延迟容忍移动传感器网络数据传输技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线传感器网络作为二十一世纪公认的最重要技术之一,已经成为学术界中的热门研究方向,在偏远地区、应急性、条件恶劣等传统网络无法覆盖的通信环境中有着很好的适用性。随着应用需求的不断扩展,传感器节点常常被部署在较大的监视区域内,并依附在运动物体上,以及由于节点自身的资源有限性,导致了整个网络具有节点随机运动、部署相对稀疏和通信范围较小的特点,因此这类网络很难和传统网络一样提供稳定的端对端通信连接。为了解决在该类网络中有效数据传输问题,延迟容忍移动传感器网络(Delay Tolerant Mobile Sensor Network, DTMSN)的概念应运而生。
     DTMSN是对具有节点随机运动和间歇性连通特点的无线传感器网络的统称。作为一种面向非连接的网络类型,DTMSN有着非常广泛的应用领域,如环境数据获取、病毒扩散信息监测、战场信息收集等,已经成为无线传感器网络研究的新热点。目前,已有DTMSN研究还主要集中在数据传输路由技术方面,主要目标是以更低的传输延迟和传输能耗来实现更高的数据传输成功率,并取得了一定的研究成果。
     针对DTMSN网络特性,本文在对已有研究的深入分析和总结的基础上,对]DTMSN的数据传输进行了更为全面、细致的研究,主要探讨了以下问题:(1)如何在低能耗开销需求下实现更高效的邻居节点异步连接探测;(2)如何实现有效的数据传输路由,以完成数据传输成功率、传输延迟和传输能耗的更有效平衡;(3)如何在低运算开销下有效实现数据的安全传输。本文主要取得如下创新性研究成果:
     1.针对DTMSN邻居节点连接探测问题,提出了一种基于互质周期对的节点异步连接探测机制EAPS(Efficient Asynchronous Probing Scheme)。其基本思想是将传感器节点状态划分为唤醒、睡眠两类,利用基于互质周期对的时隙睡眠方法,来保证在没有预先连接信息条件下节点异步探测以低探测能耗实现较高探测成功率和较低探测延迟;此外,在分析RWP运功模型的统计特性基础上,研究了不同网络区域内的节点出现概率分布和相遇概率分布,将整个网络划分为不同区域,并通过在不同区域内合理选择探测占空比,进一步提高探测性能。
     2.针对DTMSN数据传输路由问题,提出了一种基于节点运动状态感知的数据传输策略MSAD (Motive State-Aware data Delivery scheme)。其基本思想是使用两个通信频率f1和f2分别进行节点运动状态获取和数据传输。其中,在频率f1上采用基于TDOA(Time Difference of Arrival)技术的定位方法来降低采用GPS带来的成本问题,并利用节点周期性定位获得节点的当前位置、运动速度大小和方向等运动状态参数,通过预测节点在下一时刻的位置,来估算节点传输概率;在频率f2上,节点之间通过比较传输概率来决定数据转发路由。此外,MSAD结合“自私性”原则(selfish,SF)和消息生存时间(survival time, ST)进行消息队列管理,以避免仅采用生存时间而导致的消息转发不均衡的问题以及仅采用“自私性”原则而产生的传输延迟较大情况。
     3.针对DTMSN安全数据传输问题,分析了身份密码学IBC(Identity-based Cryptography)在DTMSN中的适用性,并提出了一种低运算开销的IBC签名和批量认证机制ISBA(Identity-based Signature scheme with Batch Authentication)。其基本思想是采用在线/离线签名技术来降低IBC签名在线阶段的运算开销,而利用批量认证技术来实现一次性认证多个消息,从而降低认证消息签名的运算开销;此外,通过引入接收节点建立连接的最小剩余空间,对MSAD策略的数据转发算法进行了改进,增加了每次批量认证的消息数量,进一步降低了运算开销,仿真实验表明,改进的MSAD并没有对传输性能造成明显影响。
Recognized as one of the most important technologies in the21st century, wireless sensor network(WSN) has been attacked a lot of attentions in academia, and it could work well in many challenging special environments where traditional networks are difficult to be applied, such as remote areas, emergency communications fields and areas with harsh natural conditions. With the continuous expansion of its application requirements, sensor nodes are often deployed in a large monitoring area, and need to be placed on moving objects. In this network, the stable end-to-end communication connect can not be provided as traditional networks, because sensor nodes have the characteristics of the random movements, sparsity and the limited communication range. In order to efficiently transmit data packets in these environments, the concept of delay tolerant mobile sensor network(DTMSN) is proposed to face these challenges.
