th Hawaii International Conference on System Sciences[C].Hawaii:IEEE Computer Society,2003
    [25]Dobson I,Carreras B A,Newman D E.Branching process models for the exponentially increasing portions of cascading failure blackouts.Thirty-eighth Hawaii International Conference on System Sciences[C].Hawaii:IEEE Computer Society,2005
    [26]Dobson I,Carreras B A,Enewman D.A branching process approximation to cascading load-dependent system failure.Proceedings of the 37th Annual Hawaii International Conference on System Sciences[C].Hawaii:IEEE Computer Society,2004
    [27]Carreras B A,Lynch V E,Dobson I,et al.Critical points and transitions in an electric power transmission model for cascading failure blackouts[J].Journal of Nonlinear Science,2002,12(4):985
    [28]Carreras B A,Lynch V E,Dobson I,et al. Chaos:an Complex dynamics of blackouts in power transmission systems[J]. Interdisciplinary Journal of Nonlinear Science,2004,14(3):643
    [29]Asavathiratham C.The Influence Model:A Tractable Representation for the Dynamics of Networked Markov Chains[D].Massachusetts Institute of Technology,2000
    [30]Watts D J.A simple model of global cascades on random networks[J].Proc. Natl.Acad.Sci.U.S.A,2002,99(9):5766-5771
    [31]Bak P,Tang C,Wiesenfeld K.Self-organized criticality:An explanation of the 1/f noise[J].Physical Review Letters,1987,59(4):381-384
    [32]Bak P,Tang C,Wiesenfeld K.Self-organized criticality[J].Physical Review A, 1988,38(1):364-374
    [33]Bak P,Bak P.How nature works:the science of self-organized criticality[M]. Copernicus,1996
    [34]Bonabeau E. Sand pile Dynamics on Random Graphs[J].Journal Physical Society of Japan,1995,64(1):327-327
    [35]Lise S, Paczuski M. Nonconservative Earthquake Model of Self-Organized Criticality on a Random Graph[J].Physical Review Letters,2002,88(22): 228301
    [36]Goh K I, Lee D S, Kahng B,et al.Cascading toppling dynamics on scale-free networks[J].Physica A,2005,346(12):93-103
    [37]Moreno Y, Gomez J B, Pacheco A F. Instability of scale-free networks under node-breaking avalanches [J]. Europhys.Lett.,2002,58(4):630-636
    [38]Moreno Y, Gomez J B, Pacheco A F. Fracture and Second-Order Phase Transitions[J]. Physical Review Letters,2000,85(14):2865-2868
    [39]Moreno Y, Pastor-Satorras R,Vazquez A, et al. Critical load and congestion instabilities in scale-free networks [J].Europhys.Lett.,2003,62(2):292-298
    [40]Motter A E, Lai Y C. Cascade-based attacks on complete networks[J].Phys.Rev.E,2002,66(6):065102
    [41]Goh K I,Kahng B, Kim D.Universal Behavior of Load Distribution in Scale-Free Networks[J].Physical Review Letters,2001,87(27):278701
    [42]Barthelemy M.Comment on"Universal Behavior of Load Distribution in Scale-Free Networks"[J].Physical Review Letters,2003,91 (18):189803
    [43]Motter A E.Cascade Control and Defense in Complex Networks[J].Phys.Rev. Lett.,2004,93(9):098701
    [44]Crucitti P, Latora V, Marchiori M.Model for cascading failures in complex networks[J].Phys.Rev.E,2004,69(4):045104
    [45]Kinney R,Crucitti P,Albert R,et al.Modeling cascading failures in the North American power grid[J].Eur.Phys.J.B,2005,46(1):101-107
    [46]Holme P, Kim B J.Vertex overload breakdown in evolving networks[J].Phys. Rev.E,2002,65(6):066109
    [47]Holme P.Edge overload breakdown in evolving networks[J].Phys.Rev.E., 2002,66(3):036119
    [48]Mantegna R N, Stanley H E.An introduction to econophysics:correlations and complexity in finance[M].Cambridge University Press New York,NY,USA,1999
    [49]Watts D J.A simple model of global cascades on random networks[J].Proc.Natl.Acad.Sci.U.S.A,2002,99(9):5766-5771
    [50]Moreno Y, Vazquez A.The Bak-Sneppen model on scale-free networks[J]. Europhysics Letters,2002,57(5):765-771
    [51]David Newthl, Jeff Ash, Evolving cascading failure resilience in complex networks[J], Physica A(2005)
    [52]Belton V. Multiple Criteria Decision Analysis for strategic decision making. Springer,2003
    [53]Saaty T. L. The Fundamentals of Decision Making and Priority Theory with the Analytic Hierarchy Process[M], Vol. Ⅵ, AHP Series. RWS Publications, 2000
    [1]吴俊,谭跃进.复杂网络抗毁性测度研究[J].系统工程学报.2005:128-131
    [2]陈建国,张永静.通信网络拓扑抗毁性评估算法研究[J].无线电通信技术.2006,32(1).:6-7
    [3]刘啸林,王能.通信网络抗毁性量度研究[J].上海师范大学学报(自然科学版).2006,35(5).:38-41.
    [4]陈忠学,靳蕃,邹盛唐等.短波网基于节点的抗毁性评估[J].通信技术.2000,3:26-27.
    [5]张苑民,马保卫.通信网络系统可靠性评测技术研究[J].网络安全与系统可靠性.2007,4(2):25-26
    [6]Wasserman S, Faust K. Social Network Analysis:Methods and Applications [M]. Cambridge:Cambridge University Press,1994.
    [7]Faloutsos M, Faloutsos P, Faloutss C. On power-law relationships of the Internet topology[J]. Comput Commun Rev,1999,29:251-262.
    [8]Lawrence S, Giles C L. Searching the world wide web [J]. Science,1998,280: 98-100.
    [9]Albert R, Jeong H, A. L. Baraba'si. Diameter of the world wide web [J]. Nature,1999,401:130-131.
    [10]Barabasi A L, Reka A lbert, Hawoong Jeong. Mean-field theory for scale-free random networks [J]. Physica A,1999,272:173-187.
    [11]Barabasi A L, Reka Albert, Hawoong Jeong. Scale-free characterist ics of random networks:the topology of the world wide web [J]. Physica A,2000, 281:69-77.
    [12]姜璐.熵——描写复杂系统结构的一个物理量[J].系统辩证学学报,1994,(4):50-55.
    [13]阎长俊,王启家,初长庚.系统和熵[J].沈阳建筑工程学院学报,1997,13(2):212-216.
    [14]吴俊,谭跃进,网络结构熵及其在非标度网络中的应用[J],系统工程理论与实践,2004,(6)
    [15]Freeman L C. Centrality in Social Networks:Conceptual Clarification[J]. Social Networks,1979,1:215-239.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700