     DTMSN is a kind of network which is characterized by node random mobility and intermittent connectivity between nodes. As a non-connection oriented network, DTMSN is suitable for many applications, such as environmental data acquisition, virus spreading informantion monitoring, battlefield information gathering, et al, and has drawn wide attentions. At present, most of exsiting DTMSN research still foucs on improving data delivery routing mechanism, and many research achievements in this field has been obtained. Its main goal is to achieve a higher data delivery radio with the lower delivery delay and energy consumption.
     Based on the in-depth analysis and systematical summary of relevant works, we do a comprehensive and detailed research on DTMSN data delivery technology based on the characteristics of this network. The main studies foucs on the following issues:(1) How to efficiently discover neighbor nodes with a lower probing energy consumption in an asynchronous case;(2) How to efficiently delivery data to improve the delivery radio, decrease the delivery delay and energy consumptions;(3) How to efficient achieve the secure data delivery with a lower computational cost. The innovative research achievements are shown as following:
     1. To solve the issue of neighbor discovery, an Efficient Asynchronous Probing Scheme(EAPS) for DTMSN is proposed. EAPS divides the status of sensor nodes into two categories:wakeup and sleeping, and designes a slotted-wakeup schedule based oncoprime cycle pairs to improve the probing accuracy and decrease the discovery delay under the low energy consumption. Additionally, EAPS gives a reasonable regional plan based on the study of stochastic properties of Random Way-Point(RWP) mobility model, and optimal coprime cycle pairs are selected in these different regions to further improve the discovery radio and reduce energy consumption.
     2. To solve the issue of data delivery routing, a Motive State-Aware data Delivery scheme(MSAD) for DTMSN is proposed. MSAD adopts two communication frequencies f1, f2to obtain motive state of sensor nodes and forward data. On the frequency of f1, MSAD uses a new positioning method based on time different of arrival(TDOA) which has a lower cost than GPS, sensor nodes obtain their own motive state by cyclical positioning and calculate their delivery probability by predicting their position in the next moment. On the frequency of f2, data delivey routing between sensor nodes will be determined by comparing the delivery probability. Additionally, to efficiently manage the message queue, MSAD employs the principle of selfish(SF) and the survival time(ST) to avoid the issue of imbalance number of message copies caused by only adopting ST and the issue of the large delivery delay caused by only adopting SF
     3. To solve the issue of secure data delivery, we analyze the applicability of identity-based cryptography in DTMSN, and an Identity-based Signature scheme with Batch Authentication(ISBA) is proposed to reduce the computational cost for DTMSN. ISBA is composed of online/offline signature, batch authentication and message forwarding algorithm improve-ment based on MSAD. Specially, online/offline signature has a very light computational cost at the online signature phase; Batch authentication could reduce the computation cost by validating multiple signatures simultaneously instead of verifying them one by one; Additionally, the minimum remaining space(MRS) is introduced to improve MSAD that new connections can't be established until the remaining space of the receiver isn't less than MRS, therefore, average message number in each batch authentication increases and the computational cost reduces. Simulation results show that the improved mechanism of MSAD does not induce negative impact on the delivery performance.
引文
[1]Akyildiz L F, Su W L, Sankaraubramaniam Y, et al. A Survey on Sensor Networks[J]. IEEE Communications Magazine.40(8),2002, pp.102-114.
    [2]Akyildiz L F, Su W L, Sankaraubramaniam Y, et al. Wireless sensor networks:A survey[J]. Computer Networks.38(4),2002, pp.393-422.
    [3]Yick J, Mukherjee B, Ghosal D. Wireless sensor network survey[J]. Computer Networks.52(2008),2008, pp.2292-2330.
    [4]Kam J, Katz R, Pister K. Next century challenges:Mobile networking for smart dust[C]. Proceeding of ACM MobiCom. New York,1999, pp.271-278.
    [5]Kumar S, David S. SensIT:Sensor Information Technology For the Warfighter[C]. Proc. of 2001 International Conference on Information Fusion.2001, pp.3-9.
    [6]MIT technologyreview[EB/OL], http://www.technologyreview.com/
    [7]Business week magazine[EB/OL], http://www.businessweek.com/
    [8]Vinton C, Scott B, Adrian H, et al. Delay-Tolerant Network Architecture[S]. DTN Rearch Group Internet Draft.2003, pp.1-33.
    [9]Fall K. A delay-tolerant network architecture for challenged internets[C]. Proc. of ACM SIGCOMM 2003 Conference on Computer Communications. New York, 2003, pp.27-34.
    [10]Weiser M. The Computer for The 21st Century[J]. Scientific American 265(3), 1991,pp.30-31.
    [11]Wang Y, Lin F, Wu H. Poste:Efficient data transmission in delay fault tolerant mobile sensor networks(DFT-MSN)[J]. Proceedings of IEEE International Conference on Network Protocols. IEEE Transactions on Mobile Computer.6(9), 2005, pp.1021-1034.
    [12]http://rfc-reforg/RFC-TEXTS/4838/kw-dtn_architecture.html.
    [13]Wang Y, Dang H, Wu H. A survey on analytic studies of Delay-To lerant Mobile Sensor Networks[J]. Wireless Communications and Mobile Computing.7(10), 2007, pp.1197-1208.
    [14]Artemios G, Voyiatzis. A Survey of Delay-and Disruption-Tolerant Networking Applications[J]. Journal of internet engineering.2012,5(1):331-344.
    [15]许力,无线传感器网络的安全和优化[M],电子工业出版社,2010,pp.2-3.
    [16]周贤伟,无线传感器网络与安全[M],国防工业出版社,2007,pp.7-9.
    [17]http://wiki.n4c.eu/wiki/index.php/DTN_App lications-Overview.
    [18]樊秀梅,单志广,张宝贤等.容迟网络体系结构及其关键技术研究[J].电子信息学报.36(1),2008,pp.161-168.
    [19]Camp T, Boleng J, Davies V. A Survey of Mobility Models for Ad Hoc Network Research[C].Wireless Communication & Mobile Computing(WCMC).2(5),2002, pp.483-502.
    [20]Johnson D, Maltz D. Dynamic source routing in ad hoc wireless networks. Mobile Computing[M].1996, pp.153-181.
    [21]Elizabeth M. An Analysis of the Optimum Node Density for Ad hoc Mobile Networks[C]. Proceedings of IEEE International Conference on Communications. 2001,pp.857-861.
    [22]Jian L, Pmohapatra L. Location aided knowledge extraction routing for mobile ad hoc networks[C]. Wireless Communications and Networking,2003, pp.1180-1184.
    [23]http://www.isiedu/nsnam/ns/
    [24]Keranen A, Ott J, Karkkainen T. The ONE simulator for DTN protocol evaluation[C]. Proc. Of the 2nd International Conference on Simulation Tools and Techniques.2009, DOI:10.4108/ICST.SIMUTOOLS2009.5674.
    [25]Sanchez M, Manzoni P. ANEJOS:A Java based simulator for ad hoc networks[J]. Future Generation Computer Systems.17(5),2001, pp.573-583.
    [26]王兵,严斌宇,袁道华.Ad Hoc节点移动性模型特点初探[J].四川大学学报.42(1),2006,pp.68-72.
    [27]时锐,杨孝宗.自组网Random Direction移动模型点空间概率分布的研究[J].计算机研究与发展.41(7),2004,pp.1166-1173.
    [28]Nain P, Towsley D, Liu B Y, et al. Properties of Random Direction Models[C]. Proceeding of IEEE INFOCOM.2005, pp.1897-1907.
    [29]Tolety V. Load reduction in ad hoc networks using mobile servers[Dissertation]. Colorado School of Mines.1999.
    [30]Liang B, Haas Z. Predictive distance-based mobility management for PCS networks[C]. Proceedings of the Joint Conference of the IEEE Computer and Communications Societies(INFOCOM).1999, pp.1377-1384.
    [31]Davies V. Evaluating mobility models within an ad hoc network[Dissertation]. Colorado School of Mines.2000.
    [32]Hong X, Gerla M, Chiang C. A group mobility model for ad hoc wireless networks[C]. Proceedings of the ACM International Workshop on Modeling and Simulation of Wireless and Mobile Systems.1999, pp.53-60.
    [33]Wu K J, Yu Quan. A Multi-Group Coordination Mobility Model for Ad Hoc Network[C]. Proceedings of IEEE Military Communications Conference.2006, pp.1-5.
    [34]Ramanathan R, Redi J, Santivanez C, et al. Polit:Ad Hoc Networking with Directional Antennas:A Complete System Solution[J]. IEEE Journal on Selected Area in Communication.23(3),2005, pp.496-506.
    [35]Jakllari Q Luo W, Krishnamurthy S. An Integrated Neighbor Discovery and MAC Protocol for Ad Hoc Networks Using Directional Antennas[C]. Proc. of WoWMoM. 2005, pp.11-21.
    [36]Drula C, Amza C, Rousseau F, et al. Adaptive Energy Conserving Algorithms for Neighbor Discovery in Opportunistic Bluetooth Networks [J]. IEEE Journal on Selected areas in Communications.25(1),2007, pp.96-107.
    [37]Wang W, Srinivasan V, Motani M. Adaptive Contact Probing Mechanisms for Delay Tolerant Applications[C]. MobiCom' 07.2007, pp.230-241.
    [38]Choi J B, Shen X M. Adaptive Exponential Beacon Period Protocol for Power Saving in Delay Tolerant Networks[C]. IEEE International Conference on Communications.2009, pp.5004-5009.
    [39]杨奎武,郑康锋,钮心忻等.一种延迟容忍移动传感器网络自适应连接探测机制[J].电子与信息学报.33(6),2011.pp.1282-1289.
    [40]Madan R, Lall S. An Energy-Optimal Algorithm for Neighbor Discovery in Wireless Sensor Networks[J]. Mobile Networks and Applications.11(3),2006, pp.317-326.
    [41]Wang W, Motani M, Srinivasan V. Opportunistic Energy-Efficient Contact Probing in Delay-Tolerant Applications[J]. IEEE/ACM Transactions on networking.17(5), 2009, pp.1592-1605.
    [42]Yang D M, Shin J M, Kim J, et al. Asynchronous Probing Scheme for the Optimal Energy-Efficient Neighbor Discovery in Opportunistic Networking[C]. Proc. Of the 2009 IEEE International Conference on Pervasive Computing and Communication. 2009, pp.1-4.
    [43]Yang D M, Shin J M, Kim J, et al. An Energy-Optimal Scheme for Neighbor Discovery in Opportunistic Networking[C]. Proc. Of the 6th IEEE Conference on Consumer Communications and Networking Conference.2009, pp.951-952.
    [44]Galluzzi V, Herman T. Survey:Discovery in Wireless Sensor Networks[J]. International Journal of Distributed Sensor Networks.2012, DOI:10.1155/2012 /271860.
    [45]Angelosante D, Biglieri E, Lops M. Neighbor Discovery for Wireless Networks [C]. IEEE International Symposium on Information Theory.2007, pp.826-830.
    [46]Angelosante D, Biglieri E, Lops M. Neighbor Discovery in Wireless Networks:A Multiuser-Detection Approach[C]. Information Theory and Applications Workshop. 2007, pp46-53.
    [47]Karowski N, Viana A C, Wolisz A. Optimized Asynchronous Multi-channel Neighbor Discovery[C]. Proc. of IEEEINFOCOM.2011, pp.536-540.
    [48]Herman T, Pemmaraju S, Pilard L, et al. Temporal partition in sensor networks [C]. Stabilization, Safety, and Security of Distributed Systems.2007,pp.325-339.
    [49]Vasudevan S, Towsley D, Goeckel D, et al. Neighbor discovery in wireless networks and the coupon collector's problem[C]. Proceedings of 15th Annual International Conference on Mobile Computing and Networking.2009, pp.181-192.
    [50]Bakht M, Kravets. SearchLight:asynchronous neighbor discovery using systematic probing[J]. Mobile Computing and Communications Review.14(4),2010, pp.31-33.
    [51]Bradonjic M, Kohler E, Ostrovsky R. Near-optimal radio use for wireless network synchronization[M]. Algorithmic Aspects of Wireless Sensor Networks.2009, pp.15-28.
    [52]Tseng Y C, Hsu C S, Hsieh T Y. Power-saving protocols for IEEE 802.11-based multi-hop ad hoc networks[C]. Proceedings of the 21st Annual Joint Conference of the IEEE Computer and Communication Society.2002, pp.200-209.
    [53]Zheng J, Hou C, Sha L. Optimal Block Design for Asynchronous Wake-up Schedules and Its Applications in Multihop Wireless Networks [J]. IEEE Trans. On Mob lie Comput.5(9),2006, pp.1228-1241.
    [54]Khatibi S, Rohani R. Quorum-based neighbor discovery in self organized cognitive MANET[C]. IEEE Internet Symp. Personal. Indoor and Mobile Radio Communications.2010, pp.2239-2243.
    [55]Dutta P, Culler D. Practical asynchronous neighbor discovery and rendezvous for mobile sensing applications[C]. Proceedings of the 6th ACM conference on Embedded network sensor systems.2008, pp.71-84.
    [56]Arvind K, Karthik L, Ragunathan R. U-Connect:A Low-Latency Energy-Efficient Asynchronous Neighbor Discovery Pro tocol[C]. Proceedings of the 9th ACM/IEEE International Conference on Information Processing in Sensor Networks.2010, pp.350-361.
    [57]Ko H, Oh S, Kim C. Adaptive, asynchronous rendezvous protocol for opportunistic networks[J]. Electronics Letters.2012, pp.462-464.
    [58]Gong H G, Yu L F. Study on Routing Protocols for Delay Tolerant Mobile Networks[J]. Internal Journal of Distributed Sensor Networks.2013, DOI:10.1155 /2013/145727.
    [59]李巧勤,刘明,曾家智.延迟容忍移动无线传感器网络路由策略综述[J].计算机应用研究.27(5),2010,pp.1611-1613.
    [60]Wang Y, Dang H, Wu H Y. A survey on analytic studies of Delay-Tolerant Mobile Sensor Networks[J]. Wireless Communications & Mobile Computing-Wire less Ad Hoc and Sensor Networks.7(10),2007, pp.1197-1208.
    [61]Mangrulkar R S, Atiquc M. Routing Protocol for Delay Tolerant Network:A Survey and Comparison[C]. IEEE International Conference on Communication Control and Computing Technologies.2010, pp.210-215.
    [62]Wang Y, Wu H. Delay/fault-tolerant mobile sensor network (DFT-MSN):a new paradigm for pervasive information gathering[J]. IEEE Trans on Mobile Computing. 2007, pp.1021-1034.
    [63]Wang C, Liu I, Kuang J M. Performance Analysis on Direct Transmission Scheme under RWP Mobility Model in DTMSNS[C]. International Conferece on Wireless Communications, Networking and Mobile Computing.2011, pp.1-4.
    [64]Vahdat A, Becker D. Epidemic routing for partially connected Ad hoc network[R]. Durham, NC:Department of Computer Science Duke University,2000.
    [65]Juang P, Oki H, Wang Y, et al. Energy-efficient computing for wildlife tracking: design tradeoffs and early experiences with ZebarNet[C]. Proceedings of the 10th International Conference on Architectural Support for Programming Languages and Operating Systems.2002, pp.96-107.
    [66]Mundur P, Seligman M, Jin N L. Immunity-based epidemic routing in intermittent networks[C]. Proceedings of the 5th Annual IEEE Communications Society Conference on Sensor. Mesh and Ad Hoc Communications and Networks.2008, pp.609-611.
    [67]Small T, Haas Z J. The Shared Wireless Infestation Model-A New Ad Hoc Networking Paradigm[C]. Proceedings of ACM International Symposium on Mobile Ad Hoc Networking and Computing.2003, pp.233-244.
    [68]Small T, Haas Z J. Resource and Performance Tradeoffs in Delay-Tolerant Wireless Networks[C]. Proceedings of ACM SIGCOMM' 05 workshop on Delay Tolerant Networking and Related Topics.2005, ppt.260-267.
    [69]Spyropoulos T, Psounis K, Raghvendra C S. Spray and Wait:An Efficient Routing Scheme for intermittently Connected Mobile Networks[C]. Proceeding of SIGCOMM.2005.
    [70]Spyropoulos T, Psounis K, Raghvendra C S. Spray and Focus Efficient Mobility-Assisted Tolerant Networks[C]. Proceeding of workshop on PerCom. 2007, pp.79-85.
    [71]Harras K A, Almeroth K C. Controlled flooding in disconnected sparse mobile networks[J]. Wireless Communication and Mobile Computing.9(1),2009, pp.21-33.
    [72]Tan K, Zhang Q, Zhu W. Shortest path routing in partially connected ad hoc networks[C]. in Proceedings of IEEE Global Telecommunications Conference. 2003, pp.1038-1042.
    [73]Burns B, Brock O, Levine B N. MV routing and capacity building in disruption tolerant networks[C]. Proceedings of the 24th Annual Joint Conference of the IEEE Computer and Communications Societies.2005, pp.398-408.
    [74]Wang X, Song C, Distributed real-time data traffic statistics assisted routing protocol for vehicular networks[C]. Proceedings of the 16th IEEE International Conference on Parallel and Distributed Systems.20120, pp.863-867.
    [75]Li Z, Shen H Y. Utility-based distributed routing in intermittently connected networks[C]. Proc of the 37 th International Conference on Parallel Processing. 2008,pp.604-611.
    [76]Lindgren A, Doria A, and Schelen O. Probabilistic routing in intermittently connected networks[J]. ACM SIGMOBILE Mobile Computing and Communications Review.7(3),2003, pp.19-20.
    [77]Wang Y and Wu H Y. Replication-based efficient data delivery scheme (RED) for delay/fault-tolerant mobile sensor network (DFT-MSN)[C]. Proceedings of the 4th Annual IEEE International Conference on Pervasive Computing and Communications Workshops.2006, pp.485-489.
    [78]许富龙,刘明,龚海刚等.延迟容忍传感器网络基于相对距离的数据传输[J].软件学报.21(3),2010,pp.490-504.
    [79]Pasztor B, Musolesim, Masxolo C. Opportunistic mobile sensor data collection with SCAR[C]. Proc. of the 4th IEEE International Conference onMobile Ad hoc and Sensor Systems.2007, pp.1-12.
    [80]Zhu J Q, Cao J N, Liu M, et al. A mobility prediction-based adaptive data gathering protocol for delay tolerantmobile sensor network[C]. Proc. of IEEE Global Telecommunications Conference.2008, pp.125.
    [81]王博,黄传河,杨文忠.时延容忍网络中基于效用转发的自适用机会路由算法[J].通信学报.31(10),2010,p1).36-47.
    [82]刘唐,彭舰,王建忠等.延迟容忍移动传感器网络中基于节点优先级的数据传输策略[J].计算机科学.38(3),2011,pp.140-143.
    [83]Du X H, Wang Y D, Chen X Y, et al. Research on DTN Data Forwarding Algorithm Based on Node's Position and Moving Direction[C]. International Conference on Consumer Electronics, Communications and Networks.2011, pp.1581-1585.
    [84]朱金奇,刘明,龚海刚等.延迟容忍移动传感器网络中基于选择复制的数据传输[J].软件学报.20(8),2009,pp.2227-2240.
    [85]杨奎武,郑康锋,杨义先等.基于运动状态的延迟容忍移动传感器网络数据传输策略[J].通信学报.31(11),2010,pp.138-146.
    [86]吴亚辉,邓苏,黄宏斌.延迟容忍网络状态感知的路由策略研究.电子与信息学报[J].33(3),2011,pp.575-579.
    [87]Lai B C, Kim S, Verbauwhede I. Scalable session key construction protocol for wireless sensor networks. IEEE Workshop on Large Scale Real-Time and Embedded Systems.2002.
    [88]Sanchez D S, Baldus H. A deterministic pairwise key pre-distribution scheme for mobile sensor networks[C]. Processing of 1st International Conference on Security and Privacy for Emerging Areas in Communications Networks(SecureComm'05). 2005, pp.277-288.
    [89]Eschenauer L, Gligor V D. A Key-Management Scheme for distributed sensor Networks[C]. Proceedings of the 9th ACM Conference on Computer and Communication security.2002, pp.41-47.
    [90]Chan H W, Perrig A, Song D. Random key predistribution schemes for sensor networks[C]. Processing of IEEE Symp on Security and Privacy.2003, pp.197-213.
    [91]Blom R. An optimal class of sysmmetric key generation systems[C]. Proc. of the EUROCRYPT 84 workshop on Advances in cryptology:theory and application of cryptographic techniques.1985, pp.335-338.
    [92]Du W L, Deng J, et al. A Pairwise Key Pre-distribution mechanisms for wireless sensor networks[C]. Proc. of the 10th ACM conference on Computer and communication security.2003,42-51.
    [93]Xu L, Chen J W, Wang X D. Cover-Free Family based Efficient Group Key Management Strategy in Wireless Sensor[J]. Journal of Communications.3(6), 2008, pp51-58.
    [94]Gaubatz G, Kaps J P, et al. State of the art in Ultra-low power public key cryptography for wireless sensor networks[C]. The 3rd IEEE International Conference on Pervasive Computing and Communications.2005, pp.146-150.
    [95]Huang Q, Cukier J, Kobayashi H, et al. Fast Authenticated Key Establishment Protocols for Self-Organizing Sensor Networks[C].2nd ACM International Conference on Wireless Sensor Networks and Applications.2003, pp.141-150.
    [96]Samuel H, Zhuang W. Preventing unauthorized messages in dtn based mobile ad hoc networks[C]. Processing of the IEEE Global Telecommunications Conference(GLOBECOM'09).2009, pp.1-6.
    [97]Shamir. Identity-base cryptosystems and signature schemes[J]. Advances in Cryptology-Crypto 1984. LNCS 196.1984, pp.47-53.
    [98]Boneh D, Franklin M. Identity-based encryption from the weil pairing[J]. Advances in Crypto logy-CRYPTO 2001. Lecture Notes in Computer Science 2139.2001, pp.213-229
    [99]Asokan N, Kostiainen K, Ginzboorg P, et al. Applicability of identity-based cryptography for disruption-tolerant networking[C]. Processing of the First ACM/SIGMOBILE Workshop on Mobile Opportunistic Networking.2007, pp.52-56.
    [100]Nguyen K V. Simplifying Peer-to-Peer Device Authentication Using Identity-Based Cryptography[C]. International conference on Networking and Services.2006, pp.43.
    [101]Heo J, Hong C S, Choi M S, et al. Identity-based mutual Device authentication Schemes for PLC System[C]. IEEE International Symposium on Power Line Communications and Its Applications.2008,47-51.
    [102]Bing H, Agrawal D P. An Identity-based Authentication and key establishment scheme for multi-operator maintained wireless mesh networks[C]. IEEE 7th International Conference on Mobile Adhoc and Sensor System 2010, pp.71-78.
    [103]Boneh D, Boyen X. Efficient selective-ID secure identity-based encryption without random oracles[J]. Lecture Notes in Computer Science.3027,2004, pp.223-238.
    [104]Gentry C. Practical identity-based encryption without random oracles[C]. Proc. of the 24th annual international conference on The Theory and Applications of Cryptographic Thchniques.2006, pp.445-464.
    [105]Cha J C, Cheon J H. An Identity-Based Signature from Gap Diffie-Hellman Groups[C]. Proc. of the 6th International Workshop on Theory and Practice in Public Key Cryptography.2003, pp.18-30.
    [106]Zhang F G, Naini R S, Susilo W. An Efficient Signature Scheme from Bilinear Pairings and Its Applications[J]. Lecture Notes in Computer Science.2974,2004, pp.277-290.
    [107]Kang B Q Park J H, Hahn S G. A Certificate-based Signature Scheme[J]. Lecture Notes in Computer Science.2964,2004, pp.99-111.
    [108]Yoon H J, Cheon J H, Kim Y. Batch Verification with ID-based Signatures[J]. Lecture Notes in Computer Science.3506,2005, pp.233-248.
    [109]Ferrara A L, Green M, Hohenberger S. Practical Short Signature Batch Verification[C]. Proc. of the Cryptographers'Track at the RSAConference 2009 on Topic in Cryptology.2009, pp.309-324.
    [110]Tseng Y M, Wu T Y, Wu J D. Toward efficient ID-based signature schemes with batch verifications from bilinear pairings[C]. International Conference on Availability, Reliability and Security.2009, pp.935-940.
    [111]Cui S, Duan P, Chan C W. An efficient identity-based signature scheme with batch verifications[C]. Proceeding of 1st international conference on scalable information systems.2006, pp.22-28.
    [112]Ming Yand Wang Y. Imp roved identity based online/offline signature scheme [C]. Proc.2010 Symposia and Workshops on Ubiquitous, Autonomic and Trusted Computing.2010, pp.126-131.
    [113]Liu K J, Baek J, Zhou J, et al. Efficient online/offline identity-based signature for wireless sensor network[J]. Int. J. Inf Secur..9(4),2010, pp.287-296.
    [114]Li F, Di Z, Takagi T. Practical Identity-Based Signature for Wireless Sensor Networks[J].1(6),2012, pp.637-640.
    [115]Zhu H J, Lu R X, Shen X M, et al. BBA:an efficient batch bundle authentication scheme for delay tolerant networks [C]. Processing of Global Telecommunications Conference.2008, pp.1-5
    [116]Zhu H J, Lin R X, Shen X M, et al. An opportunistic batch bundle authentication scheme for energy constrained DTNs[C]. Processing of IEEE INFOCOM.2010, pp.605-613
    [117]陈曦,马建峰.基于身份加密的机会网络安全路由构架[J].计算机研究与发展. 48(8),2011, pp.1481-1487.
    [118]Centry C, Silverberg A. Hierarchical ID-based cryptography[G]. Proc. of the Advances in Crypto logy-Asiacrypt.2002, pp.548-566.
    [119]Hyytia E, Lassila P, and Virtamo J. Spatial node distribution of the random waypoint mobility model with applications[J]. IEEE Transactions on Mobile Computing.5(6),2006, pp.680-694.
    [120]Bettstetter C, Hartenstein H, and Prez-Costa X. Stochastic properties of random waypoint mobility model [J]. Wireless Networks.10(5),2004, pp.555-567.
    [121]Barreto P S L M, Libert B, MacCullagh N, et al. Efficient and provably-secure identity-based signatures and signcryption from bilinear maps[C]. ASIACRYPT 2005.2005, pp.515-532.
    [122]Zhu S C, Setia S, Jajidia S. LEAP:Efficient security mechanisms for large-scale distributed sensor networks[C]. Proc. of the 10th ACM conference on Computer and communications security.2003, pp.62-72.
    [123]Yang K W, Guo Y B, Wei D Wei et al. PUF-based Node Mutual Authentication Scheme for Delay Tolerant Mobile Sensor Network[C], The 7th International Conference on Wireless Communications,Networking and Mobile Computing. 2011,pp.1856-1859.
    [124]Liu D, Ning P. Location-Based pairwise key establishments for static sensor networks[C]. Proc. of the 1st ACM Workshop on Security of Ad Hoc and Sensor Networks.2003, pp.72-82.
    [125]Zhang Y C, Fang Y Q. A secure authentication and billing architecture for wireless mesh networks[J]. Wireless Networks.13(5),2007, pp.663-678.
    [126]Pointcheval D, Stern J. Security arguments for digital signatures and blind signatures[J]. Journal of Cryptology.13(3),2000, pp.361-396.
    [127]Brian J. Identification of Multiple Invalid Signatures in Pairing-Based Batched Signatures[C]. Proc. of the 12th International Conference on Pratice and Theory in Public Key Crytography.2009, pp.337-356.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700